# Mathematics with Computer Science 

Technische Universität Darmstadt

## Hints to Exercises 3

1. We compute

$$
b^{3}=\left(a+\frac{1}{a}\right)^{3}=a^{3}+\frac{1}{a^{3}}+3\left(a+\frac{1}{a}\right)=a^{3}+\frac{1}{a^{3}}+3 b .
$$

The statement follows.
2. We show that $\frac{3 x-4}{2 x+4} \leq-1$ implies $x \leq 0$ :

$$
\frac{3 x-4}{2 x+4} \leq-1 \Rightarrow 3 x-4 \leq-2 x-4 \Rightarrow 5 x \leq 0 \Rightarrow x \leq 0
$$

3. (a) If $n$ is even, it is divisible by 2 . Then $n^{2}$ is also divisible by 2 .

If $n$ is odd, it is of the form $2 k-1$ for a natural number $k$. Then $n^{2}=4 k^{2}-4 k+1=2\left(2 k^{2}-2 k\right)+1$ is obviously odd.
(b) We follow the proof that $x^{2}=2$ does not have a rational solution. Set $x=\frac{a}{b}$ with $a$ and $b$ having no common factor. The key observation is that the equation $a^{2}=6 b^{2}$ implies that $a$ is even. Then we get $a=4 c$ for some $c$ and $2 c^{2}=3 b^{2}$. This equation implies that $b$ is even which is a contradiction.
(c) If $a=0$, then we have to consider $r=b \sqrt{2}$. If $r$ is rational, then $\sqrt{2}=\frac{r}{b}$ is also rational.
Assume $a \neq 0$. Then $r=(a+b \sqrt{2})^{2}=a^{2}+2 a b \sqrt{2}+2 b^{2}$ and $\sqrt{2}=\frac{r-a^{2}-2 b^{2}}{2 a b}$. If $r$ is rational, then $\sqrt{2}$ is also rational.
(d) Use the proof that shows that $x^{2}=2$ does not have a rational solution.
4. Induction start: For $n=1$ we get

$$
\sum_{k=1}^{1} k^{2}=1^{2}=1=\frac{1(1+2)(2 \cdot 1+1)}{6} .
$$

Induction step: Assume we know the claim to hold for some value of $n$, i.e.

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Then

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{2} & =\sum_{k=1}^{n} k^{2}+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6}=\frac{(n+1)(n(2 n+1)+6(n+1))}{6} \\
& =\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6}=\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}
\end{aligned}
$$

5. Both propositions can be shown by induction.
(a) Induction start: For $n=4$ is

$$
2 \cdot 4+1=9<16=4^{2}
$$

Induktion step: We assume, that the claim holds for a given $n \in \mathbb{N}$. Then we get

$$
\begin{array}{rll}
2(n+1)+1 & = & 2 n+1+2 \\
& \stackrel{\text { Assumption }}{<} & n^{2}+2 \stackrel{n>3}{<} n^{2}+2 n<n^{2}+2 n+1 \\
& = & (n+1)^{2} .
\end{array}
$$

(b) Induction start: For $n=4$ is

$$
4^{2}=16 \leq 16=2^{4}
$$

Induktion step: We assume, that the claim holds for a given $n \in \mathbb{N}$. Then we get

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1<n^{2}+n^{2}=2 n^{2} \\
& =2 \cdot 2^{n} \\
& =2^{n+1}
\end{aligned}
$$

6. The error is in the last step. The equation is formulated over the complex numbers and the equation

$$
x^{3}=1
$$

has three different solutions over the complex numbers. So substituting only one solution isn't an equivalence transformation.

There has to be another mistake, but I can't exactly find out at the moment. Sorry for that, I try to find it out.

