
4 Birkhoff’s Ergodic Theorem

Ergodic theorems, roughly speaking, are concerned with the question: When do aver-

ages of quantities, generated in a somehow ‘stationary’ manner, converge? A thorough

treatment can be found in Krengel, Ergodic Thoerems, de Gruyter, 1985. We present

one particularly important basic result, Birkhoff’s ergodic theorem, and some special

cases.

In this section, we consider the complete normed space L1 = L1(Ω, A, P ). For a

continuous linear mapping T : L1 → L1, its norm is defined as

‖T‖ := sup
X∈L1

X 6=0

‖T (X)‖L1

‖X‖L1

;

this number is always finite; further,

‖T (X)‖L1 ≤ ‖T‖ · ‖X‖L1 , ∀X ∈ L1 . (1)

For two operators S, T : L1 → L1, we set in short ST for the composition. It is not

hard to see that ‖ST‖ ≤ ‖S‖‖T‖. In particular, we define powers T i := TT i−1 for

i > 1; then ‖T i‖ ≤ ‖T‖i.

An linear operator T is called a contraction iff ‖T‖ ≤ 1; this is equivalent to the

assumption that that ‖T (X)− T (X)‖L1 ≤ ‖g − h‖L1 for all g, h ∈ L1.

For X, Y ∈ L1, we write in short X ≤ Y iff X ≤ Y µ–a.e.. We say that a continuous

linear operator T : L1 → L1 is positive iff X ≥ 0 implies T (X) ≥ 0. This is equivalent

to the assumption that X ≤ Y implies T (X) ≤ T (Y ).

Example 1. Let τ : Ω → Ω be an endomorphism, that is, τ is measurable and

P ◦ τ−1 = P . Then this induces a positive contraction

Tτ : L2 → L2, Tτ (f) := f ◦ τ .

Examples of endomorphisms τ are

• om Ω = R, translations τ(ω) = ω + x;

• on a product space with product measure, (
⊗

i∈N Ω,
⊗

i∈N A,
⊗

i∈N µ), the shift

operator τ((ω1, ω2, . . .) = (ω2, ω3, . . .);

• for a random walk Sn =
∑

i≤n Xi with Xi i.i.d. and integrable, we have (Sn)n∈N
d
=

(Sn −X1)n≥2. This leads to an endomorphism as follows: Set S = (Sn)n∈N and

consider the product space

(
⊗
i∈N

R,
⊗
i∈N

B, PS) .

Then the shift and reset operator

τ((ω1, ω2, . . . , )) := (ω2 − ω1, ω3 − ω1, . . .)

is an endomorphism.
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If T, T ′ are positive linear operators (plops) and α, β ≥ 0, then T ◦ T ′ and αT + βT ′

are plops as well. In particular, for a plop T and n ∈ N, the operators

Sn :=
n−1∑
i=0

T i , An :=
1

n
Sn (2)

are plops. Further, if T is a contraction, An is a contraction as well. For two random

variables X, Y in L1, their pointwise maximum max{X, Y } is in L1 as well. Further,

for a plop T : L1 → L1 and An,Sn defined in (2) as in the previous subsection are

plops as well, and for X ∈ L1 we may define

MA
n (X) := max{A1(X), . . . , An(X)}, MS

n (X) := max{S1(X), . . . , Sn(X)} ; (3)

then M
A/S
n (X) ∈ L1 and X ≤ Y ⇒ M

A/S
n (X) ≤ M

A/S
n (Y ).

Definition 1. Let τ : Ω → Ω be an endormorphism. A ∈ A is called τ–invariant

iff A = τ−1(A). The class of τ–invariant sets is denoted by Iτ . A r.v. X is called

τ–invariant if X = X ◦ τ .

It is clear that Iτ forms a σ–algebra; further, it is easy to see that a r.v. X is τ–invariant

iff for all α ∈ R the level sets {X ≥ α} are τ–invariant; hence X is τ–invariant iff X is

Iτ–measurable. A particularly nice case occurs if Iτ consists only of 0–1–sets (i.e., no

‘really random’ event is τ–invariant); in this case, the conditional expectation above

equals the expectation. This case is so important that it is given a name:

Definition 2. An endomorphism τ : Ω → Ω is called ergodic iff for all A ∈ Iµ,

µ(A) ∈
{
0, 1

}
.

