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Introduction

This script is for MCS Students at the TU Darmstadt. The goal of this introductory
course is to bring all students to a common knowledge. This implies that some of the
stuff (maybe most of it) isn’t new for you, but you still can learn about it.
Still when you think to know this from school, it is no fault to come to the course and
the exercises. To study mathematics is most of the time very different from the school
class called Mathematics.

Since all students begin there study in english and have to switch after one year to
german, I give a translation for many mathematical expressions. You see it in corner
brackets after the english word, for example [Beispiel].

This cours has two parts. First part is the lecture, which explained new concepts and
give examples. Most of the time it isn’t enough to hear or read this. You have to think
about it and work with it. This would be in part two, the exercises, where you get an
exercise sheet and try to solve the given problems. You should work in small groups and
try to find out what is right. Discuss your problems with the other students and with
the tutor. This is a skill you should need your whole life, especially during your studies.

I have taken the parts about series and Integration from the Analysis Script of Prof.
Grosse-Brauckmann from the Winterterm 2006. Special thanks to him.

If you find any mistakes in this text or have some advice, please feel free to send them
at frisch@mathematik.tu-darmstadt.de.

Dennis Frisch
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1 Numbers

1.1 The Natural Numbers

The natural numbers [natürliche Zahlen] count objects, e.g., 3 eggs, 160 students, about
1070 atoms in the universe.

The set of natural numbers is denoted by N. Two natural numbers can be added and
multiplied:

3 + 5 = 8 12 · 11 = 132 72 = 49.

There are many interesting subsets of N, three of them are

2, 4, 6, 8, 10, . . . the even numbers [gerade Zahlen]
1, 3, 5, 7, 9, 11, . . . the odd numbers [ungerade Zahlen]
1, 4, 9, 16, 25, . . . the perfect squares [Quadratzahlen]

Any two natural numbers can be compared and they can either be equal or one can be
smaller than the other. We say that the natural numbers are equipped with a total order
[totale Ordnung]. For any two natural numbers m and n we have that

m < n m is less than n m ist kleiner als n
m > n m is greater than n m ist grösser als n
m = n m is equal to n m ist gleich n

Furthermore, if a < b and m < n, then a+m < b+ n and a ·m < b · n.

The elements of any subset of N can be put in increasing order starting with the smallest
element. Each non-empty subset of N has a unique smallest element. However, subsets
of N need not have a largest element.

Exercise 1. Find an example of a subset of N that does not have a largest element.
Describe the subsets of N that have a largest element!

Definition 1.1.1. We say that a natural number n is divisible [teilbar] by a natural
number d if there exists a natural number m in N such that

d ·m = n.
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If this is the case, we also say that d divides [teilt] n. We write d|n. A natural number d
that divides n is also called a divisor [Teiler] of n. Vice versa, n is a multiple [Vielfaches]
of d.

Examples

• The number 12 is divisible by 4.

Proof: We need to use the definition above. Here we have that n = 12 and d = 4.
We have to find a natural number m such that 12 = 4 ·m. This is easy since m = 3
is such a number (in fact the only one).

• The number 12 is not divisible by 7.

Proof: We need to show that there is no number m such that 7 ·m = 12. (If there
was such an m, then 7 would divide 12). In other words, we need to show that no
multiple of 7 is equal to 12. The first few multiples of 7 are 7, 14, 21 which shows
that 12 is not a multiple of 7.

Exercise 2. • Prove: If d is a divisor of n, then d = n or d < n.

• List all divisors of 12, 140 and 1001. Prove for 12 that there are no other divisors.

• Show that 7 is not a divisor of 100.

• Show that each natural number n is divisible by 1 and by n.

• Show: If d divides m and n, then d also divides m+ n and m− n and d2 divides
mn.

Definition 1.1.2. A natural number different from 1 that is divisible by 1 and itself
only, is called a prime number [Primzahl].

Examples: Examples of primes are: 2, 3, 5, 7, 2003, 213 − 1.

The definition of primes raises the question how one can find primes. This is a difficult
problem in general. There is an algorithm which, in principle, can find all the primes,
although it is impractical for large prime numbers.

The Sieve of Eratosthenes

This procedure finds all primes up to a given bound. It works as follows: Choose a
number N , e.g., N = 20. List the natural numbers up to N :

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20.

We iterate the following procedure: The next number which is not crossed out is a prime.
We record it and cross out all its multiples:
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So, 2 is a prime. Cross out its multiples, the even numbers:

2 3 64 5 66 7 68 9 610 11 612 13 614 15 616 17 618 19 620.

The next prime is 3. Cross out all multiples of 3:

2 3 64 5 66 7 68 69 610 11 612 13 614 615 616 17 618 19 620.

The next prime is 5. At this point we notice that all multiples of 5 have already been
crossed out. The same is true for 7 and all the remaining numbers. Therefore, all the
remaining numbers are primes.

Trial division

How does one check if a natural number n is a prime? One way is to try if it is divisible
by any smaller number. To do that one has to carry out n− 2 divisions if n is a prime.

The following theorem helps in reducing the number of trial divisions because it shows
that one only has to do trial divisions with smaller prime numbers. We have already
used this fact in Eratosthenes’ Sieve because we had declared a number a prime if it is
not a multiple of any smaller prime.

Theorem 1.1.3. Any natural number n is divisible by a prime.

Proof. Consider all divisors of n different from 1. There is a smallest element q among
these. Let m be a natural number such that q ·m = n.

We will show that q is a prime. Suppose that q is not a prime. Then q has a divisor
1 < d < q and q = d ·m′. We get

n = q ·m = (d ·m′) ·m = d · (m′ ·m).

We see that d is a divisor of n. But d is smaller than q which contradicts the choice of
q. Therefore, it is impossible that q has a proper divisor. Hence, q is a prime.

Theorem 1.1.4 (without a proof). Each natural number is a product of primes. This
product is unique up to permuting the factors.

Theorem 1.1.5. There are infinitely many primes.

Proof. We assume that there are only finitely many primes and show that this assump-
tion leads to a contradiction.

Let k be the number of primes and let p1, p2, p3, . . . , pk be the finitely many primes.
Consider M = p1p2p3 . . . pk + 1. Clearly, pj divides p1p2p3 . . . pk. If pj divides M , then
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pj also divides M−p1p2p3 . . . pk = 1. But no prime is a divisor of 1. Therefore, M is not
divisible by any of the k primes above. This contradicts our theorem that every natural
number is divisible by a prime.

We will now leave the prime numbers and turn our attention back to using natural for
counting.

Counting

How many ways are there to put k objects out of n different objects into a row?

Example: Consider the five vowels A E I O U. Here are all three-letter arrangements
(without repitition of letters):

AEI AEO AEU AIE AIO AIU AOE AOI AOU AUE AUI AUO EAI EAO EAU

EIA EIO EIU EOA EOI EOU EUA EUI EUO IAE IAO IAU IEA IEO IEU

IOA IOE IOU IUA IUE IUO OAE OAI OAU OEA OEI OEU OIA OIE OIU

OUA OUE OUI UAE UAI UAO UEA UEI UEO UIA UIE UIO UOA UOE UOI

If we want to write down all three-letter words, then we have 5 choices for the first
letter. Once the first letter is fixed we have 4 choices for the second letter and after
that 3 choices for the last letter. This gives 5 · 4 · 3 = 60 different choices each of which
produces a different word.

The general argument goes like this: For the first object we have n choices. For the
second object we have n− 1 choices. As each choice of the first object can be combined
with each choice of the second object, this gives n(n−1) possibilities. For the third choice
we have n − 2 possibilities. Therefore there are n(n − 1)(n − 2) possibilities to place 3
objects out of n objects in a row. In general, there are n(n− 1)(n− 2) . . . (n− (k − 1))
possibilities to place k out of n objects in a row.

If k = n, then this give n(n−1)(n−2) . . . 3·2·1 possibilities to arrange n different objects
in a row. We denote the number n(n− 1)(n − 2) . . . 3 · 2 · 1 by n!, which is pronounced
n factorial [n Fakultät]. We set 0! := 1. This can be interpreted as saying that there is
one way to arrange no objects.

Example: The four symbols + − · / can be arranged in 24 = 4 · 3 · 2 · 1 ways:

+ − ·/ + −/ · + · −/ + ·/− +/− · + / · − − + · / − +/·

− · +/ − ·/+ −/+ · − / · + · + − / · +/− · − +/ · −/+
·/+ − · /− + /+ − · /+ · − /− + · /− · + / · + − / · −+
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With the factorial notation we can write the number n(n− 1)(n− 2) . . . (n− (k− 1)) as

n!

(n− k)!
.

This counts the number of arrangements of k objects out of n objects.

If we would like to know how many ways there are to choose k objects out of n objects,
then the order in which objects are chosen is unimportant. The words AEI and EIA

consist of the same letters and would not be considered different choices of three vowels.

Example There are 10 ways to choose 3 vowels from A E I O U:

AEI AEO AEU AIO AIU AOU EIO EIU EOU IOU

In general, we need to take the number n!
(n−k)! and divide by the number of arrangements

of k objects. This gives
n!

(n− k)!k!
.

This expression is abbreviated by (
n

k

)

which is pronounced as n choose k [n über k]. Note that

(
n

0

)

= 1. This means that

there is one way to choose no object out of n.

Exercise 3. • Show that

(
n

k

)

=

(
n

n− k

)

• Show that

(
n+ 1

k

)

=

(
n

k − 1

)

+

(
n

k

)

The last property can be used to compute these numbers in the form of a triangle, known
as Pascal’s Triangle [Pascalsches Dreieck]:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
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Each number is the sum of the two numbers above. The number

(
n

k

)

is the k-th element

in row n (counted from top to bottom).

The numbers

(
n

k

)

are called binomial coefficients [Binomnialkoeffizient]. The reason

for this name becomes clear from the following. Consider the powers of the expression
x+ y. The first few are:

n (x+ y)n

1 x+ y
2 x2 + 2xy + y2

3 x3 + 3x2y + 3xy2 + y3

4 x4 + 4x3y + 6x2y2 + 4xy3 + y4

Compare the numbers in the expressions above with the numbers in Pascal’s Triangle.

For future convenience we make a short stop at this point and fill in an usefull ab-
breviation which will ouccur during your whole studies.

The Sigma Sign

A huge part of mathematics is based on sequences and series. We will study them later
on in Chapter 5. Most of the time sequences have a structure. For example take

a1 := 1, a2 :=
1

2
, a3 :=

1

3
, a4 :=

1

4
, . . .

