Fachbereich Mathematik Dr. M. Geißert

WS 2006/07 26.01.2007

12. Übungsblatt zur PDG I:Funktionalanalytische Methoden

Gruppenübung

Aufgabe G1

Seien X, Y Banachräume. Zeigen Sie die folgende Aussagen.

- (a) Ein Operator $T \in \mathcal{L}(X,Y)$ ist abgeschlossen.
- (b) gr (A) ist ein Unterraum von $X \times Y$.
- (c) A ist abgeschlossen \iff gr (A) ist abgeschlossen in $X \times Y$.
- (d) Sei $A: X \supset D \to Y$ linear. Dann ist A abgeschlossen genau dann wenn D versehen mit der Graphnorm $||x||_A := ||x||_X + ||Ax||_Y$ ein Banachraum ist.
- (e) Der Operator $A:(D,\|\cdot\|_A)\to Y$ ist stetig.

Aufgabe G2

Sei X ein normierter Vektorraum, $M\subseteq X$ und $M'\subseteq X'$. Beweisen Sie folgende Aussagen

- (a) M ist beschränkt genau dann, wenn für jede $\varphi \in X'$ die Menge $\{|\varphi(x)| : x \in M\}$ in \mathbb{R} beschränkt ist.
- (b) Jede schwach konvergente Folge ist beschränkt.
- (c) Ist X ein Banachraum, so ist M' genau dann in X' beschränkt, wenn die Menge $\{|\varphi(x)|: \varphi \in M'\}$ für alle $x \in X$ in \mathbb{R} beschränkt ist.

Aufgabe G3

Geben Sie Beispiele für eine Folge (T_n) von stetigen linearen Operatoren an, die punktweise aber nicht in der Operatornorm konvergieren.

Hausübung

Aufgabe H1

(a) In dem Banachraum C([0,1]) betrachten wir den lineare Operator A mit

$$A: D_1 \to C([0,1]), D_1 := C^1([0,1])$$
 und $Af := f'$ für $f \in D_1$; $A: D_2 \to C([0,1]), D_2 := C^{\infty}([0,1])$ und $Af := f'$ für $f \in D_2$;

Untersuchen Sie die beiden Operatoren (A, D_1) und (A, D_2) auf Abgeschlossenheit.

(b) Sei $\Omega \subset \mathbb{R}^d$ beschränkt und von der Klasse C^2 , $D(\Delta) = H^2(\Omega) \cap H^1_0(\Omega) \subset L^2(\Omega)$ und $\Delta: D(\Delta) \to L^2(\Omega)$ der Dirichlet-Laplace-Operator. Zeigen Sie, dass Δ abgeschlossen ist, aber NICHT zu einem stetigen Operator auf $L^2(\Omega)$ fortgesetzt werden kann.

Aufgabe H2

Zeigen Sie: ein Banachraum X ist entweder von endlichen Dimension, oder jede Basis ist überabzählbar.