Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahmen, Dipl.-Math. Stefan Wagner

3. Tutorium zur "Analysis I für M, LaG und Ph"

Aufgaben und Lösungen

Hinweis: Wie in der Vorlesung auch bezeichne $\mathbb{N} = \{1, 2, 3, \ldots\}$ immer die Menge der natürlichen Zahlen ohne Null, und $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$ die Menge der nichtnegativen ganzen Zahlen, inklusive der Null. (Achtung: Dies kann in anderen Veranstaltungen anders sein! Manchmal ist auch die Null natürlich.)

Aufgabe T7 (Binomischer Lehrsatz)

Zeige, unter Verwendung des Binomischen Lehrsatzes, folgende Formel:

$$(\forall k \in \mathbb{Q})(\forall q \in \mathbb{N}) \quad (k+1)^q - k^q = \sum_{r=0}^{q-2} \binom{q}{r} k^r + qk^{q-1}. \tag{1}$$

Überprüfe insbesondere die Gültigkeit der Formel für den Fall q=1.

Lösung: Der binomische Lehrsatz ist Satz I.4.9 aus der Vorlesung. Er besagt:

$$(\forall x, y \in \mathbb{Q}, n \in \mathbb{N}_0) \quad (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k \cdot y^{n-k}.$$

Um den Satz anzuwenden ersetzen wir x durch k, y durch 1, n durch q und den Summationsindex k durch r. Dann steht da:

$$(k+1)^q = \sum_{r=0}^q \binom{q}{r} k^r.$$

Die beiden letzten Summanden dieser Summe $\binom{q}{q-1}k^{q-1}=qk^{q-1}$ und $\binom{q}{q}k^q=k^q$ spalten wir ab und erhalten:

$$(k+1)^q = \sum_{r=0}^{q-2} \binom{q}{r} k^r + qk^{q-1} + k^q.$$

Subtrahieren von k^q auf beiden Seiten liefert die gesuchte Gleichung.

Der Fall q=1 ist ein Spezialfall, da die Summe $\sum_{r=0}^q$ nur zwei Summanden hat, nämlich den Fall r=0 und r=1. Wenn wir nun – wie oben angegeben – die letzten beiden Summanden abspalten, so bleibt nichts übrig, sozusagen die leere Summe. Die Formel bleibt also gültig, wenn wir definieren, dass $\sum_{r=0}^{-1} \cdots := 0$ ist.

Aufgabe T8 (Teleskopsumme)

Gegeben seien Zahlen $n \in \mathbb{N}_0, q \in \mathbb{N}$. Vereinfache – ohne Verwendung von Aufgabe (T7) – den folgenden Ausdruck:

$$\sum_{k=0}^{n} \left((k+1)^q - k^q \right).$$

Lösung:

$$\sum_{k=0}^{n} \left((k+1)^q - k^q \right) = \left(1^q - 0^q \right) + \left(2^q - 1^q \right) + \left(3^q - 2^q \right) + \dots + \left((n+1)^q - n^q \right).$$

Man sieht, dass sich alle Terme wegheben, bis auf $(n+1)^q$ und auf -0^q . Letzteres ist aber gleich 0, da $q \ge 1$ ist. Demnach vereinfacht sich der Ausdruck zu $(n+1)^q$.

Anmerkung: Eine Summe dieser Art nennt man auch Teleskopsumme, weil sie bei obiger Rechnung erst ausgeschrieben sehr lang wird und dann – nachdem sich fast alles weghebt – sehr kurz wird. Anmerkung: Wem dieser Beweis mit "man sieht, dass …" nicht mathematisch genug war, kann auch die Formel $\sum_{k=0}^{n} \left((k+1)^q - k^q \right) = (n+1)^q$ z.B. mit vollständiger Induktion beweisen.

Aufgabe T9 (Summenformeln)

Für $p, n \in \mathbb{N}_0$ setze $S^{(p)}(n) := \sum_{k=0}^n k^p$. Aus der Vorlesung wissen wir bereits, dass

$$(\forall n \in \mathbb{N}_0) \ S^{(1)}(n) = \frac{n(n+1)}{2}.$$

In den Hausübungen des 3. Übungsblattes wird per Induktion bewiesen, dass

$$(\forall n \in \mathbb{N}_0) \ S^{(2)}(n) = \frac{1}{6}n(n+1)(2n+1)$$

und

$$(\forall n \in \mathbb{N}_0) \ S^{(3)}(n) = \frac{n^2}{4}(n+1)^2.$$

Mit vollständiger Induktion kann man allerdings nur Formeln beweisen, die man bereits formuliert hat. Damit bleibt also unklar, wie man diese Formeln findet und ob es zu jedem Exponenten p eine solche Formel gibt.

