

18. April 2007

Analysis I für M, LaG und Ph, SS 2007, Übung 1

Gruppenübung

G1 (Negieren von Aussagen).

Formuliere das logische Gegenteil (die Negation) der folgenden Aussagen:

- a) Alle Vögel sind blau.
- b) Für jeden Bundesbürger gibt es einen Bundestagsabgeordneten, der sich für ihn zuständig fült.
- c) Wer Sorgen hat, hat auch Likör. (Wilhelm Busch)
- d) Wenn es regnet, wird die Straße nass.
- e) Ich kam, sah und siegte.
- f) Wenn es am Wochenende nicht regnet, fahre ich nach Hause oder besuche den Berliner Zoo.

G2 (Aussagen in Formelschreibweise.)

Übertrage die folgenden Aussagen in Formelschreibweise, und negiere sie anschließend:

- a) Zu jeder natürlichen Zahl n gibt es zwei Primzahlen p und q, deren Produkt n teilt.
- b) Jede natürlichen Zahl besitzt einen ungeraden Teiler, der ungleich 1 ist.
- c) Es seien m und n natürlichen Zahlen. Wenn m größer oder gleich n und n größer oder gleich m ist, dann stimmen m und n überein.

G 3 (Aussagenlogik.)

a) Beweise die Aussage

$$((p \Rightarrow q) \land (\neg p \Rightarrow q)) \Rightarrow q.$$

- b) Diese Schlussweise wurde in der Vorlesung zum Beweis des folgenden Satzes verwendet:
 - Ist n eine durch 4 teilbare natürlichen Zahl, so ist n+3 keine Quadratzahl. Für welche Aussagen standen dabei p und q?
- c) Zeige: Ist n eine durch 3 teilbare natürlichen Zahl, so ist n+2 keine Quadratzahl. (Im Beweis des obigen Satzes wurde unterschieden, ob eine bestimmte Zahl gerade oder ugerade war. Diesmal ist es praktisch, zu unterscheiden, welchen Rest eine Zahl bei Division durch 3 lässt.)

Hausübung

H1 (Aussagen in Formelschreibweise.)

Stelle die beiden folgenden Beweisprinzipien in Formelschreibweise dar, und beweise sie.

- a) Zwei Aussagen sind genau dann äquivalent, wenn jede die andere zur Folge hat.
- b) Wenn eine Aussage eine andere und diese eine dritte impliziert, so folgt die dritte Aussage aus der ersten.

H2 (Aussagen als umgangssprachliche Sätze.)

Schreibe die folgenden Aussagen als umgangssprachliche Sätze und überlege dir, welche davon wahr sind. Begründe deine Antwort.

- a) $(\forall n \in \mathbb{N})(\exists k \in \mathbb{N}) n = k^2$
- b) $(\forall n \in \mathbb{N})(\exists k \in \mathbb{N}) n^2 = k$
- c) $(\exists k \in \mathbb{N})(\forall n \in \mathbb{N}) n^2 = k$
- d) $(\forall n \in \mathbb{N})((\exists k \in \mathbb{N}) n^2 = 5k) \Rightarrow (\exists k \in \mathbb{N}) n = 5k$

H3 (Studiengebühren).

Ein Politiker wird in einem Wahlkampf gefragt, ob er für oder gegen die Einführung von Studiengebühren ist. Da er sich um eine Antwort drücken will, sagt er: Ich habe mich stets gegen die Absicht gewandt, die Gegner der Bekämpfung der Antistudiengebührenbewegung zu unterdrücken. Ist der Mann für oder gegen die Einfürung von Studiengebühren?

H4 (Etwas Mengenlehre).

- a) Betrachte die Mengen $A := \{ \nearrow, \bigcirc, \not \}$ und $B := \{ \nearrow, \wp \}$. Bestimme $B \times A$. Wieviel Elemente hat die Menge $B \times A \times \emptyset$?
- b) Sei $M := \{1\}$. Bestimme die Mengen $\mathcal{P}(M)$ und $\mathcal{P}(\mathcal{P}(M))$.