Example 2. Example 2 continued: It is trivial to see that the endomorphism in (i)

is ergodic. By Kolmogorov’s 0–1–Law, it is easy to see that the endomorphism given

in (ii) is ergodic. Also, in Example (iii), any measurable set A can be written as

{S ∈ B}; if A is τ–invariant, it follows for any k that A = {(Sn+k − Sk)n∈N ∈ B};
hence, by induction one derives that B is independent of all Xi and similarly as in

the proof of Kolmogorov’s 0–1–Law, this entails P (A) ∈ {0, 1}. Thus, also Part (iii)

is an example of an ergodic τ .

Lemma 1. Let Y ∈ L1 with Y ≥ 0, and let T : L1 → L1 be a plop as well as a

contraction. Then ∫
T (Y )dP ≤

∫
Y dP .

Proof. Since Y ≥ 0, T (Y ) ≥ 0, and∫
T (Y )dP = ‖T (Y )‖L1 ≤ ‖Y ‖L1 =

∫
Y dP .

Theorem 1 (Hopf, 1954). Let T be a positive contraction in L1, and X ∈ L1. For

n ∈ N denote En :=
{
MA

n (X) ≥ 0
}

=
{
MS

n (X) ≥ 0
}
∈ A, and set E∞ =

⋃
n En.

Then ∫
En

X dP ≥ 0 and

∫
E∞

X dP ≥ 0 .
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A very rough and näıve interpretation of this theorem is that, whenever at least one

1/k
∑

i<k T i(X) is ≥ 0, X might be negative ‘sometimes’, but not ‘most of the time’;

even more, it is positive ‘on the average’.

Proof (A.M. Garsia, 1965). The second inequality follows form the first by monotone

convergence. For a r.v. Y , we set as usual Y + = max{Y, 0}. Now let n be fixed and

k ≤ n; then

(MS
n (X))+ ≥ MS

n (X) ≥ Sk(X) .

Since T is positive, this implies T [(MS
n (X))+] ≥ T (Sk(X)) and thus also

X + T [(MS
n (X))+] ≥ X + T (Sk(X)) = Sk+1(X) .

This entails

X ≥ Sk+1(X)− T [(MS
n (X))+] ;

this equality is valid for k = 0 as well, and by taking the maximum over k = 0, . . . , n−1

on the right hand side it follows that

X ≥ MS
n (X)− T [(MS

n (X))+] .

From this we infer∫
En

X ≥
∫

En

MS
n (X)−

∫
En

T [(MS
n (X))+] dP

=

∫
Ω

(MS
n (X))+ dP −

∫
En

T [(MS
n (X))+] dP

≥
∫

Ω

(MS
n (X))+ dP −

∫
En

T [(MS
n (X))+] dP

T [(MS
n (X))+]≥0

≥
∫

Ω

(MS
n (X))+ dP −

∫
Ω

T [(MS
n (X))+] dP

Lem.1

≥ 0 .

Corollary 1 (Wiener (1939)). Let τ : Ω → Ω be an endomorphism. Then for any

X ∈ L1 we have

P
(

max
k≤n

1

k

∑
i≤k

(X ◦ τ i) ≥ α
)
≤ α−1E|X| .

This is a remarkable strengthening of the Chebyshev–Markov inequality III.2.1. Com-

pare also with the Kolmogorov inequality IV.2.1.

Proof. Set

En =

{
max
k≤n

1

k

∑
i≤k

(X ◦ τ i) ≥ α

}
=

{
max
k≤n

1

k

∑
i≤k

(T i(X̃)) ≥ 0

}
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with X̃ = X − α and T (X̃) := X̃ ◦ τ . Then Theorem 1 yields
∫

En
X̃ ≥ 0, hence

αP (En) ≤
∫

En

XdP ≤
∫

Ω

|X|dP = E|X| .

Theorem 2 (Birkhoff (1931)). Let τ : Ω → Ω be an endomorphism and X ∈ L1.

Then
1

n

∑
i<n

(X ◦ τ i) → E(X | Iτ ) P − a.s..

Proof. We set T (X) = X ◦ τ and adopt and use the above facts and notations. We

will first show that the left hand side tends to a τ–invariant X a.s.; then we show that

X is indeed the conditional expectation. We start with

An+1(X) =
1

n + 1
Sn+1(X) =

1

n + 1
X +

n

n + 1
An(X) ◦ τ .