Then we can write ai := 1
i . If we want to calculate the sum

a1 + a2 + a3 + a4 + a5 = 1 +
1

2
+

1

3
+

1

4
+

1

5
,

we can use the sigma sign as an abbreviation. Then we write

5∑

i=1

ai := a1 + a2 + a3 + a4 + a5 = 1 +
1

2
+

1

3
+

1

4
+

1

5
.

With this usefull tool, we can rewrite the tabular above as

n (x+ y)n

1 x+ y =
∑1

k=0

(1
k

)
x1−kyk

2 x2 + 2xy + y2 =
∑2

k=0

(2
k

)
x2−kyk

3 x3 + 3x2y + 3xy2 + y3 =
∑3

k=0

(3
k

)
x3−kyk

4 x4 + 4x3y + 6x2y2 + 4xy3 + y4 =
∑4

k=0

(4
k

)
x4−kyk

From the right side we can derive a formula, which allows us to compute all expressions
(x+ y)n for a natural number n. This fact is known as
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Theorem 1.1.6 (Binomial Theorem [Binomischer Lehrsatz]). For a natural number n
we have the following expression:

(x+ y)n =

n∑

k=0

(
n

k

)

xn−kyk.

The expression on the right hand side is the abbreviation of the sum

(
n

0

)

xn +

(
n

1

)

xn−1y +

(
n

2

)

xn−2y2 + . . .+

(
n

n− 1

)

xy(n−1) +

(
n

n

)

yn.

This theorem is not only true for natural numbers x and y, it is also true for real numbers.
We give a proof of the theorem, but we will see another proof later on to demonstrate
another proof technique called Induction [Induktion].

Proof. We consider the coefficient of the expression xn−kyk and how it arises from the
product

(x+ y)(x+ y) . . . (x+ y)(x+ y)
︸ ︷︷ ︸

n−times

.

Expanding the brackets, we have to multiply each occurrence of x or y with each other
occurrence of x or y. To obtain xn−kyk we have to choose y exactly k-times. Since we
are choosing k times y out of n occurrences of y, we can do this in

(n
k

)
ways. Therefore,

the term xn−kyk occurs
(n
k

)
times.

1.2 The Integers

The set N is closed [abgeschlossen] under taking sums and products of natural numbers.
However the difference of two natural numbers need not be a natural number: 7−13 =?
In other words, there is no solution to the equation 7 = x + 13 in the set of natural
numbers.

This leads to the set Z of integers:

. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .

The integers are closed under taking sums, products and differences.

The notions of order, divisibility and primes defined above can be extended to the set
of integers in a natural way with little changes:

Theorem 1.2.1 (without proof). Each integer is a product of primes and ±1. This
product is unique up to permuting the factors.
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1.3 The Rational Numbers

The quotient of two integers need not be an integer. In fact, the quotient of an integer
m and an integer d is an integer if and only if m is divisible by d. In other words, for
integers m and n the equation m · x = n need not have a solution for x in the set of
integers.

This leads to the set Q of rational numbers [rationale Zahlen]. It consists of all fractions

[Brüche]
a

b
where a is an integer and b a non-zero integer. The integer a is called the

numerator [Zähler] and b is called the denominator [Nenner]. The rationals are closed
under addition, subtraction, multiplication and division. A set of numbers in which
those four arithmetic operations can be performed is called a field [Körper], Q is called
the field of rationals numbers.

Arithmetic of Rational Numbers

Definition 1.3.1. Let a, b, c and d be integers with b and d not 0.

Addition Two fractions are added by finding a common denominator (you may want
to look for their smallest common denominator):

a

b
+
c

d
=
ad

bd
+
bc

bd
=
ad+ bc

bd
.

Multiplication Two fractions are multiplied by multiplying numerator and denomina-
tors:

a

b
· c
d

=
ac

bd
.

Division A fraction is divided by another fraction by multiplying with the reciprocal
[Kehrwert] of the second fraction (c 6= 0):

a

b
:
c

d
=
a

b
· d
c

=
ad

bc
.

Between any two different rational numbers lie infinitely many rational numbers. For
this it is enough to show that there is always a rational number lying strictly between
any pair of different rational numbers. For example, a rational number lying between

the rational numbers x and y is the number
x+ y

2
.

Equality Two fractions
a

b
and

c

d
are equal if and only if ad = bc.

This definition implies that canceling common factors in the numerator and denominator
of a fraction does not change the value of the fraction: Let a, b and c be integers with b
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and c different from 0.
ac

bc
=
a

b
because ac · b = bc · a.

However, certain equations do not have a solutions in the set of rational numbers. For
example, the equation x2 = 2.

Theorem 1.3.2. A solution of the equation x2 = 2 is not a rational number.

Proof. Let
a

b
be a rational number with (

a

b
)2 = 2. We may assume that a and b have

no common factor.

Then a2 = 2b2. Therefore a2 is an even number. The square of an integer is even if
and only if the integer is even. Therefore, a is even and can be written as a = 2d. This
gives 2b2 = 4d2 and dividing by two gives b2 = 2d2. By the same reasoning as above, b
is even. Hence a and b contain the common factor 2 contrary to our assumption.

Exercise 4. 1. Let n be a natural number. Show that n2 is even if and only if n is
even.

2. Show that x2 = 6 does not have a rational solution.

3. Show that 1 +
√

2 is not a rational number.

4. Show that x3 = 2 does not have a rational solution.

1.4 The Real Numbers

The set of real numbers [reelle Zahlen], denoted by R is an extension of the rational
numbers containing all limits [Grenzwerte] of rational sequences [Folgen] such as
√

2 = 1, 4142135623730950488016887242096980785696718753769480731766797379907324784621 . . .

e = 2.7182818284590452353602874713526624977572470936999595749669676277240766303535 . . .

π = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862 . . .

and the solutions to equations of the form x5 + x + 1 = 0 and many more. The real
numbers are much more complicated than the rational numbers. Most real numbers
cannot be written down explicitly.

The set of real numbers is often visualized by a line, called the real line.

-
-4 -3 -2 -1 0 1 2 3 4

Definition 1.4.1 (Roots [Wurzel]). Let a be a non-negative real number and n a
natural number. The n-th root of a is a non-negative real number r such that rn = a.
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Note that the n-th root is in general only defined for non-negative real numbers. Also the
n-th root of a non-negative real number is always a non-negative real number. Taking
the root of a positive number is the inverse operation to raising a real number to the
n-th power.

If x is a negative number, then taking the square root is not the inverse operation of
squaring x because the square root is positive: x 6=

√
x2 = −x. The same is true for even

powers n. If n is an uneven number, then the n-th root is declared for all real numbers x.

Example
3
√
−8 = −2.

Definition 1.4.2. Let a be a real number. We define the following function:

|a| =







a if a > 0
0 if a = 0

−a if a < 0

The non-negative real number |a| is called the absolute value of a [Betrag].

Exercise 5. Let a, b and c be real numbers and ε a positive real number.

• Show that |a| ≤ c is the same as saying −c ≤ a ≤ c.

• Show that a ≤ |a| and −|a| ≤ a.

• Prove the triangle inequality: |a + b| ≤ |a| + |b|. Hint: Use the previous two
inequalities.

• Prove the inequality |a| − |b| ≤ |a− b|.

• Show that |x − a| ≤ ε is the same as saying a − ε ≤ x ≤ a + ε. Interpret this
geometrically! What is the set of all x satisfying this condition?

• Determine the solutions of the inequalities |4 − 3x| > 2x+ 10 and |2x− 10| ≤ x.

1.5 The Complex Numbers

The real numbers allow us to solve many more equations than the rational numbers,
which in turn allow solving more equations than the integers. Still, there are some
simple equations we can not solve. In particular, the equation x2 +1 = 0 has no solution
over the reals. A solution to this would be

√
−1 if it was defined.

When faced with the problem of not being able to divide by arbitrary non-zero numbers,
we simply introduced new symbols (namely fractions). We do the same with the square
root of −1 by defining the symbol i (the imaginary unit) such that i2 = −1.
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This leads to the set C of complex numbers [komplexe Zahlen]. It consists of all terms
of the form a + bi, where a and b are real numbers. We call a the real part [Realteil],
and b the imaginary part [Imaginär Teil]. The complex numbers form a field with the
real numbers naturally embedded in them. Unlike the number sets we saw so far, the
complex numbers do not permit a natural total order.

Arithmetic of Complex Numbers

Equality Two complex numbers a+ bi and c+ di are equal if and only if their real and
imaginary parts are equal, i.e. if a = c and b = d.

Addition Two complex numbers are added as one might expect:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

Multiplication Two complex numbers are multiplied by following the normal rules of
multiplication and treating i like a variable (and using that i2 = −1):

(a+ bi)(c + di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i.

Division A complex number is divided by another (non-zero) complex number by mul-
tiplying with the inverse of the second number. The inverse is computed as follows:

(a+ bi)−1 =
a

a2 + b2
+

−b
a2 + b2

i.

Exercise 6. Verify that the inversion formula is correct.

We define the complex conjugate [komplex konjugierte] of the complex number c = a+bi
as c̄ := a− bi. We now define the absolute value for a complex number c as

|c| :=
√
cc̄ =

√

a2 + b2

. Note that over the real numbers this coincides with the previous definition of absolute

value. Using these notations, we can write c−1 as
c̄

|c|2 .

Complex Numbers from a geometrical Point of View

When introducing the real numbers, we introduced the real line too.

-
-4 -3 -2 -1 0 1 2 3 4
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The real line is a geometric way to visualize the real numbers. We can try to find out,
if the arithmetic operations have a meaning in this geomtric environment. We can see
easily, that additon is a translation and multiplication is a dilation. If the number is
negativ, then the delation changes the direction.

The complex numbers are the union of two real lines. One describing the real part and
one describing the imaginary part. We can visualize complex numbers in a coordinate
system:

-

6

-4 -3 -2 -1 0 1 2 3 4

-4i

-3i

-2i

-1i

1i

2i

3i

4i

R

iR

`

������* 2 + i

Now we can view complex numbers as part of a two dimensional plane, the so called
complex plane [komplexe Zahlenebene].

There is another possibility to describe complex numbers:

Definition 1.5.1. Each complex number z = a+ bi can be expressed by

z = |z|(cos φ+ i sinφ),

where φ is a real number called the argument of z [Argument] and the absolute value

|z| :=
√

a2 + b2.

