Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahmen Dipl.-Math. Stefan Wagner

10./11 Mai 2007

Analysis I für M, LaG und Ph, SS 2007, Tutorium 4

Existenz k-ter Wurzeln

Wie wir bereits gesehen haben, ist die quadratische Gleichung $x^2-a=0$ bei beliebig vorgegebenen positiven $a\in\mathbb{Q}$ im allgemeinen nicht durch ein $x\in\mathbb{Q}$ lösbar ist, denn $\sqrt{2}$ und allgemeiner \sqrt{p} ist nicht rational für jede Primzahl $p\in\mathbb{N}$. In diesem Tutorium zeigen wir, dass Gleichungen der Form $x^k-a=0$ für jedes $k\in\mathbb{N}$ und jeden nichtnegativen reelen Wert von $a\in\mathbb{R}$ lösbar ist. An dieser Stelle benutzen wir ganz wesentlich das Vollständigkeitsaxiom, denn aus Körper- und Anordnugsaxiomen allein lässt sich die Existenz k-ter Wurzeln nicht erschließen.

Aufgaben

T11 (Ganzzahlige Potenzen).

Sei (K, K_+) ein angeordneter Körper und $x, y \in K$ mit 0 < x < y. Zeige, dass für jedes $k \in \mathbb{N}$ gilt $0 < x^k < y^k$. (Hinweis: Vollständige Induktion)

T 12 (Existenz k-ter Wurzeln).

Beweis den folgenden Satz:

Für jedes $k \in \mathbb{N}$ und jede nichtnegative reele Zahl a existiert genau eine nichtnegative reele Zahl b mit $b^k = a$.

Gehe dabei folgendermaßen vor:

- (a) Mache dir zunächst klar, dass du dich auf den Fall a > 0 beschränken kannst. Im folgenden sei daher a > 0.
- (b) Betrachte nun die Menge $M := \{x \in [0, \infty[: x^k \le a] \text{ und zeige } M \ne \emptyset .$
- (c) Zeige, dass $y := \max(1, a)$ eine obere Schranke für M ist und folgere, dass $\sup M$ existiert.
- (d) Sei $b \ge 0$ und

$$C := k \cdot \max\{\binom{k}{j}b^{k-j} : j = 1, ..., k\}.$$

Folgere für 0 < h < 1 aus dem Binomischen Lehrsatz $(b+h)^k \le b^k + hC$ und entsprechend $(b-h)^k \ge b^k - hC$.

(e) Setze $b := \sup M$. Zeige $b^k = a$, indem du die Annahme $b^k \neq a$ zu einem Widerspruch führst.

(Hinweis: Ist $b^k < a$ verwende Teilaufgabe (c) für $h := \frac{1}{2} \min(1, \frac{a - b^k}{C})$.

Ist $b^k > a$ verwende Teilaufgabe (c) für $h := \frac{1}{2}\min(1, \frac{b^k - a}{C})$.)

Hiermit ist die Existenz eines b > 0 mit $b^k = a$ gezeigt.

(f) Beweise nun noch die Eindeutigkeitsaussage.

T13 (Rationale Potenzen).

Zeige:

- (a) $(\forall n \in \mathbb{N})(\forall a, b \in \mathbb{R}) \ 0 \le a < b \Rightarrow \sqrt[n]{a} < \sqrt[n]{b}$.
- (b) Für alle $q \in \mathbb{Q}_+$ und $a,b \in \mathbb{R}_+ := \{x \in \mathbb{R} : x > 0\}$ mit a < b ist $a^q < b^q$. Hinweis: Man betrachte zuerst den Fall $q \in \mathbb{N}$ bzw. $q \in \mathbb{Z}$ und dann den Fall $q = \frac{1}{k}, \ k \in \mathbb{N}$. Schließlich setze man beides zusammen.

T 14 (\mathbb{Q} ist nicht ordnungsvollständig).

Betrachte die Menge

$$M := \{ x \in \mathbb{Q} : 0 \le x, \ x^2 \le 2 \}$$

und zeige, dass M beschränkt ist, aber kein Supremum in $\mathbb Q$ besitzt.