

10./11./14.5.2007

Mathematik II für BI, WIBI, MaWi und GEO, Übung 3

Gruppenübung

G7 Gegeben sind die folgenden Matrizen und der Vektor

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad \text{und} \quad \vec{b} = \begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix}.$$

- a) Berechnen Sie die inversen Marizen A^{-1} , B^{-1} , $(AB)^{-1}$, $(BA)^{-1}$ und $((A)^3)^{-1}$.
- b) Lösen Sie die linearen Gleichungssysteme Ax = b, Bx = b, (BA)x = b, $A^2x = b$ und (AB)x = 0. Benutzen Sie dazu Aufgabenteil a).
- **G8** Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$ die Projektion auf die y-Achse.

Sei $g: \mathbb{R}^2 \to \mathbb{R}^2$ die Drehung um den Ursprung mit dem Drehwinkel $\pi/2$.

Sei $h: \mathbb{R}^2 \to \mathbb{R}$ die Abbildung mit $h\left(\begin{pmatrix} x & y \end{pmatrix}^T\right) = 2x + 3y$.

- a) Berechnen Sie die Matrizen A, B, C der linearen Abbildungen f, g, h bezüglich der kanonischen Basis.
- b) Was geschieht geometrisch in einem Koordinatensystem mit dem Vektor $\begin{pmatrix} 1 & 1 \end{pmatrix}^T$ durch Hintereinanderausführung der Abbildungen f und g? Betrachten Sie sowohl $f \circ g$ als auch $g \circ f$ und interpretieren Sie Ihre Beobachtung.
- c) Berechnen Sie die Matrix D, welche die lineare Abbildung $h \circ f \circ g$ beschreibt und berechnen Sie

$$D\begin{pmatrix} 1\\1 \end{pmatrix}$$
 und $(h \circ f \circ g)\begin{pmatrix} 1\\1 \end{pmatrix}$

G 9 Gegeben seien die Vektoren

$$\vec{b_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \vec{b_2} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \quad \text{und} \quad \vec{b_3} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

a) Zeigen Sie, dass die Vektoren $\vec{b_1}, \vec{b_2}, \vec{b_3}$ eine Basis des \mathbb{R}^3 bilden.

- b) Es seien $\beta_1, \beta_2, \beta_3 \in \mathbb{R}$ die Koordinaten eines Vektors $\vec{x} \in \mathbb{R}^3$ zur Basis $L := \{\vec{b_1}, \vec{b_2}, \vec{b_3}\}$, es gelte also $\vec{x} = \beta_1 \vec{b_1} + \beta_2 \vec{b_2} + \beta_3 \vec{b_3}$. Berechnen Sie zuerst die jeweiligen Koordinaten der Vektoren der Basis L bezüglich E. Geben Sie dann die Matrizen B und B^{-1} an, mit denen die gegebenen Koordinaten eines Vektors \vec{x} bezüglich der Basis L in die Koordinaten von \vec{x} bezüglich der kanonischen Basis transformiert werden können und umgekehrt.
- c) Gegeben sei der Vektor $\vec{x} \in \mathbb{R}^3$ mit $\vec{x_E} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T$ zur kanonischen Basis E. Berechnen Sie seine Koordinaten zur Basis L und zur kanonischen Basis E. Benutzen Sie dazu die Ergebnisse von b).

Hausübung

H7 Gegeben seien folgende Vektoren

$$\vec{b_1} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \vec{b_2} = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \vec{b_3} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
$$\vec{c_1} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \vec{c_2} = \begin{pmatrix} -1\\0\\0 \end{pmatrix}, \vec{c_3} = \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

 $c_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, c_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, c_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- a) Zeigen Sie, dass $B:=\{\vec{b_1},\vec{b_2},\vec{b_3}\}$ und $C:=\{\vec{c_1},\vec{c_2},\vec{c_3}\}$ Basen des \mathbb{R}^3 bilden.
- b) Es seien $\beta_1, \beta_2, \beta_3$ die Koordinaten von Vektor $\vec{x} \in \mathbb{R}^3$ zur Basis B und $\alpha_1, \alpha_2, \alpha_3$ seien die Koordinaten von \vec{x} zur Basis C. Geben Sie eine Matrix D an, die die Koordinaten von \vec{x} bezüglich B in Koordinaten von \vec{x} bezüglich C transformiert. Berechnen Sie D^{-1} . Welche Bedeutung hat D^{-1} ?
- c) Gegeben sei der Vektor $\vec{x_B}$ zur Basis B mit den Koordinaten $\beta_1 = 2, \beta_2 = -1, \beta_3 = 0$, es gilt also $\vec{x_B} = \beta_1 \vec{b_1} + \beta_2 \vec{b_2} + \beta_3 \vec{b_3}$. Berechnen Sie die Koordinaten von $\vec{x_B}$ bezüglich C.
- $\mathbf{H}\,\mathbf{8}$ Sei $f:\mathbb{R}^2\to\mathbb{R}^2$ die Verschiebung des Vektors (x-y) T um den Wert x längs der x-Achse.

Sei $g: \mathbb{R}^2 \to \mathbb{R}^2$ die Spiegelung an der Winkelhalbierenden $\{(x, -x) | x \in \mathbb{R}\}.$

- a) Bestimmen Sie die Matrizen der linearen Abbildungen $f,g,f\circ g,g\circ f$ bezüglich der kanonischen Basis.
- b) Was geschieht geometrisch durch eine Hintereinanderausführung $f \circ g$ mit dem Vektor $\vec{x} = \begin{pmatrix} 2 & 1 \end{pmatrix}^T$?
- c) Finden Sie einen Vektor \vec{x} für den $(f \circ q)(\vec{x}) = (q \circ f)(\vec{x})$ gilt.
- **H9** Wir betrachten in einem Koordinatensystem die Kurve $f: \mathbb{R} \to \mathbb{R}^2$, die durch Drehung der Normalparabel um $\pi/2$ entsteht. Uns ist die Normalparabel bekannt als die Menge aller Vektoren $M:=\left\{\left(\begin{array}{cc} x & y\end{array}\right)^T|y=x^2, x,y\in\mathbb{R}\right\}$. Berechnen Sie mit Hilfe einer Transformationsmatrix die Kurve f.