If we take −π < φ ≤ π, then φ is unique determined.
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We know from above, that adding a real number to a real number is a translation. This
is still true for complex numbers.
Looking at the multiplication, we saw that multiplicating a real number with a real
number is a dilatation.
This is still correct, if we multiplicate a real number to a complex number. But what is
about a complex number with nonzero imaginary part?

We take the example above z := 2 + i. If we multiplicate this number with i we get

(2 + i)i̇ = 2i+ i2 = −1 + 2i.

We see, that |2 + i| = | − 1 + 2i|. If we draw this number in the complex plane, we get

-
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−1 + 2i

We see, that multiplicating with a purely imaginary complex number of absolute value
1 is a rotation (in this case a rotation of 90◦ counterclockwise, the angle of i with the
positive real line).
So if the complex number has absolute value different from 1, we get a dilation too. If
we take the product z := (2 + i)(̇1 + i), we see, that 1 + i includes an angle of 45◦ with
the positive real line, meaning that multiplication includes a rotation by 45◦ counter-
clockwise. The absolute value

√
2, meaning a dilatation of

√
2.

Putting this in the coordinate system, we get
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2 Propositional Logic

Examples of propositions: 5 is not a number. Darmstadt is in Germany. Mathematics
is a science. 7 divides 12.

A proposition [Aussage] is a grammatically correct statement which it can be decided of
whether it is true or false.

More interesting than deciding wether one proposition is true or false is to decide whether
a proposition ist true under certain circumstances. This process is fundamental in math-
ematics.

We now have a look how to combine given propositions to new propositions and under
which circumstances the new proposition is true.

2.1 Logical Operators

Negation The negation [Verneinung] of a proposition A is false when A is true and vice versa
(written ¬A):

A ¬A
t f
f t

And Two propositions A and B can be combined by and to give a new proposition
A ∧B which is true precisely when both A and B are true:

A B A ∧B
t t t
t f f
f t f
f f f

Or Two propositions A and B can be combined by or to give a new proposition A∨B
which is true precisely at least one of A and B is true:

A B A ∨B
t t t
t f t
f t t
f f f
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Implication If we want to determine, if a proposition B is true under the condition of another
proposition A, then we have an implication [Implikation]:

A B A =⇒ B

t t t
t f f
f t t
f f t

Equivalence A proposition A is equivalent [äquivalent] to a proposition B (written A ⇔ B) if
A is true precisely when B is true and A is false precisely when B is false (also
written A iff B, which means A is true if and only if B is true).

A B A⇔ B

t t t
t f f
f t f
f f t

We give another characterisation for an equivalence. And we take this as an example
for a typical proof of such logical propostional statements:

Theorem 2.1.1. Let A and B two propositions. Then is equivalent:

a) ((A⇒ B) ∧ (B ⇒ A))

b) (A⇔ B)

Proof.
A B A⇒ B B ⇒ A (A⇒ B) ∧ (B ⇒ A)

t t t t t
t f f t f
f t t f f
f f t t t

Implications that are not equivalences

Here are some examples for implications, which are only true in one direction:

a) For all x ∈ R: x > 0 ⇒ x2 > 0.

b) If x and y are negative real numbers, then x · y > 0.
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To see, that these propositions are wrong in the other direction, we need to reverse the
proposition. What does this mean in the cases above?

a) If x2 > 0 then x > 0.

b) If x · y > 0 then x and y are negative real numbers.

In both cases we find easily a counterexample to prove that these propositions are wrong.

2.2 Quantors

Sometimes it is usefull to abreviate logical statements. Here are some usefull abrevia-
tions, called quantors [Quantoren]:

For all If for each element e of a set S, a proposition A(e) is given, then

∀e ∈ S : A(e)

is a proposition which is true if A(e) is true for each e ∈ S. Read: For all e in S
is true: A(e)

There exists If for each element e of a set S, a proposition A(e) is given, then

∃e ∈ S : A(e)

is a proposition which is true if A(e) is true for at least one e ∈ S. Read: It exists
an element e, such that A(e) is true.

2.3 Negation of Propositions

If you have a proposition and you don’t believe it’s trueness, the easiest way to see that
it is wrong is to find a counterexample. To find a counterexample, you need to know the
negation of the proposition.
Take the following examples:

Examples

a) All sheeps are black.

b) It exists a male student at the TU Darmstadt.

c) An animal is a lion or a duck.
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d) A real number is positiv and negative.

What are the negations of that?

a) If all sheeps are black, then there is no sheep with another colour. So the negation
is: There exists a sheep, which is not black.

b) This proposition is true, if only one student at the TU Darmstadt is male. So the
negation is All students at the TU Darmstadt are not male.

c) To be true, each animal has to be a duck or a lion. So the negation is There is an
animal, which is wether a duck nor a lion.

d) The proposition is true, when all real numbers are both, negative and positiv. So
the negation is There is a real number, which is not negative or not positive.

We summarize these facts with our known symbols, where A and B are propositions:

a) ¬(∀e ∈ S : A(e)) = ∃e ∈ S : ¬A(e)

b) ¬(∃e ∈ S : A(e)) = ∀e ∈ S : ¬A(e)

c) ¬(A ∨B) = ¬A ∧ ¬B

d) ¬(A ∧B) = ¬A ∨ ¬B

22



3 Proof Techniques

We have an assumption A and we would like to conclude from A that a proposition B
is true.

To conclude means, that we make little logical steps. If all steps are true, so will be
proposition B.

Examples

The sum of two even numbers is an even number.

Proof. Assumption: We have two numbers x, y which are even. This means that there
exists numbers a and b, such that x = 2a and y = 2b. Then

x+ y = (2a) + (2b) = 2(a+ b).

So 2|(x + y).

This is an example for a direct proof:

3.1 Techniques

Direct Proof

A direct proof [direkter Beweis] is straightforward. You take the assumptions A and try
to conclude since the proposition B is proved.

A =⇒ B

Examples

• Sum of two even integers is even

• If a divides b and a divides c then a divides b + c.
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Proof by contradiction

A proof by contradiction [Beweis durch Widerspruch] uses the fact, that

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A).

Examples

• For a, b ∈ R: a+b
2 ≥

√
ab.

•
√

3 is irrational.

• There is no smallest positive (i.e. > 0) rational number.

Proof by induction

A proof by induction [Beweis durch vollständige Induktion] is a usefull tool to prove a
proposition B(n) which is stated for all natural numbers n.

We need two parts for a proof by induction:

1. Induction start [Induktionsanfang]: Prove B(1)

2. Induction step [Indusktionsschritt]: Assume that B(n) is true and show that B(n+
1) is true.

Imagine a domino chain. The induction step assures that a domino (here n+ 1) falls, if
domino n falls. But this is not enough. Look at this example:

Proposition: 1 + n > 2 + n for all n ∈ N.

This is obviously wrong, but we had no problem to show the induction step:

Assume, that the proposition is true for n, so 1 + n > 2 + n is true. Then

1 + (n+ 1) > 2 + (n+ 1)

⇔ 1 + n+ 1 > 2 + n+ 1

⇔ 1 + n > 2 + n.

The last row is true by our assumption and so is the first proving the induction step. Bet
we found no beginning, since we found no natural number n, for which the proposition
is true.

Otherwise it could be, that the indction start is not by n = 1. Look at
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Example: 2n > n+ 1.

A typical example for a proposition which is proved by induction is:

Propositoin:
∑n

k=1 k = n(n+1)
2 .

Proof. We prove it by induction.

I-Start: For n = 1, the proposition is

1∑

k=1

k = 1 =
1(2)

2
.

So it is true for n = 1.

I-Step: Now we assume, that the proposition is true for n. That means

n∑

k=1

k =
n(n+ 1)

2

is true. With the help of this assumption we try to prove the proposition

n+1∑

k=1

k =
(n+ 1)(n+ 2)

2
,

which is the propostition formulated for n+ 1. We get

n+1∑

k=1

k =

n∑

k=1

k + (n+ 1)

assummption
=

n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1)

2
+

2(n+ 1)

2

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
.

3.2 Be carefull

Some proofs look good at the first view, but sometimes a subtle error is inside. Look at
this proof:
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Proposition: 2=1

Proof: Let a and b be nonzero real numbers with a = b. Then

a = b | · a
a2 = ab | − b2

a2 − b2 = ab− b2

(a+ b)(a− b) = ab− b2 | : (a− b)

a+ b =
ab− b2

a− b

a+ b =
(a− b)b

a− b
a+ b = b | a = b

b+ b = b

2b = b | : b

2 = 1.

What is wrong???

A fake induction proof

Theorem: All sheep have the same colour.

Proof. We proof inductively that any set of sheep consists of only sheeps of a single
color, i.e. is equicolored.
Induction start: A set containing one sheep is obviously equicolored.
Induction step: Assume that any set of n sheep is equicolored. Now consider a set of
n+1 sheep. The set formed by the first n sheep are equicolored. But so is the set formed
by the last n sheep. Hence the whole set must be equicolored.

3.3 Existence, Construction and Uniqueness

In mathematics, there are often propositions, which had a solution. For example:

Theorem 3.3.1. The numbers 12 and 18 have a great common divisor [grösster gemein-
samer Teiler].

Most of the times, we are interested in the existence of a solution to the given problem
and most of the time this is all we can do. But sometimes we need the solution or we
need to know if it is unique.
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Existence proofs

Like the name promised, an existence proof [Existenzbeweis] showed the existence of
something. Let’s look at Theorem 3.3.1:

Proof. A divisor of a natural number has to be less or equal the number. Since there are
only finite many natural numbers, which are less than 12 or 18 only finite many divisors
can exist.
Take 1, it is a natural number and divides both 12 and 18. So 1 is a common divisor.
Since there are only finite other divisors, a greatest common divisor exists.

At the end of the proof, we know the theorem holds, but we can’t say what the greatest
common divisor is.

Constructive proof

A constructive proof [konstruktiver Beweis] is a proof which delivers a solution too. We
look again at our Theorem 3.3.1:

Proof. The divisors of 12 are 1, 2, 3, 4, 6, 12.
The divisors of 18 are 1, 2, 3, 6, 9, 18.
So the greatest common divisor is 6.

