Mathematics with Computer Science

Technische Universität Darmstadt
Introductory Course
Winter Semester 2008/2009

Hints to exercises 2

1. (a)

$$
\begin{aligned}
(a+b i)(a+b i)^{-1} & =(a+b i) \cdot\left(\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} i\right) \\
& =a \frac{a}{a^{2}+b^{2}}+a \frac{-b}{a^{2}+b^{2}} i+b i \frac{a}{a^{2}+b^{2}}+b \frac{-b}{a^{2}+b^{2}} i^{2} \\
& =\frac{a^{2}}{a^{2}+b^{2}}+\frac{b^{2}}{a^{2}+b^{2}}=1
\end{aligned}
$$

is correct.
(b)

$$
\frac{5-3 i}{3+2 i}=(5-3 i)(3+2 i)^{-1}=(5-3 i) \frac{3-2 i}{13}=\frac{9-19 i}{13} .
$$

(c) We see, that $2-2 i$ enclose an angel of 45° with the real line. So multiplicating $2-2 i$ is a rotation of 45° clockwise and a dilation of $|2-2 i|=\sqrt{8} \approx 2.8$. So we get

(d)

$$
(x-c)(x-\bar{c})=x^{2}-(c+\bar{c}) x+c \bar{c}=x^{2}-2 a x+\left(a^{2}+b^{2}\right) .
$$

If $a=b=1$ this turns into $x^{2}-2 x+2$ which hence has the solutions $1+i$ and $1-i$.
2. The truth tables are:
(a)

A	$\neg A$	$\neg(\neg A)$
t	f	t
f	t	f

(b)

A	B	$A \wedge B$	$\neg(A \wedge B)$	$\neg A$	$\neg B$	$\neg A \vee \neg B$
t	t	t	f	f	f	f
t	f	f	t	f	t	t
f	t	f	t	t	f	t
f	f	f	t	t	t	t

(c) Similar to the above.
(d)

A	B	$A \Rightarrow B$	B	$\neg A$	$\neg A \vee B$
t	t	t	t	f	t
t	f	f	f	f	f
f	t	t	t	t	t
f	f	t	f	t	t

3. By setting up a truth table.

The implication $A \Rightarrow B$ says that B is true provided A is also true. It does not say anything about the truth of A and therefore, we do not know if B is true or not.
If we know in addition that A is true, then it follows that B is also true.
4. If x is a positive real number, then x^{2} is also positive.

If the integer n is divisible by 6 , then n is divisible by 3 .
If it is midnight in Darmstadt, the sun does not shine.
5. We are looking at the following truth table:

A	B	$A \Rightarrow B$	$\neg B$	$\neg A$	$\neg B \Longrightarrow \neg A$
t	t	t	f	f	t
t	f	f	t	f	f
f	t	t	f	t	t
f	f	t	t	t	t

6. (a) There is a mathematician who is not a smoker.
(b) There is a student who likes to go to parties.
(c) There is a banana that is not yellow.
(d) All swans are not black.
7. (a) $\forall x \in S: \neg A(x) \vee \neg B(x)$
(b) $\exists x \in S: A(x) \wedge \neg B(x)$
8. (a) $\forall x \in \mathbb{R} \exists n \in \mathbb{N}: n>x$.

There is an x in \mathbb{R} such that x is larger than or equal to n for all $n \in \mathbb{N}$.
(b) $\neg\left(\exists q \in \mathbb{Q}: q^{2}=0\right)$ which is the same as $\forall q \in \mathbb{Q}: q^{2} \neq 0$.

There is a rational number x satisfying the equation $x^{2}=0$.

