Mathematics with Computer Science

Introductory Course
Winter Semester 2008/2009

Technische Universität Darmstadt
Fachbereich Mathematik
Dennis Frisch

Hints to Exercise, Unit 7

1. We apply the definition of a limit of a function and show that f has a limit in $a \in \mathbb{R}$:

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence with limit a. Then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\lim _{n \rightarrow \infty} a_{n}=a=f(a) .
$$

shows that f has the limit a in a.
This shows that f is continuous in a. As a was an arbitrary real number this shows that f is continuous in \mathbb{R}.
2. One has to check that the value $c x+1$ and $c x^{2}-1$ coincide for $x=3$ and that each of the two branches converges to it (which is obvious as these are continuous functions). $c=\frac{1}{3}$.
3. Should be straight forward: Apply the Intermediate Value Theorem to the function $f(x)=x^{2}$ on the interval $[1,2]$.
4. Also a simple application of the IVT.
5. We look at

$$
\left|f\left(x_{0}\right)-f(x)\right|=\left|x_{0}^{2}-x^{2}\right|=\left|\left(x_{0}-x\right)\left(x_{0}+x\right)\right|=\left|x_{0}-x\right|\left|x_{0}+x\right| \stackrel{\text { hint }}{\leq}\left(2\left|x_{0}\right|+1\right)\left|x_{0}-x\right| .
$$

If this is less than ε, then we can choose $\delta:=\frac{\varepsilon}{2\left|x_{0}\right|+1}$. Since the last estimate is only true is $\left|x_{0}-x\right| \leq 1$, we have to choose

$$
\delta:=\min \left\{1, \frac{\varepsilon}{2\left|x_{0}\right|+1}\right\} .
$$

6. All statements except the last one followed by our theroem about algebra of sequences. For example we show that $f+g$ is continous:

The continuity of f implies, that for $x_{n} \rightarrow x_{0}$ also $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$. The same for g by continuity of g. this yields to
$\lim _{n \rightarrow \infty}(f+g)\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)+g\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)+\lim _{n \rightarrow \infty} g\left(x_{n}\right)=f\left(x_{0}\right)+g\left(x_{0}\right)=(f+g)\left(x_{0}\right)$.
For the continuity of $f \circ g$, we have to do it in another way. So if we take a convergent sequence $x_{n} \rightarrow x_{0}$, then continuity of g implies, that

$$
g\left(x_{n}\right) \longrightarrow g\left(x_{0}\right) .
$$

So $g\left(x_{n}\right)$ is a convergent sequence. Then the continuity of f implies, that

$$
f\left(g\left(x_{n}\right)\right) \longrightarrow f\left(g\left(x_{0}\right)\right) .
$$

All together yields to

$$
\lim _{n \rightarrow \infty}(f \circ g)\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(g\left(x_{n}\right)\right) \stackrel{f \text { cont. }}{=} f\left(\lim _{n \rightarrow \infty} g\left(x_{n}\right)\right) \stackrel{g \text { cont. }}{=} f\left(g\left(\lim _{n \rightarrow \infty} x_{n}\right)\right)=f\left(g\left(x_{0}\right)\right)=(f \circ g)\left(x_{0}\right) .
$$