Uniqueness proof

Sometimes it is important to know if a solution is unique. Then we have to maintain a
uniqeness proof [Eindeutigkeitsbeweis]. We look again at Theorem 3.3.1:

Proof. Assume, there are two different greatest common divisors a and b of 12 and 18.
Since a and b are common divisors and a is the greatest common divisor, this leads to
a ≥ b. The same is true for b leading to b ≥ a and so a = b.
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4 Functions

Definition 4.0.2. Let X and Y be sets. A function f from the set X to the set Y is a
rule that assigns to each element of X exactly one element of Y .

The element of Y assigned to a particular element x ∈ X is denoted by f(x) and f(x) is
called the image of x under f [Bild von x unter f ] . Vice versa, x is called a preimage of
y = f(x) [Urbild]. Note that an element y ∈ Y can have more than one preimage under
f or may not a have a preimage at all.

The set X is called the domain of f [Definitionsbereich] and Y is called the range of f
[Wertebereich]. The set {f(x)|x ∈ X} of all images is called the image of f [Bild].

It is important to understand that the domain and the range are an essential part of the
definition of a function. For example, consider the functions

f : R → R, x 7→ x2

g : R → R>0, x 7→ x2

Strictly speaking, these are two different functions. One obvious difference is that all
elements in the range of g do have a preimage, while there are elements in the range of
f which do not have a preimage (−1 for example). So the statement “All elements in
the range of g have a preimage” is true for g and false for f .

Examples

1. Let c ∈ Y a constant element in Y . Then the function

f : X → Y
x 7→ c

is called a constant function konstante Funktion. It maps each element of X to the
same value c.

2. The function
idX : X → X

x 7→ x

is called the identity function of X [Identität]. It maps each element of X to itself.
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4.1 Properties of functions

Definition 4.1.1. For a given function f : X → Y we define:

injective The function f is called injective [injektiv], iff for all x1, x2 ∈ X

x1 = x2 ⇔ f(x1) = f(x2).

surjective The function f is called surjectiv [surjektiv], iff for all y ∈ Y there exists a x ∈ X,
such that f(x) = y.

bijective If the function is injective and surjective, then it is called bijective [bijektiv].

Examples

1. The function idX is bijective.

2. The constant function f : x 7→ c for a fixed c is injective if and only if X has
exactly one element. It is surjective if and only if Y has exactly one element.

3. The function
f : R → R

x 7→ x · (x− 1)(x+ 1)

is not injective because f(−1) = f(0) = f(1) = 0. The function is surjective
because the equation f(x) = c is equivalent to the equation x3 − x − c = 0 of
degree three which has a zero in R.

4.2 Algebra with functions

Definition 4.2.1. We consider functions f : X → R and g : Y → R. Then we can
construct other functions

1. f ± g : x 7→ f(x) ± g(x) for x ∈ X ∩ Y

2. f · g : x 7→ f(x) · g(x) for x ∈ X ∩ Y

3. f/g : x 7→ f(x)/g(x) for x ∈ X ∩ Y and g(x) 6= 0

4. g ◦ f : x 7→ g(f(x)) if f(X) is contained in Y .

This is called the composition [Hintereinanderausführung] of functions. The func-
tion f is the inner function and the function g is the outer function.
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Example We take the function f : R → R, f(x) =
√
x2 + 1 and decompose it as follows:

Let 1R : x 7→ 1 and
√· : x 7→ √

x. Then

f =
√
· ◦ (idR · idR + 1R)

Theorem Let f : X → Y be a bijective function. Then there is a function g : Y → X
such that f ◦ g = idY and g ◦ f = idX .

The function g is called the inverse function [Umkehrfunktion] of f . We write f−1 for
g. If f(x) = y, then f−1(y) = x.

4.3 Types of functions on R

constant functions Let c ∈ R. Then a function f(x) = c is a constant function.

power functions The function f(x) = xn for a natural number n is called a power
function [Potenzfunktion].

polynomials A function of the form f(x) = cnx
n + cn−1x

n−1 + . . .+ c1x+ c0 is called a
polynomial function [Polynom]. Polynomial functions are built from the identity
function idR and the constant functions using +,−, ·.

rational functions A function of the form f(x) = p(x)/q(x) with polynomials p and q
is called a rational function [rationale Funktion]. Note that its domain is R \ {x ∈
R|q(x) = 0}.

algebraic functions Algebraic functions are constructed from polynomials (or, equiva-
lently from the identity function and the constant functions) by using +, −, ·, /
and taking root.

4.4 Zeros

It is often important to find zeroes of a given function. For example many surfaces can
be described as the zeroset of a function. Take the function

R2 → R2, x 7→ ‖x‖ − 1.

Then the zeroset are all elements x ∈ R2 wich have absolute value 1. This zeroset
desribes the circle of radius 1.

In general, a surface which is given by a zeroset of a algebraic function is called an
algebraic surface. If you google ”algebraic surface” then you find many intresting exam-
ples for algebraic surfaces1.

1e.g. http://www1-c703.uibk.ac.at/mathematik/project/bildergalerie/gallery.html
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So we have a look how to find zeroes for a given function. Because this can be very
difficult (e.g. it is proved, that the Riemanian ζ-function has zeros, but it is still an
open problem to find an explicit one) we look at some easy functions.

Zeros of polynomnials (Degree 1)

Finding zeros in this case is very easy. A polynomial of degree 1 is

p(x) = mx+ b.

A solution of the equation
p(x) = 0

is easily given by

x =
−b
m
.

Zeros of polynomials (Degree 2)

A polynomial of degree 2 looks like

p(x) = ax2 + bx+ c.

If we want to find zeros, this is equivalent to solve

p(x) = ax2 + bx+ c = 0 ⇔ x2 +
b

a
x+

c

a
= 0.

Substituting p := b
a and q := c

a yields to

x2 + px+ q = 0. (4.1)

Theorem 4.4.1. The solutions (if they exist) of equation (4.1) are given by

x1/2 = −p
2
±
√
(p

2

)2
− q.
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Proof. Substitution of x in (4.1) leads to

x2 + px+ q =

(

−p
2
±
√
(p

2

)2
− q

)2

+ p

(

−p
2
±
√
(p

2

)2
− q

)

+ q

=
(

−p
2

)2
∓ p

√
(p

2

)2
− q +

(p

2

)2
− q + p

(

−p
2
±
√
(p

2

)2
− q

)

+ q

=
p2

4
∓ p

√
(p

2

)2
− q +

p2

4
− p2

2
± p

√
(p

2

)2
− q

=
p2

4
+
p2

4
− p2

2
= 0.

Zeros of polynomials (Degree n)

Now we give some hints to find zeros of polynomials of degree n. The first hint is to
guess a zero. If we find a zero then we can make a polynomial division to decomposite
the give polynomial p(x) of degree to

p(x) = (x− a)q(x),

where q(x) is a polynomial of degree n− 1. Now we can guess again till the polynomial
q has degree 2.

If there is an integer zero, then this integer is a divisor of the absolute term. So if
we had a polynomial of degree n with n zeros a1, . . . , an, then the polynomial cn be
expressed by

(x− a1)(x− a2) · · · (x− an) = xn + bxn−1 + . . .+ a1a2 · · · an.

So any zero is a divisor of the absolute term a1a2 · · · an. But don’t forget that in this
context a divisor can be negative. For example

x2 − 2x+ 1 = 0.

The absolute term is 1, so possible zeros are {1,−1}. We try −1 and find that this is a
zero, but 1 isn’t.
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5 Infinite Sequences of Real Numbers

The mathematical concept of a sequence [Folge] is easy to understand. First we look at
a few examples.

Examples

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . the sequence of natural numbers

1,
1

2
,
1

4
,
1

8
,

1

16
, . . . , a sequence of rational numbers

−1, 1,−1, 1,−1, 1,−1, . . . a sequence of 1s and −1s

π,
2

3
, 15, log 2,

√
15, . . . a sequence of random reals number

The characteristic feature of a sequence of numbers is the fact that there is a first term
of the sequence, a second term, and so on. In other words, the numbers in a sequence
come in a particular order. This gives rise to the following formal definition:

Definition 5.0.2. An sequence of real numbers is a map from the natural numbers N

to the set of real numbers R. This means that for each natural number n there is an
element of the sequence, which we denote by an. In this notation, the elements of the
sequence can be listed as

a1, a2, a3, . . .

More concisely, we write (an)n∈N for the sequence.

Examples Here are examples of infinite sequences:

1. Let c be a fixed constant real number. Then the sequence an = c for n ∈ N is
called constant sequence.

c, c, c, c, c, c, c, . . .

2. an = 1
n for n ∈ N. The term a17 is 1

17 . A sequence like this is explicitly defined. It
is given by a formula which can be used directly to compute an arbitrary term of
the sequence.

3. Here is another example of an explicitly given sequence: ( n
n+1)n∈N.
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4. Define a1 = 1 and an+1 = an + (2n + 1). This is a recursively defined sequence.
To compute an+1 we need to know an, for which we need to know an−1 and so on.
Sometimes it is not difficult to find an explicit description for a recursively defined
sequence. Here, we have an = n2.

5. A famous (and more difficult) example for a recursively defined sequence is the
Fibonacci sequence: f1 = 1, f2 = 1 and fn+1 = fn + fn−1 for n > 2, n ∈ N. The
first few terms of the sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

There is the following closed form:

fn =
1√
5

((

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n)

.

We will now look at the second and the third sequence.

1,
1

2
= 0.5,

1

3
= 0.3333 . . . ,

1

4
= 0.25,

1

5
= 0.2, . . . ,

1

200
= 0.005, . . .

1

2
= 0.5,

2

3
= 0.6666 . . . ,

3

4
= 0.75,

4

5
= 0.8, . . . ,

199

200
= 0.995, . . .

While the terms of the first sequence get closer and closer to 0, the term of the second
sequence get closer and closer to 1. Although no term of either sequence ever reaches
0 or 1, respectively, we would like to be able to express the fact that both sequences
approach a certain number and get arbitrarily close.

Definition 5.0.3. A sequence (an)n ∈ N has a limit [Grenzwert] a ∈ R if for every ε > 0
there is a N ∈ N such that

|an − a| < ε for n ≥ N.

If the sequence (an)n∈N has a limit b, then (an)n∈N is called convergent [konvergent]. We
write

lim
n→∞

an = b

Read: The limit of an as n goes to ∞ is b.

If a sequence is not convergent it is called divergent [divergent].