Thus, the random variables

Xu/l := lim
n

/ lim
n

An(X)

are τ–invariant: Indeed,

Xu ◦ τ =
(
lim

n
An(X)

)
◦ τ = lim

n
(An(X) ◦ τ) = lim

n
An+1(X) = Xu .

We will now proceed in several steps.

Step 1: We prove that P (Xu = ∞∨X l = −∞) = 0.

To this end, note that Xu > β implies that there is n such that MA
n (X) > β. Hence

P (Xu > β) ≤ sup
n

P (MA
n (X) > β) ≤ β−1E|X|

by Corollary 1. It follows that P (Xu > β) → 0 for β → ∞. On the other hand,

X l = −(−X)u, and thus P (X l < −α) ≤ α−1E|X| for α > 0.

Step 2: We prove that Xu = X l a.s..

To this end, it suffices to show that for α < β, P (X l < α < β < Xu) = 0; set

B = {X l < α < β < Xu}. Since X l, Xu are τ–invariant, B is a τ–invariant event. If

we define X̃ := (X − β)1B, then

X̃ ◦ τ k = (X ◦ τ k − β)1τ−k(B) = (X ◦ τ k − β)1B ;

consequently, An(X̃) = (An(X)− β)1B. Recall the notion En := {MA
n (X̃) ≥ 0} and

E∞ =
⋃

n En. If ω ∈ B, then Xu(ω)−β > 0, thus there is n such that MA
n (X̃(ω)) > 0;

hence, B ⊆ E∞. On the other hand, X̃ equals 0 outside B. This implies that∫
B

X̃dP =

∫
E∞

X̃dP ≥ 0

by Theorem 1. It follows that βµ(B) ≤
∫

B
XdP . The same arguments, applied to

X̂ = (α − X)1B, yield αµ(B) ≥
∫

B
XdP . But since α < β, this can only be true if
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P (B) = 0.

Step 3: An(X) converges a.s..

Indeed, this follows immediately from Step 2. Let X = limn An(X).

Step 3: An(X) is uniformly integrable.

Indeed, if A ∈ A is arbitrary, then P (τ−i(A)) = P (A) for all i ≥ 0. Let ε > 0 be given

and choose δ > 0 such that for P (B) < δ we have
∫

B
|X|dP < ε (this is possible by

Lemma III.4.1); then we have for A with P (A) < δ that P (τ−i(A)) < δ and hence∫
A

|An(X)|dP ≤
∫

A

An(|X|) =
1

n

∑
i<n

∫
τ−i(A)

|X|dP < ε .

This proves by Lemma III.4.1 that An(X) is uniformly integrable.

Step 4: If A is τ–invariant, then
∫

A
XdP =

∫
A

XdP .

Indeed, for A τ–invariant, we have for k ≥ 0,∫
A

X ◦ τ kdP =

∫
τ−k(A)

XdP ◦ τ−k =

∫
A

XdP ;

it follows that
∫

A
An(X)dP =

∫
A

XdP . However, by uniform integrability and a.s. con-

vergence of An(X), ∫
A

XdP = lim
n

∫
A

An(X)dP =

∫
A

XdP .

In summary, An(X) → X a.s.; X is τ–invariant, hence Iτ–measurable, and from Step

4 it follows that X = E(X|Iτ ).

Corollary 2. Let τ : Ω → Ω be ergodic and X ∈ L1. Then

1

n

n−1∑
i=0

(X ◦ τ i) → E(X) P − a.s. .

Proof. Since τ is ergodic, Iτ consists only of 0–1–sets; hence by Remark 1.1(i) E(X | Iτ ) =

E(X).

From part (ii) of Example 2 we infer in particular with X(ω) = f(ω1, . . . , ωd):

Corollary 3. Let (Xn)n∈N be i.i.d. in L1; further, let ϕ : Rd → R be measurable.

Then
1

n

∑
i<n

ϕ(Xi+1, . . . , Xi+d)
P -a.s.−→ E(ϕ(X1, . . . , Xd)) .

This is a considerable generalization of the i.i.d.-SLLN IV.2.4.

Definition 3. A sequence (Xn)n∈N of r.v. is called ergodic with respect to X iff

1

n

∑
i≤n

Xi
P -a.s.−→ EX .

...
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