Mathematics with Computer Science

Introductory Course Winter Semester 2008/2009 Technische Universität Darmstadt Fachbereich Mathematik Dennis Frisch

Hints to Exercise, Unit 4

		f_1	f_2	f_3	f_4	f_5	f_6
1.	injective	-	×	×	×	×	-
	surjective	_	_	×	×	_	×
	bijective	_	_	×	×	_	_
_							

- 2. (a) $f : \mathbb{N} \to \mathbb{N}, x \mapsto x + 1$ (b) $f : \mathbb{N} \to \mathbb{N}, 1 \mapsto 1, x \mapsto x - 1$ for x > 1.
- 3. (a) $f(x) = \sqrt{x}, g(x) = x + 9.$ (b) $f(x) = x^2, g(x) = x - 5.$ (c) $f(x) = x + 2, g(x) = \sqrt{x}.$
 - (d) $f(x) = \frac{1}{x}, g(x) = x 1.$
- 4. (a) $(f \circ f)(x) = x^4$. The domain of $f \circ f$ is \mathbb{R} . $(g \circ f)(x) = x^2 - 3$. The domain of $g \circ f$ is \mathbb{R} . $(f \circ g)(x) = (x - 3)^2$. The domain of $f \circ g$ is \mathbb{R} . $(g \circ g)(x) = x - 6$. The domain of $g \circ g$ is \mathbb{R} . (b) $(f \circ g \circ h)(x) = \frac{(x + 3)^2}{(x + 3)^2 + 1}$.
- 5. Possible zeros of f are $\{\pm 1, \pm 2, \pm 3, \pm 6\}$. We try 1 and see, that f(1) = 0. Therefore we can write

$$f(x) = (x - 1)(x^2 - 5x + 6).$$

Applying the p/q-Formula yields to

$$\{x\in \mathbb{R} \ : \ f(x)=0\}=\{1,2,3\}.$$

Possible zeros of g are $\{\pm 1\}$. We try 1 and see, that f(1) = 0. Therefore we can write

$$g(x) = (x - 1)(x^3 - 3x^2 + 3x - 1).$$

Again we try 1 and find

$$g(x) = (x - 1)^2 (x^2 - 2x + 1).$$

Applying the p/q-Formula yields to

$$\{x\in \mathbb{R} \ : \ g(x)=0\}=\{1\}.$$

Possible zeros of h are $\{\pm 1\}$. We try 1 and see, that f(1) = 0. Therefore we can write

$$h(x) = (x - 1)(x^3 + x^2 + x + 1).$$

We try -1 again and find

$$h(x) = (x-1)(x+1)(x^2+1)$$

Applying the p/q-Formula yields to

$$\{x \in \mathbb{R} : h(x) = 0\} = \{1, -1\}.$$

6. To determine the solutions of f(x) = 1, we solve

$$f(x) - 1 = 0.$$

This leads to

$$\{x \in \mathbb{R} : f(x) = 1\} = \{1, 2, -2\}.$$