It is worthwhile to think about this definition for a while and understand what the
different parts of the definition mean. One way to interpret it is to say that b is a limit
of a sequence (an)n∈N if the distance of b to all except a finite number of terms of the
sequence is smaller than ε. The finite number of terms which may be further away from
b than ε are

a1, a2, a3, . . . , aN−1.
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Note that N depends on ε, although we do not say this explicitly in the definition. This
is because we have to choose N appropriately, depending on the given ε.

Example Let us consider the sequence an = 1
n for n ∈ N. We would like to show that

the sequence has limit 0. We will follow the definition of a limit and need to show that
for each ε > 0 there is a N such that

∣
∣
∣
∣

1

n

∣
∣
∣
∣
< ε for all n ≥ N

We take ε as given. The condition 1
n < ε is equivalent to the condition n > 1

ε . So let us
try to choose N to be the next natural number larger than 1

ε . The we have that 1
N < ε.

With this we get the following chain of inequalities for n ≥ N :

1

n
≤ 1

N
< ε.

In particular, we see that 1
n < ε for all n ≥ N . Hence we have shown that 0 is the limit

of the sequence ( 1
n)n∈N.

Example The sequence 1,−1, 1,−1, . . . is divergent. It is interesting to prove this using
the definition of limit. It requires working (implicitly or explicitly) with the negation of
the defining property including the various quantors.

Theorem 5.0.4 (Algebra with sequences). Let (an)n∈N and (bn)n∈N be convergent se-
quences. Then:

1. (an ± bn)n∈N is convergent and

lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn

2. (an · bn)n∈N is convergent and

lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn

3. If bn 6= 0 and limn→∞ bn 6= 0: (an

bn

)n∈N is convergent and

lim
n→∞

an

bn
=

limn→∞ an

limn→∞ bn

What is if one of the sequences (for example sequence (an)n∈N) is divergent? What can
we say about

(an + bn)n∈N

(an · bn)n∈N
(
an

bn

)

n∈N

?
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6 Series

A series is another name for an infinite sum. Later we shall introduce many functions
as infinite sums: the exponential function, trigonometric functions, etc. Thus we want
to investigate series in general.

6.1 Partial sums and convergence

The most prominent example of a series is perhaps the exponential function exp(x) =

1 + x + x2

2! + x3

3! + . . .. For each x ∈ C, we regard it the limit of the sequence (sn) of

numbers s1 = 1, s2 = 1 + x, s3 = 1 + x+ x2

2! , . . .. Similarly in general:

Definition 6.1.1. (i) Let (an)n∈N be a sequence. Then a series [Reihe] is the sequence
(sn)n∈N of partial sums

sn := a1 + . . .+ an.

Usually we write
∑∞

n=1 an for the sequence (sn)n∈N, and call an its terms [Summanden].
(ii) In case the series (sn) converges to s ∈ R we write

∞∑

n=1

an := lim
n→∞

n∑

k=1

ak = lim
n→∞

sn = s.

Remark: In the convergent case, the notation
∑∞

n=1 an has two different meanings:
• The sequence of partial sums (a1 + . . . + an)n∈N,
• a number s ∈ R, namely the limit of the partial sums; it is also called the value [Wert]
of the series.

Examples: 1. Decimal expansion: 3.14 . . . = 3 + 1
10 + 4

100 + . . .. We will study these
series in more detail below.

2. We claim
∑∞

n=1
1

n(n+1) = 1, that is, we claim for the partial sums

sn :=
1

1 · 2 +
1

2 · 3 + . . . +
1

n(n+ 1)
→ 1 as n→ ∞.

Proof: Writing

1

n(n+ 1)
=

−(n2 − 1) + n2

n(n+ 1)
= −n− 1

n
+

n

n+ 1
, for n ∈ N,
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we see we can apply a telescope sum trick:

sn =
(

− 0 +
1

2

)

+
(

− 1

2
+

2

3

)

+
(

− 2

3
+

3

4

)

+ . . .+
(

− n− 1

n
+

n

n+ 1

)

= −0 +
n

n+ 1
=

1

1 + 1
n

→ 1 as n→ ∞.

If we are careless, we can easily run into contradictions:

0 = (1 − 1) + (1 − 1) + . . . = 1 + (−1 + 1) + (−1 + 1) + . . . = 1

In naive language, infinite sums are not associative. Thus only manipulations stipulated
by the limit theorems for sequences are admissable.

Theorem 6.1.2. If
∑∞

n=1 an converges then an → 0 as n→ ∞.

Proof. We have an = sn − sn−1 for n ≥ 2 and thus, using sn =
∑n

k=1 ak → s,

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0.

Does the converse of the theorem hold? This is not the case:
Examples: The harmonic series

1 +
1

2
+

1

3
+

1

4
+ . . . .

has terms 1
n forming a null sequence. Nevertheless, the partial sums are not bounded.

Indeed, for a subsequence,

s2n = 1 +
1

2
+

1

3
+ . . .+

1

2n

= 1 +
1

2
+
( 1

3
+

1

4
︸ ︷︷ ︸

≥1/2

)

+
( 1

5
+ . . .+

1

8
︸ ︷︷ ︸

≥1/2

)

+ . . . +
( 1

2n−1 + 1
+ . . .+

1

2n
︸ ︷︷ ︸

≥1/2

)

≥ 1 +
n

2
→ ∞.

This unboundedness means the harmonic series cannot converge. Moreover (sn) is in-
creasing, and hence our argument shows that

∑ 1
n diverges to infinity; as for sequences

we denote this symbolically by
∑ 1

n = ∞.

The most important series will turn out to be the following:

Theorem 6.1.3. Let x ∈ R. The geometric series 1 + x + x2 + x3 + . . . converges for
all |x| < 1 to

∞∑

n=0

xn =
1

1 − x
,

while for |x| ≥ 1 the series diverges.
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Proof. The geometric sum gives

sn =

n∑

j=0

xj = 1 + x+ x2 + . . .+ xn =
1 − xn+1

1 − x
for x 6= 1. (6.1)

When |x| < 1 we see that xn → 0 as n→ ∞; hence lim sn = 1
1−x .

For |x| ≥ 1 also |xn| = |x|n ≥ 1, and so (xn) is not a null sequence. Theorem 6.1.2 gives
that

∑
xn cannot converge.

Example: | 12 | < 1 and hence

1 +
1

2
+

1

4
+

1

8
+ . . . =

1

1 − 1
2

= 2

Remark: A periodic decimal expansion is, up to an additive constant, a geometric
series; it always defines a rational number. For example,

2.34 := 2.343434 . . . = 2 +
34

102
+

34

104
+

34

106
+ · · · = 2 +

34

100

(

1 +
1

100
+

1

1002
+ . . .

)

= 2 +
34

100
· 1

1 − 1
100

= 2 +
34

100
· 100

99
= 2 +

34

99
=

232

99
.

6.2 Series of real numbers

There are two useful tests for convergence of real series. The first one can deal with
series whose sign alternates:

Theorem 6.2.1 (Leibniz). Let (an)n≥0 be a monotone decreasing null sequence, a0 ≥
a1 ≥ a2 ≥ . . . ≥ 0. Then the alternating sum

∑∞
n=0(−1)nan converges.

Example: The alternating harmonic series

1 − 1

2
+

1

3
− 1

4
± . . . .

converges.

Proof. The idea is to see the alternating series defines an interval nesting whose common
point is the limit.

To see this, consider odd and even partial sums,

An := s2n+1 = a0 − a1 + . . .+ a2n − a2n+1 and Bn := s2n = a0 − a1 + . . .+ a2n,
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where n ∈ N0. The equations

An = An−1 + a2n − a2n+1
︸ ︷︷ ︸

≥0

, Bn = Bn−1 −a2n−1 + a2n
︸ ︷︷ ︸

≤0

= An + a2n+1
︸ ︷︷ ︸

↘0

for n ∈ N

prove the following facts: (An) increases monotonously, (Bn) decreases monotonously,
An ≤ Bn, and (Bn −An) is a null sequence.

Hence [An, Bn] is a sequence of nested intervals, containing a common point s, and so

s = lim
n→∞

An = lim
n→∞

Bn = lim
n→∞

sn =

∞∑

n=0

(−1)nan.

A second test applies to real series whose terms all have the same sign:

Theorem 6.2.2. A series
∑∞

n=1 an with an ≥ 0 converges if and only if its partial sums
are bounded.

Proof. The assumption an ≥ 0 means that the sequence of partial sums (sn) is increasing.
Therefor sn+1 ≥ sn and so sn ≤ s.

Example: Consider a decimal expansion 0.d1d2d3 . . . =
∑∞

n=1
dn

10n
with dn ∈ {0, 1, . . . , 9}.

The partial sums

sn =
d1

10
+

d2

100
+ . . .+

dn

10n

are increasing in n and are bounded by

sn ≤ 9

10
+

9

100
+ . . .+

9

10n

geom.series
=

9

10
· 1 − ( 1

10)n

1 − 1
10

<
9

10
· 1

1 − 1
10

=
9

10
· 10

9
= 1

(our estimate says that 0.99 . . . 9, with n digits, is indeed less than 1). Theorem 6.2.2
gives that each decimal expansion converges.

The boundedness criterion can be used for a comparison test for convergence:

Theorem 6.2.3 (Majorization of real series). Suppose (xn)n∈N is a real sequence for
which there exists a convergent series

∑∞
n=1 an of real numbers an ≥ 0 with

0 ≤ xn ≤ an for all n ∈ N.

Then
∑∞

n=1 xn also converges and
∑∞

n=1 xn ≤∑∞
n=1 an.

We call an a majorant of xn.
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Proof. We consider partial sums. By the theorem,
∑n

k=1 ak ≤ C for some C ∈ R and so

0 ≤
n∑

k=1

xk ≤
n∑

k=1

ak ≤ C. (6.2)

But applying the theorem once again, we see that
∑
xk must converge.

Exercise 7. (Minorization) Suppose for a real series
∑
an there exists a sequence (xn)

with an ≥ xn ≥ 0 such that
∑
xn is divergent. Prove that

∑
an diverges as well.

6.3 Decimal expansions

In antiquity, the only numbers that could be represented arithmetically were rational
numbers Q or proportions. Geometry was considered superior to algebra as it could deal
with “all” numbers. Since its invention in medieval time, decimal representations have
changed the view of mathematics. Nowadays many people believe that real numbers and
decimal representations are identical, so that the nonuniqueness of the type 1 = 0.999 . . .
poses a problem. This problem is easy to resolve once decimal expansions are regarded
as series.

