Mathematics with Computer Science
 Technische Universität Darmstadt
 Fachbereich Mathematik
 Dennis Frisch

Hints to exercises 1

1. We show this by inspecting the multiples of 7 and observing that 100 is not among them. Therefore, 7 is not a divisor of 100 :

$$
7,14,21,35,42,49,56,63,70,77,84,91,98,105, \ldots
$$

2. The divisors of 12 are $\{1,2,3,4,6,12\}$.

Any divisor of 12 is smaller than or equal to 12 . We need to show that $5,7,8,9,10$ and 11 are not divisors of 12 .
We show the assertion for 5 : The multplies of 5 are $5,10,15, \ldots$ and we see that 12 is not among the multiples of 5 . Therefore, 5 is not a divisor of 12 . It is easy to treat the other non-divisors of 12 in the same way.
The divisors of 140 are $\{1,2,4,5,7,10,14,20,28,35,70,140\}$.
The divisors of 1001 are $\{1,7,11,13,77,91,143,1001\}$.
3. The following table is the sieve after the multiples of 7 have been crossed out.

1	2	3	4	5	$\not 6$	7	\varnothing	9	10
11	$1 / 2$	13	14	15	16	17	18	19	20
24	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

We see that all remaining numbers are primes and can stop the process.
Observe that when you cross out the multiples of a number n, then the first multiple of n that is not crossed out yet is n^{2}. Why is that the case?
4. We write $n=1 \cdot n$. We compare this with the definition of divisibility and see that there is a number d (which is n in this case) such that $n=d \cdot 1$. We also see that there is another number d (which is 1 in this case) such that $n=d \cdot n$.
5. If p is a divisor of q, then there is a natural number d_{1} such that $q=d_{1} \cdot p$. Likewise, there is a natural number d_{2} such that $r=d_{2} \cdot q$. Substituting the first equation into the second gives: $r=d_{2} d_{1} \cdot p$ and we see that p divides r.
6. Let $d \geq \sqrt{n}$. As d divides n, there is an m such that $d m=n$. Then

$$
d \cdot m=n=\sqrt{n} \cdot \sqrt{n} \leq d \cdot \sqrt{n}
$$

Cancelling d on both ends gives $m \leq \sqrt{n}$.
If we have checked that a number n is not divisible by any of the natural numbers (different from 1) smaller than or equal to \sqrt{n}, then it cannot be divisible by any of the numbers strictly between 1 and n. This means that we can stop the method of trial division at \sqrt{n}.
This coincides with the observation that the Eratosthenes' Sieve in Problem 3 could be stopped when the multiples of the prime 7 were crossed out. The next prime, 11 , is larger than $\sqrt{50}$.
7. If $m=d q$ and $n=d r$, then $m+n=d q+d r=d(q+r)$. Hence d divides $m+n$. Write $m n=d q \cdot d r=d^{2} \cdot q r$.
8.

$$
\begin{gathered}
\sum_{i=0}^{3} i=0+1+2+3=6 \\
\sum_{j=1}^{3} 3^{j}=3+9+27=39 \\
\sum_{k=1}^{2} 2+j=2+j+2+j=4+2 j
\end{gathered}
$$

9.

$$
\begin{aligned}
1+3+5+7+9 & =\sum_{i=0}^{4} 2 i+1 \\
2+4+6+8+10 & =\sum_{i=1}^{5} 2 i \\
2+4+8+16 & =\sum_{i=1}^{4} 2^{i}
\end{aligned}
$$

10. Direct computation:

$$
\begin{array}{r}
\frac{n!}{(n-(k-1))!(k-1)!}+\frac{n!}{(n-k)!k!} \\
=\frac{n!}{(n-k+1)!(k-1)!}+\frac{n!}{(n-k)!k!} \\
=\frac{n!\cdot k}{(n-k+1))!k!}+\frac{n!(n-k+1)}{(n-k+1)!k!} \\
=\frac{n!\cdot k+n!(n-k+1)}{(n-k+1))!k!} \\
=\frac{(n+1)!}{(n+1-k)!k!}
\end{array}
$$

11. From the binomial formula: Substitute $x=1$ and $y=1$ into $(x+y)^{n}$.

From the binomial formula: Substitute $x=1$ and $y=-1$ into $(x+y)^{n}$.
12. (a) We distinguish two cases:
i. $a \geq 0$. Then $|a|=a$ and $-a \leq 0 \leq a$. Thus

$$
|a| \leq c \Leftrightarrow a \leq c \Leftrightarrow a \leq c \text { and }-c \leq-a \leq a \Leftrightarrow-c \leq a \leq c .
$$

ii. $a<0$. Then $|a|=-a$ and $a<0<-a$. Thus

$$
|a| \leq c \Leftrightarrow-a \leq c \Leftrightarrow-a \leq c \text { and }-c \leq a<-a \Leftrightarrow-c \leq a \leq c
$$

(b) Use (a) with $c=|a|$ and note that $|a| \leq|a|$ is always true.
(c) By (b) we have $a \leq|a|$ and $b \leq|b|$ thus $a+b \leq|a|+|b|$. Likewise we have $-|a| \leq a$ and $-|b| \leq b$ thus $-|a|-|b| \leq a+b$. Combining this yields $-(|a|+|b|) \leq a+b \leq|a|+|b|$ which by (a) is equivalent to $|a+b| \leq|a|+|b|$
(d) Set $c:=a-b$. Bei (c) we have $|a|=|b+c| \leq|b|+|c|=|b|+|a-b|$.
(e) By (a) $|x-a| \leq \varepsilon$ is the same as saying $-\varepsilon \leq x-a \leq \varepsilon$. Adding a to this inequality yields the desired statement.

Geometrically, when looking at the number line, this indicates all real numbers (points on the number line) that are at distance at most ε from a. So, the x satisfying it form a line segment, the closed interval $[a-\varepsilon, a+\varepsilon]$.
(f) To find the solutions of $|4-3 x|>2 x+10$ we distinguish between two cases:
i. $4-3 x \geq 0$: Equivalentely, $x \leq \frac{4}{3}$. Then the above inequality becomes

$$
4-3 x>2 x+10 \Leftrightarrow-6>5 x \Leftrightarrow x<-\frac{6}{5} \leq \frac{4}{3}
$$

ii. $4-3 x<0$: Equivalentely, $x>\frac{4}{3}$. Then the above inequality becomes

$$
-(4-3 x)>2 x+10 \Leftrightarrow x>14>\frac{4}{3}
$$

Hence the solutions are those real number which are either greater than 14 or less than $-\frac{6}{5}$. The second problem can be solved in a similar fashion, showing that $\frac{10}{3} \leq x \leq 10$ is the set of solutions there.

