Kap. V Verteilungen und absolutstetige Zufallsvariablen

- 1. Die Borelsche σ -Algebra in \mathbb{R}^d
- 2. Das d-dimensionale Lebesgue-Maß
- 3. Verteilungen
- 4. Absolutstetige Zufallsvariablen
- 5. Verteilungsfunktionen
- 6. Dichte-Schätzung

Bisher rigoros studiert: diskrete ZVen, also

 $X:\Omega \to \mathbb{R}$ mit $P(\{X\in D\})=1$ für eine abzählbare Menge $D\subset \mathbb{R}.$

Dann gilt für alle $M\in\mathfrak{M}$, siehe Bsp. II.38,

$$P(\{X \in M\}) = P(\{X \in M\} \cap \{X \in D\})$$

$$= P\left(\bigcup_{x \in D} \{X \in M\} \cap \{X = x\}\right)$$

$$= \sum_{x \in D} P(\{X \in M\} \cap \{X = x\})$$

$$= \sum_{x \in M \cap D} P(\{X = x\}).$$

In diesem Kapitel insbesondere ZVen

$$X:\Omega \to \mathbb{R}$$
 mit

$$\forall x \in \mathbb{R} : P(\{X = x\}) = 0.$$

Bsp.: Wartezeit, Koordinaten von Pfeiltreffer auf Dartscheibe, fehlerhafter Meßwert, ...

Für eine große Klasse solcher ZVen wird die Summation von $x\mapsto P(\{X=x\})$ über $M\cap D$ durch die Integration einer geeigneten Funktion $x\mapsto f_X(x)$ über M ersetzt, also $P(\{X\in M\})=\int_M f_X(x)\,dx$.

1 Die Borelsche σ -Algebra in \mathbb{R}^d

- **1. Beispiel Kontinuierliches "Glücksrad"**. Versuch einer stochastischen Modellierung:
 - (i) $\Omega := [0,1[$ (Kreislinie der Länge 1)
 - (ii) $\mathfrak{A} := \mathfrak{P}(\Omega)$
- (iii) W'maß P auf $\mathfrak A$ mit folgenden Eigenschaften:
 - P([a,b]) = b a für $0 \le a < b < 1$
 - $\bullet \ P(A) = P(B) \text{, falls } B \text{ aus } A \text{ durch "Rotation"}$ hervorgeht

Definiere für $\omega, \omega' \in [0,1[$ und $A \subseteq [0,1[$

$$\omega \oplus \omega' := \omega + \omega' - \lfloor \omega + \omega' \rfloor,$$

$$\omega \oplus A := \{ \omega \oplus a : a \in A \}.$$

Frage: Existiert ein W'maß P auf $\mathfrak{P}([0,1[)]$ mit

$$\forall A \subseteq [0, 1[\forall \omega \in [0, 1[: P(\omega \oplus A) = P(A)?$$

Antwort: Nein.

Folglich gibt es keine "Gleichverteilung" auf $\mathfrak{P}([0,1[)$.

Ausweg: betrachte kleinere σ -Algebra.

Beweisskizze. Sei $Q:=\mathbb{Q}\cap\Omega$. Betrachte Äquivalenzrelation

$$\omega \sim \omega' : \Leftrightarrow \exists q \in Q : \omega' = \omega \oplus q$$

auf Ω und zugehörige Äquivalenzklassen $[r]=\{\omega\in\Omega:\omega\sim r\}$. Wähle Repräsentantensystem $R\subseteq\Omega$ (Auswahlaxiom), d.h.

$$\forall \omega \in \Omega \quad \exists_1 \, r \in R : \omega \in [r].$$

Es gilt für $q_1, q_2 \in Q$ mit $q_1 \neq q_2$

$$(q_1 \oplus R) \cap (q_2 \oplus R) = \emptyset.$$

Schließlich erfüllt P mit obigen Eigenschaften

$$1 = P(\Omega) = P(\bigcup_{q \in Q} q \oplus R) = \sum_{q \in Q} P(q \oplus R) = \sum_{q \in Q} P(R).$$

Widerspruch.

