Mathematics with Computer Science

Hints to Exercise, Unit 6

1. (i) We estimate

$$
\sum_{n=1}^{\infty} \frac{n+1}{n^{3}} \leq \sum_{n=1}^{\infty} \frac{n}{n^{3}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} .
$$

So we've found a majorant and so the series is convergent.
(ii) It is easy to see, that $n!>3^{n}$ for $n>7$. So

$$
\lim _{n \rightarrow \infty} \frac{n!}{3^{n}} \neq 0
$$

Therefore the series can't converge.
(iii) We estimate

$$
\frac{n!}{n^{n}}=\frac{n \cdot(n-1) \cdots 2 \cdot 1}{n \cdot n \cdot \cdots \cdot n \cdot n} \leq \frac{n \cdot n \cdots n \cdot 2 \cdot 1}{n \cdot n \cdots \cdot n \cdot n}=\frac{2}{n^{2}} .
$$

So we get

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}} \leq \sum_{n=1}^{\infty} \frac{2}{n^{2}}=2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

2. a) We have a look at the equation

$$
\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}
$$

Multiplying $(1-x)$ (for $x \neq 1$) yields to

$$
(1-x) \sum_{k=0}^{n} x^{k}=1+x^{n+1}
$$

If we look at the left side, we get

$$
\begin{aligned}
(1-x) \sum_{k=0}^{n} x^{k} & =\sum_{k=0}^{\infty} x^{k}(1-x) \\
& =\sum_{k=0}^{\infty} x^{k}-x^{k+1} \\
& =\underbrace{1-x^{1}}_{k=0}+\underbrace{x-x^{2}}_{k=1}+\underbrace{x^{2}-x^{3}}_{k=3}+\ldots+\underbrace{x^{n-1}-x^{n}}_{k=n-1}+\underbrace{x^{n}-x^{n+1}}_{k=n} \\
& =1-x^{n-1} .
\end{aligned}
$$

b)

$$
\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}=\frac{1}{1-\frac{2}{3}}=3
$$

3. Assume $\sum a_{n}$ is convergent, that means that the sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ of partial sums is convergent. Because $a_{n} \geq 0\left(s_{n}\right)$ is monotone increasing. By Theorem 6.2.2 the sequence $\left(s_{n}\right)$ of partial sums is bounded by C. Then we conclude

$$
\sum_{k=0}^{n} x_{k} \leq \sum_{k=0}^{n} a_{k} \leq C
$$

Since $x_{n} \geq 0$ too, we had also that the sequence $\left(t_{n}\right)$ of partial sums of $\sum x_{n}$ is monotone increasing and bounded. That means, that $\sum x_{n}$ is convergent too, which is a contradiction.
4. (i) We estimate

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+8} \leq \sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}}=\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}
$$

By Problem 2.b) this is equals to 3 and therefor the series is convergent.
(ii) We estimate

$$
\sum_{n=2}^{\infty} \frac{1}{n-1} \geq \sum_{n=2}^{\infty} \frac{1}{n}
$$

So the series is not convergent since $\sum \frac{1}{n}$ is a minorant according to problem 3 .
(iii) We estimate

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}-n+1} \leq 1+1+\sum_{n=2}^{\infty} \frac{1}{n^{2}-\frac{1}{2} n^{2}}=2+2 \sum_{n=2}^{\infty} \frac{1}{n^{2}}
$$

Again we had the majorant $\sum \frac{1}{n^{2}}$ and we can conclude that the series is convergent.