Let us first deal with real numbers which are not negative.

Definition 6.3.1. A decimal expansion is a series

∞∑

n=0

dn

10n
= d0 +

d1

10
+

d2

102
+ . . . ,

with d0 ∈ N0 and digits dn ∈ {0, . . . , 9} for n ≥ 1.

Then each decimal expansion defines some real number, and for each real number there
is at least one decimal representation:

Theorem 6.3.2. 1. Each decimal expansion
∑∞

n=0
dn

10n
converges to a number

x =

∞∑

n=0

dn

10n
∈ [0,∞). (6.3)

2. For each real number x ∈ [0,∞) there exists d0 ∈ N0 and a sequence dn ∈ {0, . . . , 9}
for n ≥ 1 such that (6.3) holds.
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Proof. 1. We can majorize:

0 ≤
∞∑

n=0

dn

10n
≤ d0 +

∞∑

n=1

9

10n
= d0 +

9

10

1

1 − 1
10

= d0 + 1

(Our estimate says that 0.99 . . . 9, with n digits, is indeed less than 1). Theo-
rem 6.2.3 gives the claim.

2. For a given x, let us define the digits dn by an interval nesting: There exists
d0 ∈ N with d0 ≤ x < d0 + 1. Then we define recursively: Suppose d1, . . . , dn are
constructed, such that

an := d0 +
d1

10
+ . . .+

dn

10n
≤ x < d0 +

d1

10
+ . . .+

dn + 1

10n
=: bn (6.4)

Then subdivide the interval In = [an, bn) into the 10 halfopen disjoint intervals

[an, an +
1

10n+1
), [an +

1

10n+1
, an +

2

10n+1
), . . . [an +

9

10n+1
, bn),

whose union gives In. One of these ten intervals contains x; call it In+1 =
[an+1, bn+1); this constructs dn+1 such that (6.4) holds. But a1 ≤ . . . ≤ an ≤
x < bn ≤ . . . ≤ b1 and so By the interval nesting property,

⋂
[an, bn] contains x,

and so limn→∞
∑n

k=0
dn

10n
= x, meaning that (6.3) holds.

Remark: A rearrangement of a series [Umordnung] is a change in the order of summa-
tion. For absolutely convergent series, the limit remains unchanged upon rearrangement.
For convergent series which are not absolutely convergent (conditionally convergent se-
ries) the limit surprisingly can change, however. Let us rephrase this fact by saying that
the commutative law is not automatic for convergent series. (See exercises).
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7 Continuous Functions

We talked about functions in Chapter 4. Functions assigend an element x of a given
set X to an element y of a given set Y . Let’s have a look if there is more than this
assignement only.

Examples:

1. If we drive a car wich accelarates with a constant acceleration a. Then we know
from physics, that the velocity v after a time t is equals

v = v0 + a · t,

were v0 is the velocity at time t = 0. We can also say, that v depends on t, which
means that v is a function of the time.

v : [0,∞) −→ R

t 7−→ v0 + a · t

If we now look at small changes of the variable t, then we see that the velocity v(t)
changes small too.

2. When we use the train from Darmstadt to Frankfurt and we want to catch another
train in Frankfurt, then we are interested in the delay of the first train. We look
at the function

w : [0,∞) −→ [0,∞)

which assignes to each delay t the time we have to wait in Frankfurt w(t). If we
assume the first train arrives at xx : 48 and the next train departes at xx : 56,
then a delay of 3 minutes means that we have to wait 5 minutes. And a delay of
8 minutes means that we have to wait 0 minutes. But if we had a delay of 8 + ε,
then we will not catch the train and we have to wait for the next one (assume it
will depart in 30 minutes).

So a delay of 8 minutes has no waiting time, but if it was a little bit more, than we
have to wait for almoust 30 minutes. This means a small change in the variable t
can result in a big change of variable w.

Definition 7.0.3 (ε-δ-condition). A function f : X → Y is called continous [stetig] in
a point x0 ∈ X, if for all ε > 0 there is a δ > 0, such that

|f(x) − f(x0)| < ε for all x ∈ X with |x− x0| < δ. (7.1)
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Now lets have a look again at our example:

1. If we had a look at the values of v(t), then we get

|v(t0) − v(t)| = |v0 + a · t0 − (v0 + a · t)| = |a · t0 − a · t| = |a(t0 − t)| = |a| |t0 − t|.

Now we take ε > 0, and assumed that |v(t0)−v(t)| < ε. Now we have to find δ > 0,
such that |v(t0) − v(t)| < ε holds for all t with |t0 − t| < δ. From the inequality

|v(t0) − v(t)| = |a| |t0 − t| < ε

we can pick δ := ε
|a| and this will work. So this function is continous and we see,

that the δ could depend on ε.

2. We look at the value t0 = 8 minutes. We assume, that |w(8) − w(t)| < ε. We
choose for example ε = 1. Then we had to find a δ > 0, such that for all t in
|8 − t| < δ the inequality

|w(8) − w(t)| < ε

holds. But since we can pick for every δ > 0 a value t ∈ |t0− t| < δ, wich is strictly
bigger than 8, that means t = 8 + s with s > 0, we see that

|w(8) − w(t)| ≥ |w(8) − w(t+ s)| = |0 − (30 − s)| = 30 − s.

So for ε = 1 we found no δ, which implies that this function is not continous.

If we had a function R → R (in general from a metric space in another metric space),
then we had another characterization of continous:

Theorem 7.0.4 (The limit test). Let f be a function defined on a neighbourhood U of
x0 but possibly not defined in x0. Then is equivalent:

(a) f is continous in x0

(b) for every convergent sequence (xn)n∈N ⊂ X with limit x0 is true:

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)

= f(x0).

Proof. ”⇒” We assume the ε-δ-condition in x0. We need to show, that for any given
sequence xn → x0 in the domain, the image sequence satisfies f(xn) → f(x0). Let
ε > 0 be arbitrary, and pick a δ > 0 from (7.1). Since xn → x0, we can choose
N ∈ N, such that

|xn − x0| < δ for all n ≥ N.

But then (7.1) implies

|f(xn) − f(x0)| < ε for all |xn − x| < δ
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which is equivalent to

|f(xn) − f(x0)| < ε for all n ≥ N,

which implies that f(xn) converges to f(x0).

”⇐” Assume, the limit condition holds. We prove the continuity of f by contradiction.

Assume, there exists an ε > 0, were we can’t find δ > 0, such that (7.1) holds. In
particular, (7.1) could not be satisfied for any δ = 1

n where n ∈ N. Thus, there
exists xn in |xn − x0| < 1

n , such that

|f(xn) − f(x0)| > ε.

Therefor we had xn → x, but not f(xn) → f(x0), contradicting the limit test.

Example

1. Consider the function f(x) = x2 defined on R. Choose x0 = 0. Then the function
has the limit 0 in x0. For a proof, we need to take any sequence (xn)n∈N with
limn→∞ xn = 0. Now we have to show that the sequence fn = x2

n for n ∈ N

converges to 0. This, however, is not difficult using our theorem about algebra
with sequences:

lim
n→∞

x2 = lim
n→∞

xn · lim
n→∞

xn = 0 · 0 = 0

2. Now let us look at a complicated example, which does not have any limit in 0. We
take the function f(x) = sin( 1

x) for x ∈ R, x 6= 0.

We take the sequence xn = 1
π·n for n ∈ N. Then

f(xn) = sin(
1

xn
) = sin(π · n) = 0

Now we take the sequence yn = 2
π·(2n+1) . This again gives a sequence of function

values:

f(yn) = sin(
1

yn
) = sin(π · (2n+ 1)/2) = sin(nπ +

π

2
) = 1

So this time we get 1 as the limit of our sequence.

We have taken two different sequences and have obtained two different limits. This
contradicts the limit test. Therefor, this function does not have a limit in 0 in so
it is not continous in 0.
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Theorem 7.0.5 (Theorem (Algebra with continuous functions)). Let f, g : U → R be
two continuous functions. Then

• f ± g

• f · g

• f
g

• f ◦ g

is continous (if defined).

Proof See the exercises.

Examples of continuous functions

1. All polynomials are continuous. This follows easily from the theorem about algebra
with continuous functions and from the fact that the constant functions and the
identity function on R are continuous.

2. We define the following functions:

exp : R −→ R

x 7−→
∞∑

n=0

xn

n!

sin : R −→ R

x 7−→
∞∑

n=0

(−1)n x2n+1

(2n+ 1)!

cos : R −→ R

x 7−→
∞∑

n=0

(−1)n x2n

(2n)!

These functions are continous.

3. Rational functions are continuous on the subset of R where the denominator is
different from 0.

Now we prove an important theorem about continous functions:

Theorem 7.0.6 (Intermediate Value Theorem). Let f : [a, b] → R be continuous and
let c be strictly between f(a) and f(b). Then there is an x strictly between a and b such
that f(x) = c.

We will not give a proof, because it is very technical.
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8 Differentiable Functions

At a fixed point x0 of a given function we would like to construct the tangent t to the
graph of f . As t goes through the point (x0, f(x0)), it suffices to determine the slope
of t. For this we draw a line lx through the point (x0, f(x0)) and the point (x, f(x)).
This lines intersects the graph of f and is not the required tangent yet. But note what
happens when the point x is moved towards x0 on the x-axis. The line lx becomes more
and more like the tangent t. In the limit x→ x0 (if it exists), the line lx and the tangent
t coincide.

Now lets have a look at the slope of lx. It is

f(x) − f(x0)

x− x0
.

As lx becomes t as x moves to x0, the slope of t is the limit

lim
x→x0

f(x) − f(x0)

x− x0
.

Definition 8.0.7. Let f : (a, b) → R be a function and x0 ∈ (a, b). Then the f is called
differentiable in x0, if the limit

lim
x→x0

f(x) − f(x0)

x− x0

exists for all sequences xn → x0 and coincides. The derivative of f in x0 is denoted by
f ′(x0) (speak: f prime of x0).

If f is differentiable in each point of (a, b) then it is called differentiable on (a, b). In
this case, f ′ is a function on (a, b).

(The last step is more abstract than it seems. It takes us in one stride from a single
value f ′(x0) to a function f ′)

Theorem 8.0.8. If f : (a, b) → R is differentiable in x0, then f is continuous in x0.

