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Hints to exercises 1

1. We show this by inspecting the multiples of 7 and observing that 100 is not among them. Therefore,
7 is not a divisor of 100:

7, 14, 21, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, . . .

2. The divisors of 12 are {1, 2, 3, 4, 6, 12}.

Any divisor of 12 is smaller than or equal to 12. We need to show that 5, 7, 8, 9, 10 and 11 are not
divisors of 12.

We show the assertion for 5: The multplies of 5 are 5, 10, 15, . . . and we see that 12 is not among
the multiples of 5. Therefore, 5 is not a divisor of 12. It is easy to treat the other non-divisors of 12
in the same way.

The divisors of 140 are {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.

The divisors of 1001 are {1, 7, 11, 13, 77, 91, 143, 1001}.

3. The following table is the sieve after the multiples of 7 have been crossed out.

1 2 3 64 5 66 7 68 69 610
11 612 13 614 615 616 17 618 19 620
621 622 23 624 625 626 627 628 29 630
31 632 633 634 635 636 37 638 639 640
41 642 43 644 645 646 47 648 649 650

We see that all remaining numbers are primes and can stop the process.

Observe that when you cross out the multiples of a number n, then the first multiple of n that is not
crossed out yet is n2. Why is that the case?

4. We write n = 1 ·n. We compare this with the definition of divisibility and see that there is a number
d (which is n in this case) such that n = d · 1. We also see that there is another number d (which is
1 in this case) such that n = d · n.

5. If p is a divisor of q, then there is a natural number d1 such that q = d1 · p. Likewise, there is
a natural number d2 such that r = d2 · q. Substituting the first equation into the second gives:
r = d2d1 · p and we see that p divides r.

6. Let d ≥ √
n. As d divides n, there is an m such that dm = n. Then

d · m = n =
√

n ·
√

n ≤ d ·
√

n.

Cancelling d on both ends gives m ≤ √
n.

If we have checked that a number n is not divisible by any of the natural numbers (different from
1) smaller than or equal to

√
n, then it cannot be divisible by any of the numbers strictly between 1

and n. This means that we can stop the method of trial division at
√

n.

This coincides with the observation that the Eratosthenes’ Sieve in Problem 3 could be stopped
when the multiples of the prime 7 were crossed out. The next prime, 11, is larger than

√
50.



7. If m = dq and n = dr, then m + n = dq + dr = d(q + r). Hence d divides m + n. Write
mn = dq · dr = d2 · qr.

8.

3∑

i=0

i = 0 + 1 + 2 + 3 = 6

3∑

j=1

3j = 3 + 9 + 27 = 39

2∑

k=1

2 + j = 2 + j + 2 + j = 4 + 2j

9.

1 + 3 + 5 + 7 + 9 =

4∑

i=0

2i + 1

2 + 4 + 6 + 8 + 10 =

5∑

i=1

2i

2 + 4 + 8 + 16 =

4∑

i=1

2i

10. Direct computation:

n!

(n − (k − 1))!(k − 1)!
+

n!

(n − k)!k!

=
n!

(n − k + 1)!(k − 1)!
+

n!

(n − k)!k!

=
n! · k

(n − k + 1))!k!
+

n!(n − k + 1)

(n − k + 1)!k!

=
n! · k + n!(n − k + 1)

(n − k + 1))!k!

=
(n + 1)!

(n + 1 − k)!k!

11. From the binomial formula: Substitute x = 1 and y = 1 into (x + y)n.

From the binomial formula: Substitute x = 1 and y = −1 into (x + y)n.



12. (a) We distinguish two cases:

i. a ≥ 0. Then |a| = a and −a ≤ 0 ≤ a. Thus

|a| ≤ c ⇔ a ≤ c ⇔ a ≤ c and − c ≤ −a ≤ a ⇔ −c ≤ a ≤ c.

ii. a < 0. Then |a| = −a and a < 0 < −a. Thus

|a| ≤ c ⇔ −a ≤ c ⇔ −a ≤ c and − c ≤ a < −a ⇔ −c ≤ a ≤ c.

(b) Use (a) with c = |a| and note that |a| ≤ |a| is always true.

(c) By (b) we have a ≤ |a| and b ≤ |b| thus a + b ≤ |a| + |b|. Likewise we have −|a| ≤ a and
−|b| ≤ b thus −|a| − |b| ≤ a + b. Combining this yields −(|a| + |b|) ≤ a + b ≤ |a| + |b|
which by (a) is equivalent to |a + b| ≤ |a| + |b|

(d) Set c := a − b. Bei (c) we have |a| = |b + c| ≤ |b| + |c| = |b| + |a − b|.
(e) By (a) |x − a| ≤ ε is the same as saying −ε ≤ x − a ≤ ε. Adding a to this inequality yields

the desired statement.

Geometrically, when looking at the number line, this indicates all real numbers (points on the
number line) that are at distance at most ε from a. So, the x satisfying it form a line segment,
the closed interval [a − ε, a + ε].

(f) To find the solutions of |4 − 3x| > 2x + 10 we distinguish between two cases:

i. 4 − 3x ≥ 0: Equivalentely, x ≤ 4

3
. Then the above inequality becomes

4 − 3x > 2x + 10 ⇔ −6 > 5x ⇔ x < −6

5
≤ 4

3
.

ii. 4 − 3x < 0: Equivalentely, x > 4

3
. Then the above inequality becomes

−(4 − 3x) > 2x + 10 ⇔ x > 14 >
4

3
.

Hence the solutions are those real number which are either greater than 14 or less than − 6

5
.

The second problem can be solved in a similar fashion, showing that 10

3
≤ x ≤ 10 is the set

of solutions there.