(T9 a) Sei $n \in \mathbb{N}_0, q \in \mathbb{N}$. Summiere beide Seiten der Gleichung 1 aus Aufgabe (T7) von k = 0 bis n und leite so folgende Formel her (unter Verwendung der (T8)):

$$(n+1)^q = \sum_{r=0}^{q-2} {q \choose r} S^{(r)}(n) + q \cdot S^{(q-1)}(n).$$

(T9 b) Ersetze nun q durch p+1 für ein $p \in \mathbb{N}_0$ und löse anschließend nach $S^{(p)}(n)$ auf. Nun müsstest du eine Formel für beliebigen Exponenten p haben, in der allerdings alle Formeln $S^{(r)}(n)$ für r < p vorkommen.

Lösung:

(a) Wir wissen, dass für jedes $k \in \mathbb{Q}$, also insbesondere für jedes $k \in \{0, ..., n\}$ die Formel aus Aufgabe T7 gilt:

$$(\forall k = 0...n)$$
 $(k+1)^q - k^q = \sum_{r=0}^{q-2} {q \choose r} k^r + qk^{q-1}$

Nun addieren wir alle diese Gleichungen von k = 0 bis k = n auf und erhalten:

$$\sum_{k=0}^{n} \left((k+1)^{q} - k^{q} \right) = \sum_{k=0}^{n} \left(\sum_{r=0}^{q-2} {q \choose r} k^{r} + q k^{q-1} \right)$$

Die linke Seite dieser Gleichung ist – nach Aufgabe (T8) – gleich $(n+1)^q$. Die rechte Seite können wir umformen zu

$$\begin{split} \sum_{k=0}^{n} \left(\sum_{r=0}^{q-2} \binom{q}{r} k^r + q k^{q-1} \right) &= \sum_{k=0}^{n} \left(\sum_{r=0}^{q-2} \binom{q}{r} k^r \right) + \sum_{k=0}^{n} \left(q k^{q-1} \right) \\ &= \sum_{r=0}^{q-2} \binom{q}{r} \sum_{k=0}^{n} k^r + q \cdot \sum_{k=0}^{n} k^{q-1} \\ &= \sum_{r=0}^{q-2} \binom{q}{r} S^{(r)}(n) + q \cdot S^{(q-1)}(n). \end{split}$$

Das war zu beweisen.

(T9 b) Die Substitution q := p - 1 ergibt

$$(n+1)^{p+1} = \sum_{r=0}^{p-1} {p+1 \choose r} S^{(r)}(n) + (p+1) \cdot S^{(p)}(n).$$

Subtrahieren der großen Summe und anschließendes Teilen durch den Wert (p+1), der ungleich 0 ist, weil $p \ge 0$ ist, ergibt schließlich:

$$S^{(p)}(n) = \frac{1}{p+1} \left((n+1)^{p+1} - \sum_{r=0}^{p-1} {p+1 \choose r} S^{(r)}(n) \right)$$

Aufgabe T10 (noch mehr Summenformeln)

Zeige mit Hilfe von (T9 b), wie man die Formeln für $S^{(0)}(n)$, $S^{(1)}(n)$ und $S^{(2)}(n)$ findet. Falls du noch Zeit und Lust auf weitere Rechnungen hast, leite auf diesem Wege die Formeln für $S^{(3)}(n)$ und $S^{(4)}(n)$ her.

Lösung: Die Formel aus (T9 b) liefert für p = 0:

$$S^{(0)}(n) = \frac{1}{1} \left((n+1)^{0+1} - \underbrace{\sum_{r=0}^{0-1} \binom{0+1}{r} S^{(r)}(n)}_{-0} \right) = n+1.$$

Dieselbe Formel liefert für p = 1:

$$S^{(1)}(n) = \frac{1}{2} \left((n+1)^2 - \sum_{r=0}^{0} {1 \choose r} S^{(r)}(n) \right)$$
$$= \frac{1}{2} \left((n+1)^2 - (n+1) \right) = \frac{n(n+1)}{2}.$$

