Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahmen, Dipl.-Math. Stefan Wagner

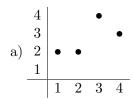


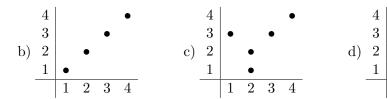
2. Übungsblatt zur "Analysis I für M, LaG und Ph"

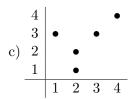
# Gruppenübung

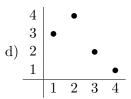
### Aufgabe G4 (Graph von Funktionen)

Sei  $M := \{1, 2, 3, 4\}$ . Welche der folgenden Teilmengen von  $M \times M$  sind Graph einer Funktion von M nach M? Überprüfe bei jeder Funktion, ob sie injektiv, surjektiv, bijektiv ist.









### Aufgabe G5 (Injektivität und Surjektivität)

Welche der folgenden Funktionen sind injketiv, welche surjektiv, welche sind bijektiv? Im Falle einer bijektiven Funktion gib ihre Umkehrfunktion an.

- $f: \mathbb{Z} \longrightarrow \mathbb{Z}: k \mapsto k^2$
- $g: \mathbb{N} \longrightarrow \mathbb{N}: k \mapsto k^2$
- $h: \mathbb{Z} \longrightarrow \mathbb{Z}: k \mapsto 7-k$
- $i: \mathbb{N} \longrightarrow \mathbb{Z}: k \mapsto 7-k$
- $l: \mathbb{N} \longrightarrow \mathbb{Z}: k \mapsto (-1)^k$
- $t: \mathbb{N} \longrightarrow \{-1, 1\}: k \mapsto (-1)^k$
- $u: \{42, 23\} \longrightarrow \{-1, 1\}: k \mapsto (-1)^k:$
- $\varphi: \mathbb{Z} \longrightarrow \mathbb{Z}: k \mapsto k + (-1)^k$

### Aufgabe G6 (Rechnen mit Mengen)

Es seien L, M, N Teilmengen der Menge X. Mache zunächst eine Skizze und zeige anschließend die folgenden Aussagen:

- (a)  $(M \cup N) \cap L = (M \cap L) \cup (N \cap L)$ ,
- (b)  $(M \cap N) \cup L = (M \cup L) \cap (N \cup L)$ ,
- (c)  $(M \subseteq N) \Leftrightarrow X \backslash N \subseteq X \backslash M$ .

## Hausübung

### Aufgabe H5 (injektiv & surjektiv)

Bezeichne S die Menge aller Studenten an der TU Darmstadt und D die Menge aller Daten eines Jahres.

- (a) Sei  $f:S\to D$  die Abbildung, die jedem Studenten aus der Menge S das Datum seines Geburtstages zuordnet.
  - Ist f injektiv, surjektiv oder bijektiv? Was ändert sich, wenn die Menge S durch die Menge aller an deinem Tisch sitzenden Studenten ersetzt wird?
- (b) Sei M die Menge aller an der TU Darmstadt vergebenen Matrikelnummern und  $g:S\to M$  die Abbildung, die jedem Studenten seine Matrikelnummer zuordnet.
  - Ist g injektiv, surjektiv oder bijektiv? Was ändert sich, wenn die Menge M durch die Menge der natürlichen Zahlen ersetzt wird?

### Aufgabe H6 (Logik)

In der Vorlesung wurde die Injektivität einer Funktion  $f: A \longrightarrow B$  definiert als

$$(\forall x \in A)(\forall y \in A)f(x) = f(y) \Longrightarrow x = y$$

Wieso ist es ebenfalls möglich die Injektivität von f über

$$(\forall x \in A)(\forall y \in A)x \neq y \Longrightarrow f(x) \neq f(y)$$

zu charakterisieren?

### Aufgabe H7 (Verketten von Funktionen)

Gegeben seien die Funktionen  $f: A \to B$  und  $g: B \to C$ . Zeigen Sie:

- (a) Wenn f und g injektiv sind, dann ist auch  $g \circ f$  injektiv.
- (b) Wenn f und g surjektiv sind, dann ist auch  $g \circ f$  surjektiv.
- (c) Wenn f und g bijektiv sind, dann ist auch  $g \circ f$  bijektiv und  $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ .
- (d) Wenn  $g \circ f$  surjektiv ist, dann ist auch g surjektiv.
- (e) Wenn  $g \circ f$  injektiv ist, dann ist auch f injektiv.

#### Aufgabe H8 (De Morgan für Mengen)

a) Sei X eine Menge, und  $A, B \subseteq X$  Teilmengen von X. Beweisen Sie die folgenden Identitäeten:

$$X \backslash (A \cup B) = (X \backslash A) \cap (X \backslash B)$$

$$X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$$

Gilt dies auch für Mengen A und B, die keine Teilmengen von X sind?

b) Es sei X eine Menge und  $(A_i)_{i\in I}$  eine Familie von Mengen. Beweisen Sie, dass

$$X \setminus \left(\bigcap_{i \in I} A_i\right) = \bigcup_{i \in I} (X \setminus A_i).$$