Proof. Let x0 ∈ (a, b). Then the limit

lim
x→x0

f(x) − f(x0)

x− x0
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exists since f is differentiable in x0. As x goes to x0, the numerator goes to zero. The
limit can only exist, if the denominator goes to zero at the same time. If the denominator
goes to zero, then f(x) goes to f(x0). In other words,

lim
x→x0

f(x) = f(x0).

This is our definition of continuity.

On the other hand, the continuity of f doesn’t implies the differentiability. Take for
example:

f : R −→ R

x 7−→ |x|

We look at x0 = 0 and show that f is continous in x0. We take a sequence (xn)n∈N ⊂ R

wich goes to 0 from above (we denote it by xn ↘ 0). Then this yields to

lim
xn↘0

f(xn) = lim
xn↘0

|xn| xn>0
= lim

xn↘0
xn = 0.

If we take a sequence xn which goes to 0 from bottom (we denote it by xn ↗ 0), then
this yields to

lim
xn↗0

f(xn) = lim
xn↗0

|xn| xn<0
= lim

xn↗0
−xn = 0.

So we have shown, that f is continous in x0. Now we look, if f is differentiable. Again
we take a sequence xn ↘ 0. This yields to

lim
xn↘0

f(xn) − f(0)

xn − 0
= lim

xn↘0

f(xn)

xn
= lim

xn↘0

|xn|
xn

xn>0
= lim

xn↘0

xn

xn
= 1.

If we take again a sequence xn ↗ 0 this yields to

lim
xn↗0

f(xn) − f(0)

xn − 0
= lim

xn↗0

f(xn)

xn
= lim

xn↗0

|xn|
xn

xn<0
= lim

xn↗0

−xn

xn
= −1.

We see that both limits did not coincide, which means that f is not differentiable in
x0 = 0.

While a differentiable function is continous, the derivative of a continous function need
not to be continous.

A similar way to the definition

lim
x→x0

f(x) − f(x0)

x− x0
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is to write the sequence xn with limit x0 as x0 + h and look at the limit h→ 0. In this
case we can rewrite the definition as

lim
h→0

f(x0 + h) − f(x0)

h
.

Now we look at a few examples and determine some derivatives:

Examples:

1. f : R → R, x 7→ c · x with c ∈ R.

f ′(x0) = lim
xn→x0

cxn − cx0

xn − x0
= lim

xn→x0

c(xn − x0)

xn − x0
= c.

2. f : R → R, x 7→ xk.

f ′(x0) = lim
xn→x0

xk
n − xk

0

xn − x0
= lim

xn→x0

(xk−1
n + xk−2

n x0 + . . .+ xn−1
0 ) = kxk−1

0 .

Theorem 8.0.9 (Algebra with differentiable functions). Let f, g : (a, b) → R be two
functions differentiable in x0. Then

• f ± g

• f · g

• f
g

• f ◦ g

is differentiable and the derivative is

• (f ± g)′ = f ′ ± g′

• (fg)′ = f ′g + fg′( product rule)

• f
g = f ′g−fg′

g2 (quotient rule)

• (f ◦ g)′ = f ′ ◦ g · g′ (chain rule)

Proof. • f ± g see exercise.
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• f · g:

lim
xn→x0

(fg)(xn) − (fg)(x0)

xn − x0

= lim
xn→x0

f(xn)g(xn) − f(x0)g(x0)

xn − x0

= lim
xn→x0

f(xn)g(xn) − f(x0)g(x0) +

=0
︷ ︸︸ ︷

f(xn)g(x0) − f(xn)g(x0)

xn − x0

= lim
xn→x0

f(xn)g(xn) − f(xn)g(x0) + f(xn)g(x0) − f(x0)g(x0)

xn − x0

= lim
xn→x0

f(xn)(g(xn) − g(x0)) + (f(xn) − f(x0))g(x0)

xn − x0

= lim
xn→x0

f(xn)(g(xn) − g(x0))

xn − x0
+

(f(xn) − f(x0))g(x0)

xn − x0

= lim
xn→x0

f(xn)
(g(xn) − g(x0))

xn − x0
+ g(x0)

(f(xn) − f(x0))

xn − x0

= lim
xn→x0

f(xn) lim
xn→x0

(g(xn) − g(x0))

xn − x0
+ lim

xn→x0

g(x0) lim
xn→x0

(f(xn) − f(x0))

xn − x0

= f(x0)g
′(x0) + g(x0)f

′(x0).

• f
g see exercises

• f ◦ g (we do the proof in the case, that g is injective). Write

(f ◦ g)(xn) − (f ◦ g)(x0)

xnx0
=

(f ◦ g)(xn) − (f ◦ g)(x0)

g(xn) − g(x0)

g(xn) − g(x0)

xn − x0

Here we used the injectivity of g, which assures that g(xn) − g(x0) 6= 0. Now we
can determine the limit:

lim
xn→x0

(f ◦ g)(xn) − (f ◦ g)(x0)

xn − x0
= lim

xn→x0

(f ◦ g)(xn) − (f ◦ g)(x0)

g(xn) − g(x0)

g(xn) − g(x0)

xn − x0

= lim
xn→x0

f(g(xn)) − f(g(x0))

g(xn) − g(x0)

g(xn) − g(x0)

xn − x0

= lim
xn→x0

f(g(xn)) − f(g(x0))

g(xn) − g(x0)
lim

xn→x0

g(xn) − g(x0)

xn − x0

= f ′(g(x0))g
′(x0)

Now we have a look at a usefull application from everdays life. At first we have the
following definition:
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Definition 8.0.10. Let f : (a, b) → R be a function and x0 ∈ (a, b). Then x0 is called

• local minimum [lokales Minimum] if there exists an ε > 0, such that for all x ∈
(x0 − ε, x0 + ε) f(x0) ≤ f(x)

• local maximum [lokales Maximum] if there exists an ε > 0, such that for all x ∈
(x0 − ε, x0 + ε) f(x0) ≥ f(x).

Now we can formulate

Theorem 8.0.11 (Local extrema). Let f : (a, b) → R be a differentiable function and
x0 ∈ (a, b). If f has a local extremum in x0, then f ′(x0) = 0.

Proof. Without loss of generality we assume that we had a local maximum in x0, that
means f(x0) ≥ f(x) for all x ∈ (x0 − ε, x0 + ε). Then

f ′(x0) = lim
h→0,h<0

f(x0 + h) − f(x0)

h
≥ 0

since f(x0 + h) − f(x0) ≤ 0 and h < 0. But on the other hand

f ′(x0) = lim
h→0,h>0

f(x0 + h) − f(x0)

h
≤ 0

since f(x0 + h) − f(x0) ≤ 0 and h > 0. Since f is differentiable these two limits have to
coincide which yields to f ′(x0) = 0.

Here is another way to find limits:

Theorem 8.0.12 (L’Hospitals Rule). Let f, g : (a, b) → R be differentiable functions
and x0 ∈ (a, b). Furthermore, let limx→x0

f(x) = 0 and limx→x0
g(x) = 0. We consider

the function f(x)
g(x) . Note that it is not defined in x0 because limx→x0

g(x) = 0. But if f ′(x)
g′(x)

exists, then f(x)
g(x) exists and

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)
g′(x)

.

Remark: This rule is only defined for limits which approach to a real number. So if we
had for example

lim
n→∞

sin(
1

n
)n,

then we can’t apply L’Hopitals rule. First we have to substitute the sequence by (for
example) k := 1

n . As n goes to infinity, k goes to 0. This yields to

lim
n→∞

n sin(
1

n
) = lim

k→0

sin(k)

k
.

Now we can use the rule and we get

lim
n→∞

n sin(
1

n
) = lim

k→0

sin(k)

k
= lim

k→0

cos(k)

1
= 1.

50



9 Integral

In antiquity, Archimede determined the volume of special bodies such as the cone, sphere,
and cylinder. To calculate areas or volumes in general is the main task of integration.
The first attempt for a systematic treatment of integration goes back to Cavalieri in the
17th century.

The integral of a function of one variable is the oriented area content bounded by the
graph. Two questions arise:
• For which functions can we declare the integral?
• How do we compute integrals?

The answer to the second question will be deferred until Section 9.3: The Fundamental
Theorem of Calculus will turn out to be crucial.

The first question has less practical impact; in fact, all functions of daily life are in-
tegrable. It is, however, an interesting mathematical problem. We will approach it as
follows. We set off with step functions, for which integration is obvious, and then use a
limit process to extend the integral to a large class of functions. Suprisingly, this class
is not explicit, and so, in a second step, we will show that, for instance, continuous
functions belong to this class.

9.1 Step functions

A function φ : [a, b] → R is a step function [Treppenfunktion], if there is a partition
[Zerlegung] a = x0 < x1 < . . . < xn−1 < xn = b of [a, b], such that φ is constant on each
interval (xk−1, xk) for k = 1, . . . , n. Note that the number n of steps is finite, and we do
not constrain the values φ(xk).

Let us denote the set of step functions on [a, b] by S[a, b]. The sole point of introducing
these functions is that their integrals are obvious, as we know the area of a rectangle:

Definition 9.1.1 (Integral of step functions). Let φ ∈ S[a, b] with φ(x) = ck on
(xk−1, xk) for k = 1, . . . , n. Then we set

∫ b

a
φ(x) dx :=

n∑

k=1

ck(xk − xk−1). (9.1)

We also admit a = b, in which case the sum is empty and
∫ a
a φ(x) dx := 0.
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The same step function can be described with respect to many different partitions, for
instance, we can always include additional support points into a given partition. Then
∫ b
a φ(x) dx remains invariant:
• For just one additional support point, this is seen as follows: If φ(x) := c on [a, b] and
ξ ∈ (a, b), then

c(b− a) = c(ξ − a) + c(b− ξ), (9.2)

just as rectangle areas add.
• For the general case, if X is a partition a = x0 < x1 < . . . < xi = b and Y is
a = y0 < y1 < . . . < yj = b then their union forms a partition Z of form a = z0 <
z1 < . . . < zk = b, having k ≤ i + j points. Appealing to (9.2), we see that the sums
with respect to X and Z are equal, and so are the sums with respect to Y and Z.
Consequently, the sums for X and Y are also equal, which means the integral is well-
defined.

Theorem 9.1.2. Let φ, ψ ∈ S[a, b] and λ ∈ R, then:

(i)
∫ b
a λφ+ ψ dx = λ

∫ b
a φdx+

∫ b
a ψ dx (linearity) [Linearität]

(ii) For a ≤ ξ ≤ b we have
∫ ξ
a f +

∫ b
ξ f =

∫ b
a f . (monotonicity) [Monotonie]

(iii) φ ≤ ψ =⇒
∫ b
a φdx ≤

∫ b
a ψ dx.

