Mathematics with Computer Science

Hints to Exercise, Unit 4

1.

	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}
injective	-	\times	\times	\times	\times	-
surjective	-	-	\times	\times	-	\times
bijective	-	-	\times	\times	-	-

2. (a) $f: \mathbb{N} \rightarrow \mathbb{N}, x \mapsto x+1$
(b) $f: \mathbb{N} \rightarrow \mathbb{N}, 1 \mapsto 1, x \mapsto x-1$ for $x>1$.
3. (a) $f(x)=\sqrt{x}, g(x)=x+9$.
(b) $f(x)=x^{2}, g(x)=x-5$.
(c) $f(x)=x+2, g(x)=\sqrt{x}$.
(d) $f(x)=\frac{1}{x}, g(x)=x-1$.
4. (a) $(f \circ f)(x)=x^{4}$. The domain of $f \circ f$ is \mathbb{R}.
$(g \circ f)(x)=x^{2}-3$. The domain of $g \circ f$ is \mathbb{R}.
$(f \circ g)(x)=(x-3)^{2}$. The domain of $f \circ g$ is \mathbb{R}.
$(g \circ g)(x)=x-6$. The domain of $g \circ g$ is \mathbb{R}.
(b) $(f \circ g \circ h)(x)=\frac{(x+3)^{2}}{(x+3)^{2}+1}$.
5. Possible zeros of f are $\{ \pm 1, \pm 2, \pm 3, \pm 6\}$. We try 1 and see, that $f(1)=0$. Therefore we can write

$$
f(x)=(x-1)\left(x^{2}-5 x+6\right) .
$$

Applying the p / q-Formula yields to

$$
\{x \in \mathbb{R}: f(x)=0\}=\{1,2,3\} .
$$

Possible zeros of g are $\{ \pm 1\}$. We try 1 and see, that $f(1)=0$. Therefore we can write

$$
g(x)=(x-1)\left(x^{3}-3 x^{2}+3 x-1\right) .
$$

Again we try 1 and find

$$
g(x)=(x-1)^{2}\left(x^{2}-2 x+1\right) .
$$

Applying the p / q-Formula yields to

$$
\{x \in \mathbb{R}: g(x)=0\}=\{1\} .
$$

Possible zeros of h are $\{ \pm 1\}$. We try 1 and see, that $f(1)=0$. Therefore we can write

$$
h(x)=(x-1)\left(x^{3}+x^{2}+x+1\right) .
$$

We try - 1 again and find

$$
h(x)=(x-1)(x+1)\left(x^{2}+1\right) .
$$

Applying the p / q-Formula yields to

$$
\{x \in \mathbb{R}: h(x)=0\}=\{1,-1\} .
$$

6. To determine the solutions of $f(x)=1$, we solve

$$
f(x)-1=0 .
$$

This leads to

$$
\{x \in \mathbb{R}: f(x)=1\}=\{1,2,-2\}
$$

