Fachbereich Mathematik Prof. Dr. J. Lehn A. Berger Dr.S. Moritz

12./13./16.7.2007

Mathematik II für BI, WIBI, MaWi und GEO, Übung 12

Gruppenübung

 ${\bf G}$ 34 Gegeben sei das zweidimensionale Vektorfeld $\vec{v}=(x^2+y^2,x^2-y^2)^T$ und das Gebiet

$$B = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1, y \ge 0 \}.$$

Die (geschlossene) Kurve C sei der Rand von B. Berechnen Sie den Wert des Kurvenintegrals

$$\oint_C \vec{v} \ d\vec{x}$$

- a) direkt.
- b) mit Hilfe der Greenschen Formel.
- **G 35** Wir wollen mit Hilfe des Satzes von Gauss das Volumen V eines Kegelstumpfes bestimmen. Der Kegelstumpf besitze die Höhe H. Sein kreisförmiger Boden F_1 besitzt den Radius R. Sein kreisförmiger Deckel den Radius \tilde{R} , wobei $R \geq \tilde{R}$ gilt. Der Kegelstumpf stehe mit dem Mittelpunkt von F_1 im Ursprung des x-y-z-Koordinatensystems und der Boden liege in der x-y-Ebene. Wir gehen wie folgt vor.
 - 1.) Die Oberfläche des Kegelstumpfes setzt sich aus dem Boden F_1 , dem Deckel F_2 und einer Mantelfläche F_3 zusammen. Eine Parametrisierung von F_1 lautet

$$g_1(u,v) = \begin{pmatrix} u \cos v \\ u \sin v \\ 0 \end{pmatrix} = \begin{pmatrix} x_1(u,v) \\ y_1(u,v) \\ z_1(u,v) \end{pmatrix}$$

mit $0 \le v \le 2\pi$ und $0 \le u \le R$.

Eine Parametrisierung von F_2 lautet

$$g_2(u,v) = \begin{pmatrix} u\cos v \\ u\sin v \\ H \end{pmatrix} = \begin{pmatrix} x_2(u,v) \\ y_2(u,v) \\ z_2(u,v) \end{pmatrix}$$

mit $0 \le v \le 2\pi$ und $0 \le u \le \tilde{R}$.

Eine Parametrisierung von F_3 lautet

$$g_3(u,v) = \begin{pmatrix} u\cos v \\ u\sin v \\ \frac{H}{R-\tilde{R}}(R-u) \end{pmatrix} = \begin{pmatrix} x_3(u,v) \\ y_3(u,v) \\ z_3(u,v) \end{pmatrix}$$

mit $0 \le v \le 2\pi$ und $\tilde{R} \le u \le R$.

Berechnen Sie die Normalenvektoren $\eta_1', \eta_2', \eta_3'$ mit

$$\eta'_1(u,v) = g_{1u}(u,v) \times g_{1v}(u,v)$$

$$\eta_2'(u,v) = g_{2u}(u,v) \times g_{2v}(u,v)$$

$$\eta_3'(u,v) = g_{3u}(u,v) \times g_{3v}(u,v)$$

und normieren Sie $\eta_1', \eta_2', \eta_3'$ so, dass die entstehenden Einheitsnormalenvektoren η_1, η_2, η_3 vom Kegel aus nach aussen weisen.

- 2.) Betrachten Sie das Vektorfeld $v(x,y,z):=(-x,-y,\frac{H}{R-\tilde{R}}\sqrt{x^2+y^2})$. Berechnen Sie $v\cdot\eta_1,v\cdot\eta_2,v\cdot\eta_3$.
- 3.) Berechnen Sie div(v).
- 4.) Zeigen Sie mit dem Integralsatz von Gauss, dass für das Volumen V

$$-2V = \iint_{F_1} \frac{H}{R - \tilde{R}} \sqrt{x^2 + y^2} \ dF_1 + \iint_{F_2} \frac{H}{R - \tilde{R}} \sqrt{x^2 + y^2} \ dF_2$$

gilt.

5.) Berechnen Sie V mit 4.). Verwenden Sie dabei Polarkoordinaten für die Parametrisierung von F_1 und F_2 , d.h. rechnen Sie mit g_1 und g_2 .