Mathematics with Computer Science

Technische Universität Darmstadt

Hints to Exercises 5

1. (a) Standard argument.
(b) Solve the inequality $\left|\frac{2 n-3}{5 n+7}-\frac{2}{5}\right| \leq \frac{1}{10}$ for n.
2. (a) Shown (for example by induction) that $2^{n}>n$. This implies $\frac{1}{2^{n}}<\frac{1}{n}$. The limit is 0 .
(b) Set

$$
a_{n}=\sum_{k=1}^{n} \frac{1}{2^{k}} .
$$

Then

$$
a_{n}=1-\frac{1}{2^{n}} .
$$

Therefore, the limit is 1 .
Consider the interval from 0 to 1 on the real line. Adding up the sum above means that we add half of the interval. Then we add half of the rest to that $\left(\frac{1}{4}\right)$. Then again half of the remainder $\left(\frac{1}{8}\right)$ and so on. This illustrates that the limit is 1 .
3. The first terms of an infinite sequence are $1,3,7,15,31,63$.
(a) E.g.: $a_{1}=1, a_{n+1}=2 a_{n}+1$.
(b) $a_{n}=2^{n}-1$
4. $a_{1}=\sqrt{2}, a_{n+1}=\sqrt{2 a_{n}}$. The limit is 2 .
5. Determine the limit (if it exists) of

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n}=0, \quad \lim _{n \rightarrow \infty} b_{n}=-3, \quad \lim _{n \rightarrow \infty} c_{n}=\frac{2}{3}, \\
\lim _{n \rightarrow \infty} d_{n}=0, \quad \lim _{n \rightarrow \infty} e_{n} \text { does not exist }
\end{gathered}
$$

6. (a)

$$
a_{n}=\sqrt{n^{2}+1}-n=\frac{\left(\sqrt{n^{2}+1}-n\right)\left(\sqrt{n^{2}+1}+n\right.}{\sqrt{n^{2}+1}+n}=\frac{n^{2}+1-n^{2}}{\sqrt{n^{2}+1}+n}=\frac{1}{\sqrt{n^{2}+1}+n} \rightarrow 0
$$

(b)

$$
b_{n}=\frac{n}{\sqrt{n^{2}+1}+n}=\frac{1}{\sqrt{\left(1+\frac{1}{n^{2}}\right)}+1} \rightarrow \frac{1}{2}
$$

(c)

$$
c_{n}=\frac{n^{2}}{\sqrt{\left(n^{2}+1\right)}+n}=\frac{n}{\sqrt{\left(1+\frac{1}{n^{2}}\right)}+1}>\frac{n}{\sqrt{1}+1}>n
$$

