Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahmen Dipl.-Math. Stefan Wagner TECHNISCHE UNIVERSITÄT DARMSTADT

24/25. Mai 2007

Analysis I für M, LaG und Ph, SS 2007, Tutorium 6

Äquivalenzrelationen

Wir nennen eine Relation \sim auf einer Menge X eine \ddot{A} quivalenzrelation, wenn für alle $a,b,c\in X$ gilt:

- (i) $a \sim a$ (Reflexivität);
- (ii) $a \sim b \Rightarrow b \sim a$ (Symmetrie);
- (iii) $(a \sim b \land b \sim c) \Rightarrow a \sim c$ (Transitivität).

Für ein $a \in X$ nennt man $[a] := \{x \in X : x \sim a\}$ die Äquivalenzklasse von a. Ein Element b einer Äquivalenzklasse [a] nennt man einen Repräsentanten von [a].

Überlege dir, dass für alle $b \in [a]$ gilt [a] = [b].

Aufgaben

T 20 (Äquivalenzrelationen und Partitionen).

Es sei X eine Menge. Eine $Partition\ von\ X$ ist eine Menge $P \subseteq \mathcal{P}(X)$ nichtleerer Teilmengen von X, die paarweise disjunkt sind (d.h. für alle $A_1, A_2 \in P$ mit $A_1 \neq A_2$ ist $A_1 \cap A_2 = \emptyset$) und deren Vereinigung ganz X ist, $X = \bigcup_{A \in P} A$.

(a) Zeige: Ist \sim eine Äquivalenz
relation auf X, so ist die Menge

$$X/\!\!\sim := \{[x]\colon x\in X\}$$

der Äquivalenzklassen eine Partition von X.

(b) Zeige, dass umgekehrt jede Partition P von X zu einer Äquivalenzrelation \sim_P führt: Man schreibt $x \sim_P y$ für $x, y \in X$ genau dann, wenn ein $A \in P$ existiert mit $x, y \in A$.

Man kann leicht zeigen, dass die zur Partition X/\sim gehörende Äquivalenzrelation wieder \sim ist. Umgekehrt ist die zu \sim_P gehörige Partition wieder P. Somit gilt:

Die Partitionen von X entsprechen genau den Äquivalenzrelationen auf X.

(c) Für $n, m \in \mathbb{Z}$ sei $n \sim m$, wenn $n - m \in 2\mathbb{Z}$. Zeige, dass \sim eine Äquivalenzrelation auf \mathbb{Z} ist und finde die Äquivalenzklassen. Überlege dir, dass \mathbb{Z}/\sim ein zu \mathbb{F}_2 isomorpher Körper ist (vgl. Aufgabe G12).

T 21 ("Wohldefiniertheit" und Faktorisieren von Abbildungen).

Es sei X eine Menge, \sim eine Äquivalenzrelation auf X und $q: X \to X/\sim$, q(x) := [x] die sogenannte "kanonische Quotientenabbildung."

Gegeben eine Abbildung $f: X \to Y$ möchte man häufig durch Anwenden auf Repräsentanten daraus eine Abbildung $\tilde{f}: X/\sim \to Y$ gewinnen:

$$\tilde{f}: X/\sim \to Y, \qquad [x] \mapsto f(x).$$
 (1)

Nun könnte die rechte Seite aber noch vom gewählten Repräsentanten x der Äquivalenzklasse [x] abhängen. Ist dies nicht der Fall, so ist die Abbildung \tilde{f} sinnvoll definiert. Man sagt, \tilde{f} sei "wohldefiniert."

Wir wollen nun präzisieren, wann \tilde{f} wohldefiniert ist.

- (a) Zeige, dass es genau dann eine Abbildung $\tilde{f}: X/\sim Y$ mit $\tilde{f} \circ q = f$ gibt, wenn aus $q(x_1) = q(x_2)$ stets $f(x_1) = f(x_2)$ folgt.
- (b) Zeige, dass \tilde{f} , falls es existiert, durch die Bedingung $\tilde{f} \circ q = f$ eindeutig festgelegt ist.

Sprechweise: Man sagt in voriger Situation auch, dass f "über die Abbildung q faktorisiert" und nennt \tilde{f} die "induzierte" Abbildung.

T 22 (Konstruktion der rationalen Zahlen aus den ganzen Zahlen).

Auf $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ definieren wir die Relation \sim durch $(z, n) \sim (z', n') \Leftrightarrow zn' = z'n$.

- (a) Zeige, dass \sim eine Äquivalenz relation ist. Wir definieren $\mathbb{Q}:=\mathbb{Z}/\sim$.
- (b) Zeige, dass die Abbildungen

$$\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}, \quad [(z_1, n_1)] \cdot [(z_2, n_2)] := [(z_1 z_2, n_1 n_2)]$$
 (3)

und

$$\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}, \quad [(z_1, n_1)] + [(z_2, n_2)] := [(z_1 n_2 + n_1 z_2, n_1 n_2)] \tag{4}$$

wohldefiniert sind.

- (c) Zeige, dass $(\mathbb{Q}, +)$ eine abelsche Gruppe ist, mit Neutralelement [(0, 1)].
- (d) Zeige, dass (\mathbb{Q}, \cdot) eine kommutatives Monoid ist mit Neutralelement [(1, 1)]. Zeige, dass jedes von [(0, 1)] verschiedene Element aus \mathbb{Q} invertierbar ist.

Man kann noch das Distributivgesetz nachprüfen; somit ist \mathbb{Q} ein Körper.

Man nennt $\frac{z}{n} := [(z, n)]$ einen Bruch; die obigen Formeln (3) und (4) sind die üblichen Rechenregeln für Addition und Multiplikation von Brüchen.