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Hintsto Exercise, Unit 6
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OOn—|—1 “n <1
2w S lim Tl

So we've found a mgjorant and so the series is convergent.
(i) Itiseasy to see, that n! > 3" forn > 7. So
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Therefore the series can’t converge.
(iii) We estimate
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So we get
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If welook at the |eft side, we get
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3. Assume Y a,, is convergent, that means that the sequence (s, ),en Of partial sumsis convergent.
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Because a,, > 0 (s,,) ismonotone increasing. By Theorem 6.2.2 the sequence (s,,) of partial sums
is bounded by C'. Then we conclude

anxk < zn:ak <C.
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Since z,, > 0 too, we had aso that the sequence (¢,,) of partial sums of > x,, is monotone increas-
ing and bounded. That means, that > z,, is convergent too, which is a contradiction.

(i) We estimate
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By Problem 2.b) thisis equals to 3 and therefor the series is convergent.
(ii) We estimate
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So the seriesis not convergent since > % isaminorant according to problem 3.
(iii) We estimate
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Again we had the mgjorant > n—12 and we can conclude that the series is convergent.