Im folgenden $\Omega \neq \emptyset$ und $\mathfrak{E} \subseteq \mathfrak{P}(\Omega)$ sowie

$$\mathbb{A} := \{\mathfrak{A} \subseteq \mathfrak{P}(\Omega) : \mathfrak{A} \text{ σ-Algebra}, \ \mathfrak{E} \subseteq \mathfrak{A}\},$$

$$\sigma(\mathfrak{E}) := \bigcap_{\mathfrak{A} \in \mathbb{A}} \mathfrak{A} = \{A \subseteq \Omega : \forall \mathfrak{A} \in \mathbb{A} : A \in \mathfrak{A}\}.$$

Beachte, daß $\mathfrak{P}(\Omega) \in \mathbb{A}$.

- **2. Lemma** $\sigma(\mathfrak{E})$ ist die kleinste σ -Algebra, die \mathfrak{E} umfaßt, d.h.
 - (i) $\sigma(\mathfrak{E})$ ist σ -Algebra,
 - (ii) $\mathfrak{E} \subseteq \sigma(\mathfrak{E})$,
 - (iii) $\forall \mathfrak{A} \in \mathbb{A} : \sigma(\mathfrak{E}) \subseteq \mathfrak{A}$.

Beweis. PROJEKTOR.

- 3. Definition $\sigma(\mathfrak{E})$ die von \mathfrak{E} erzeugte σ -Algebra (in Ω). Vgl. erzeugter Untervektorraum.
- 4. Beispiel Für $\Omega=\{1,2,3,4\}$ und $\mathfrak{E}=\{\{1,2,3\},\{2\}\}$ gilt

$$\begin{split} \sigma(\mathfrak{E}) \\ &= \{\emptyset, \{2\}, \{4\}, \{1,3\}, \{2,4\}, \{1,2,3\}, \{1,3,4\}, \Omega\} \\ &= \{A \subseteq \Omega: \{1,3\} \subseteq A \text{ oder } \{1,3\} \cap A = \emptyset\}. \end{split}$$

5. Definition Für $d \in \mathbb{N}$ und

$$\mathfrak{O}_d := \{O \subseteq \mathbb{R}^d : O \text{ offen}\}$$

heißt $\mathfrak{B}_d:=\sigma(\mathfrak{O}_d)$ die Borelsche σ -Algebra in \mathbb{R}^d . Elemente $B\in\mathfrak{B}_d$ heißen Borel-Mengen (in \mathbb{R}^d).

6. Beispiel

- (i) $A\subseteq\mathbb{R}^d$ abgeschlossen $\Rightarrow A\in\mathfrak{B}_d$, da A^{c} offen
- (ii) $\mathfrak{M} \subsetneq \mathfrak{B}_1$

7. Lemma

$$A_1, \ldots, A_d \in \mathfrak{B}_1 \Rightarrow A_1 \times \cdots \times A_d \in \mathfrak{B}_d.$$

Beweis. Siehe Irle (2001, p. 151). Stichwort: Produkt- σ -Algebra.

8. Bemerkung Es gilt $\mathfrak{B}_d \subsetneq \mathfrak{P}(\mathbb{R}^d)$. Uns werden in dieser Vorlesung jedoch keine Mengen aus $\mathfrak{P}(\mathbb{R}^d) \setminus \mathfrak{B}_d$ begegnen. Dazu auch Krengel (2003, p. 127).

9. Satz Gilt

$$\forall x_1, \dots, x_d \in \mathbb{R} : P(]-\infty, x_1] \times \dots \times]-\infty, x_n])$$
$$= Q(]-\infty, x_1] \times \dots \times]-\infty, x_n])$$

für Wahrscheinlichkeitsmaße P und Q auf \mathfrak{B}_d , so folgt

$$P = Q$$
.

Beweis. Siehe Irle (2001, p. 157).