Nun der Fall p = 2:

$$S^{(2)}(n) = \frac{1}{3} \left((n+1)^3 - \sum_{r=0}^1 {3 \choose r} S^{(r)}(n) \right)$$

$$= \frac{1}{3} \left((n+1)^3 - {3 \choose 0} S^{(0)}(n) - {3 \choose 1} S^{(1)}(n) \right)$$

$$= \frac{1}{3} \left((n+1)^3 - (n+1) - 3 \frac{n(n+1)}{2} \right)$$

$$= \frac{1}{3} (n+1) \left((n+1)^2 - 1 - \frac{3n}{2} \right)$$

$$= \frac{1}{3} (n+1) \left(n^2 + 2n + 1 - 1 - \frac{3n}{2} \right)$$

$$= \frac{1}{3} (n+1) \left(n^2 + 2n - \frac{3n}{2} \right)$$

$$= \frac{1}{3} (n+1) n \left(n + 2 - \frac{3}{2} \right)$$

$$= \frac{1}{3} (n+1) n \frac{2n+1}{2}$$

$$= \frac{1}{6} (n+1) n (2n+1).$$

Als nächstes folgt der Fall p = 3:

$$\begin{split} S^{(3)}(n) &= \frac{1}{4} \Biggl((n+1)^4 - \sum_{r=0}^2 \binom{4}{r} S^{(r)}(n) \Biggr) \\ &= \frac{1}{4} \Biggl((n+1)^4 - \binom{4}{0} S^{(0)}(n) - \binom{4}{1} S^{(1)}(n) - \binom{4}{2} S^{(2)}(n) \Biggr) \\ &= \frac{1}{4} \Biggl((n+1)^4 - (n+1) - 4 \cdot \frac{n(n+1)}{2} - 6 \cdot \frac{1}{6} (n+1)n(2n+1) \Biggr) \\ &= \frac{1}{4} \Biggl((n+1)^4 - (n+1) - 2n(n+1) - (n+1)n(2n+1) \Biggr) \\ &= \frac{1}{4} (n+1) \Biggl((n+1)^3 - 1 - 2n - n(2n+1) \Biggr) \\ &= \frac{1}{4} (n+1) \Biggl((n+1)^3 - 1 - 2n - n(2n+1) \Biggr) \\ &= \frac{1}{4} (n+1) \Biggl(n^3 + 3n^2 + 3n + 1 - 1 - 2n - 2n^2 - n \Biggr) \\ &= \frac{1}{4} (n+1) \binom{n^3 + n^2}{2} \\ &= \frac{1}{4} (n+1)n^2(n+1) \\ &= \frac{n^2}{4} (n+1)^2. \end{split}$$

Schließlich folgt nun die Formel für p = 4:

$$\begin{split} S^{(4)}(n) &= \frac{1}{5} \Biggl((n+1)^5 - \sum_{r=0}^3 \binom{5}{r} S^{(r)}(n) \Biggr) \\ &= \frac{1}{5} \Biggl((n+1)^5 - \binom{5}{0} S^{(0)}(n) - \binom{5}{1} S^{(1)}(n) - \binom{5}{2} S^{(2)}(n) - \binom{5}{3} S^{(3)}(n) \Biggr) \\ &= \frac{1}{5} \Biggl((n+1)^5 - (n+1) - 5 \frac{n(n+1}{2} - 10 \cdot \frac{1}{6} (n+1)n(2n+1) - 10 \cdot \frac{n^2}{4} (n+1)^2 \Biggr) \\ &= \frac{1}{5} (n+1) \Biggl((n+1)^4 - 1 - 5 \frac{n}{2} - 10 \cdot \frac{1}{6} n(2n+1) - 10 \cdot \frac{n^2}{4} (n+1) \Biggr) \\ &= \frac{1}{5} (n+1) \Biggl(n^4 + 4n^3 + 6n^2 + 4n + 1 - 1 - \frac{5}{2} n - \frac{10}{3} n^2 - \frac{5}{3} - \frac{5}{2} n^3 - \frac{5}{2} n^2 \Biggr) \\ &= \frac{1}{5} (n+1) \Biggl(n^4 + \frac{3}{2} n^3 + \frac{1}{6} n^2 - \frac{1}{6} n \Biggr) \\ &= \frac{1}{5} (n+1) \frac{1}{6} n \Biggl(6n^3 + 9n^2 + n - 1 \Biggr) \\ &= \frac{1}{30} (n+1)n(2n+1)(3n^2 + 3n - 1). \end{split}$$