In (iii), the notation φ ≤ ψ is shorthand for φ(x) ≤ ψ(x) for all x ∈ [a, b].

9.2 The Riemann integral

Definition 9.2.1 (Lower and upper integral [Unter- und Oberintegral]). Suppose f : [a, b] →
R is an arbitrary bounded function. Then we set

L :=

{∫ b

a
φ(x) dx : φ ∈ S[a, b], φ ≤ f

}

, U := inf

{∫ b

a
φ(x) dx : φ ∈ S[a, b], φ ≥ f

}

.

∫ b

a
f(x) dx := supL,

∫ b

a
f(x) dx := inf U

Since we assume |f | ≤ C the set U contains the constant step function C and is nonempty.
Moreover, U is bounded from below by −C(b− a) and so inf U exists. Likewise for L.

Due to monotonicity it is immediate that
∫ b
a f(x) dx ≤

∫ b
a f(x) dx.

Examples:

1. For φ ∈ S[a, b] we have
∫ b
aφ(x) dx =

∫ b
aφ(x) dx =

∫ b
aφ(x) dx (why?).

2. Let χQ : [0, 1] → R be the characteristic function of Q with f(x) = 1 for x ∈ Q, and 0
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otherwise. Since the rational numbers are dense in the irrational ones, each step function

φ ≥ f satisfies φ ≥ 1 (except, perhaps, at the partition points), and so
∫ b
aχQ(x) dx = 1.

Similarly,
∫ b
aχQ(x) dx = 0.

For the second example, the “area” of the graph is a doubtful quantity: Is it 0, 1, or
any intermediate value? However, when upper and lower integral coincide, these should
represent “the” area:

Definition 9.2.2 (Riemann 1854). A bounded function f : [a, b] → R is (Riemann)

integrable [(Riemann)-integrierbar], if
∫ b
a f(x) dx =

∫ b
a f(x) dx. In that case we write

∫ b

a
f(x) dx :=

∫ b

a
f(x) dx =

∫ b

a
f(x) dx.

The definition leaves open how to assert that a function is integrable. We will show
below that functions which are continuous or monotone are integrable. The following
reformulation of the integrability definition will be our test for integrability:

9.3 The Fundamental Theorem of Calculus

A differentiable function F : [a, b] → R is called a primitive or antiderivative [Stamm-
funktion] of f : [a, b] → R, if F ′ = f .

Examples:

(i) For f(x) = x2 the function F (x) = 1
3x

3 is a primitive.
(ii) For f(x) = eix the function F (x) = −ieix is a primitive.

Often, the explicit form of a primitive can only be guessed. Nevertheless it always exists
for f continuous:

Theorem 9.3.1. Let f : [a, b] → R be continuous. Then the indefinite integral [unbes-
timmtes Integral]

I(x) :=

∫ x

a
f(t) dt

gives a differentiable function I : [a, b] → R. Moreover, I is a primitive of f , that is,
I ′(x) = f(x).

Problem: If f is merely integrable then I is only Lipschitz.

Proof. We first suppose f is real-valued and compute the difference quotient of I(x).
Suppose a ≤ x < b. Then for sufficiently small h > 0 we have x + h < b. For such h
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follows

I(x+ h) − I(x)

h
=

1

h

(∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt

)

=
1

h

∫ x+h

x
f(t) dt. (9.3)

Moreover, by the Mean Value Theorem of Integration1 there exists ξh ∈ [x, x+ h] with

1

h

∫ x+h

x
f(t) dt = f(ξh).

Now as h→ 0 we have limh→0 ξh = x, and so the limit of (9.3) exists:

I ′(x) = lim
h→0

f(ξh)
f continuous

= f(x)

In case a < x ≤ b we can similarly consider h < 0 and proceed as before: Then
I(x+h)−I(x)

h = − 1
h

∫ x
x+h f(t) dt = − 1

h |h|f(ξh) = f(ξh) for some ξh ∈ [x+h, x] which again
implies I ′(x) = f(x).

Let us rephrase the statement, which presents, perhaps, the most important fact of
calculus. The equation d

dx

∫ x
a f(t) dt = f(x) means that indefinite integration and dif-

ferentiation are inverse operations, cancelling one another. This is not at all clear from
the definition of integral and derivative!

For f constant, f(x) ≡ c, this is immediate to see: I(x) = (x− a)c and so I ′(x) = c.

Obviously, when F is a primitive of f , then so is F + c for c constant. Conversely, any
two primitives F,G : [a, b] → R of the same function f satisfy

(F −G)′ = F ′ −G′ = f − f = 0;

This implies that F − G is constant. That is, a primitive of f is well-defined up to a
constant. Making use of this property we see that the integral of f can be computed
using any of its primitives F :

Theorem 9.3.2 (Fundamental theorem). Suppose a continuous function f : [a, b] → R

has a primitive F : [a, b] → R. Then

∫ b

a
f(x) dx = F (b) − F (a).

Proof. By Thm. 9.3.1, the function I(x) :=
∫ x
a f(t) dt is a primitive of f . Hence F (x) −

I(x) is constant, say equal to c ∈ R, and

∫ b

a
f(x) dx = I(b) − I(a)

︸︷︷︸

=0

=
(
F (b) − c

)
−
(
F (a) − c

)
= F (b) − F (a).

1see for example Analysis I by K.H. Hofmann (2000), Thm 4.29
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The Fundamental Theorem allows us to integrate most functions introduced so far. It

will be convenient to write F (x)
∣
∣b

a
:= F (b) − F (a).

Examples: From the examples for differentiation, the following is immediate:

∫ b

a
xn =

1

n+ 1
xn+1

∣
∣
∣

b

a

Thanks to the linearity of the integral this formula suffices to integrate polynomials.

∫ b

a
ex dx = ex

∣
∣
∣

b

a
,

∫ b

a
eix dx = −ieix

∣
∣
∣

b

a
.

Invoking the Euler formula and taking real and imaginary parts of the second integral
or (??) we find

∫ b

a
cosx dx = sinx

∣
∣
∣

b

a
,

∫ b

a
sinx dx = − cosx

∣
∣
∣

b

a
.

Moreover,
∫ b

a

1

1 + x2
dx = arctan x

∣
∣
∣

b

a
,

and, provided [a, b] does not contain a zero of cosine,

∫ b

a

1

cos2x
dx = tan x

∣
∣
∣

b

a
.

9.4 Rules for integration

Each law of differentiation yields a law for integration, via the Fundamental Theorem.

Let us call a function continuously differentiable [stetig differenzierbar] if its derivative
is continuous.

We consider the product law first.

Theorem 9.4.1 (Integration by parts). If f, g : [a, b] → R are continuously differen-
tiable, then

∫ b

a
f ′(x)g(x) dx = f(x)g(x)

∣
∣
∣

b

a
−
∫ b

a
f(x)g′(x) dx.

Note the two integrals on the right hand side exist in view of our assumptions on f, g.

Proof. The function h := fg can be differentiated using product law: h′ = f ′g+ fg′. In
particular, h′ is continuous, and so
∫ b

a
f ′(x)g(x) dx +

∫ b

a
f(x)g′(x) dx =

∫ b

a
h′(x) dx

Fund’l Thm.
= h(x)

∣
∣
∣

b

a
= f(x)g(x)

∣
∣
∣

b

a
.
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Examples:

∫ b

a
cos(x)x dx = sin(x)x

∣
∣
∣

b

a
−
∫ b

a
sin(x) · 1 dx = sin(x)x

∣
∣
∣

b

a
+ cos(x)

∣
∣
∣

b

a

Exercise 8.
∫ π/2

−π/2
sin2x dx =

∫ π/2

−π/2
cos2x dx =

π

2
. (9.4)

We now discuss the Chain Rule. Let us first introduce some more notation. Suppose
F, f = F ′ : [a, b] → R and x, y ∈ [a, b]. Then the Fundamental Theorem gives F (y) −
F (x) =

∫ y
x f(t) dt. The same formula will hold for x > y as well provided we set

∫ y

x
f(t) dt := −

∫ x

y
f(t) dt. (9.5)

Theorem 9.4.2 (Substitution). Let f : [α, β] → R be continuous and φ : [a, b] → [α, β]
be continuously differentiable. Then

∫ b

a
f
(
φ(t)

)
φ′(t) dt =

∫ φ(b)

φ(a)
f(x) dx. (9.6)

Proof. Let F : [α, β] → R be a primitive of f . According to the Chain Rule,

(
F ◦ φ

)′
(t) = F ′(φ(t)

)
φ′(t) = f

(
φ(t)

)
φ′(t),

and so (9.6) follows from

∫ b

a
f
(
φ(t)

)
φ′(t) dt

Fund’l Thm.
=

(
F◦φ

)
(t)
∣
∣
∣

b

a
= F

(
φ(b)

)
−F
(
φ(a)

) Fund’l Thm.
=

∫ φ(b)

φ(a)
f(x) dx.

Examples:

1. Integration is invariant under translation in the domain: For c ∈ R,

∫ b

a
f(t+ c
︸︷︷︸

φ(t)

) dt
(9.6)
=

∫ φ(b)=b+c

φ(a)=a+c
f(x) dx (φ′(t) = 1).

2. For c ∈ R and φ(t) := ct we have

∫ b

a

f(ct)c dt
(9.6)
=

∫ cb

ca

f(x) dx
c6=0
=⇒

∫ b

a

f(ct) dt =
1

c

∫ cb

ca

f(x) dx.
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3. Let us now discuss a classical problem: the area of the unit disk. The area of the
upper half disk is the integral

∫ 1
−1

√
1 − x2 dx. We want to substitute x by φ(t) := sin t in

order to take advantage of the identity sin2t+cos2t = 1. Note that φ : [−π
2 ,

π
2 ] → [−1, 1]

is continuously differentiable and invertible. Substitution gives

∫ 1

−1

√

1 − x2 dx =

∫ φ−1(1)

φ−1(−1)

√

1 − sin2t
︸ ︷︷ ︸√

cos2 t

(sin t)′
︸ ︷︷ ︸

cos t

dt =

∫ π/2

−π/2
cos2 t dt

Ex.
=

π

2
.

Here, we used the fact cos t ≥ 0 for t ∈ [− π
2 ,

π
2 ]. Thus the unit disk has area π.
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