2 Discrete-Time Martingales

Let $(\Omega, \mathfrak{A}, P)$ be a fixed probability space. We will call a sequence $X=\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ of real-valued r.v. a stochastic process over the natural numbers.

Definition 1. A sequence $\mathfrak{F}=\left(\mathfrak{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ of σ-algebras $\mathfrak{F}_{n} \subset \mathfrak{F}$ is called a filtration (in $(\Omega, \mathfrak{A}))$ iff

$$
\forall n \in \mathbb{N}_{0}: \mathfrak{A}_{n} \subset \mathfrak{A}_{n+1}
$$

Example 1. For a stochastic process $X=\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$, the σ-algebras

$$
\begin{equation*}
\mathfrak{F}_{n}^{X}:=\sigma\left(\left\{X_{0}, \ldots, X_{n}\right\}\right), \quad n \in \mathbb{N}_{0}, \tag{1}
\end{equation*}
$$

build a filtration \mathfrak{F}^{X}, the canonical filtration of X. It is the smallest filtration \mathfrak{F} such that X_{n} is always \mathfrak{F}_{n}-measurable. Further, some $Y: \Omega \rightarrow \mathbb{R}$ is \mathfrak{F}_{n}^{X}-measurable iff there is $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ measurable such that $Y=g\left(X_{0}, \ldots, X_{n}\right)$, see Theorem II.2.8 und Corollary II.3.1.(i).

A filtration shall encode which part of the whole 'randomness' contained in $(\Omega, \mathfrak{A}, P)$ has unfolded up to time n; in the case of a canonical filtration \mathfrak{F}^{X}, the 'randomness up to time n ' comes solely from the result of drawing X_{0}, \ldots, X_{n} randomly.

Definition 2. A stochastic process X is called a martingale (with respect to \mathfrak{F}, or \mathfrak{F}-martingale) iff $X_{n} \in \mathfrak{L}^{1}$ for all $n \in \mathbb{N}_{0}$ and

$$
\forall_{\substack{n, m \in \mathbb{N}_{0} \\ n<n}}: \mathrm{E}\left(X_{m} \mid \mathfrak{F}_{n}\right)=X_{n} .
$$

Theorem 1.3 allows to interprete: For a martingale X, the best predictor for X_{m}, given all knowledge available at time $n<m$, is just X_{n}.

Remark 1. For an $X \mathfrak{F}$-martingale and $n<m$ we have

$$
\mathrm{E}\left(X_{m}\right)=\mathrm{E}\left(\mathrm{E}\left(X_{m} \mid \mathfrak{A}_{n}\right)\right)=\mathrm{E}\left(X_{n}\right) .
$$

But of course, this is not a sufficient condition for the martingale property.
Remark 2. By the Towering Lemma 1.3 and simple induction it follows that X is an \mathfrak{F}-martingale iff

$$
\forall n \in \mathbb{N}_{0}: \quad \mathrm{E}\left(X_{n+1} \mid \mathfrak{A}_{n}\right)=X_{n} .
$$

Example 2. Let $\left(Y_{i}\right)_{i \in \mathbb{N}}$ be independent with constant expectation $\mathrm{E}\left(Y_{i}\right)=a$. Set $\mathfrak{F}_{0}=\{\emptyset, \Omega\}$ and $\mathfrak{F}_{n}=\sigma\left(\left\{Y_{1}, \ldots, Y_{n}\right\}\right)$ for $n \geq 1$. We define $X_{0}=0$ and

$$
X_{n}=\sum_{i=1}^{n} Y_{i}, \quad n \in \mathbb{N}
$$

It is easy to see that $\mathfrak{F}=\mathfrak{F}^{X}$ and

$$
\mathrm{E}\left(X_{n+1} \mid \mathfrak{F}_{n}\right)=\mathrm{E}\left(X_{n} \mid \mathfrak{F}_{n}\right)+\mathrm{E}\left(Y_{n+1} \mid \mathfrak{F}_{n}\right)=X_{n}+\mathrm{E}\left(Y_{n+1}\right)=X_{n}+a .
$$

Hence X is an \mathfrak{F}-martingale iff $a=0$. As special cases we have the case of Y_{i} being i.i.d., i.e., a random walk.

Let us interprete now Y_{i} as the gain/loss of some game in round i by a fixed betting amount (say, 1); then X_{n} is the cumulative gain/loss of n such game rounds with betting amount 1. Then X_{n} is a martingale iff $a=0$, i.e., if the game is 'fair'. A question raised time and again through the millennia is: If one cleverly (in particular, depending on the results of the previous rounds) chooses
(i) the amount to bet in the i-th round,
(ii) a time when to stop and go home,
can one 'beat the system', i.e., get more on the average than with X_{n} ?
Example 3. The Cox-Ross-Rubinstein model for stock prices X_{n} at discrete times $n \in \mathbb{N}_{0}$. Choose some real parameters

$$
X_{0}>0, \quad 0<p<1, \quad 0<d<u
$$

and let $\left(Y_{i}\right)_{i \in \mathbb{N}}$ be i.i.d. with

$$
P\left(\left\{Y_{i}=u\right\}\right)=p=1-P\left(\left\{Y_{i}=d\right\}\right) .
$$

Define now

$$
X_{n}=X_{0} \cdot \prod_{i=1}^{n} Y_{i}
$$

and consider $\mathfrak{F}=\mathfrak{F}^{X}$. By Lemmas 1.2 and 1.4 we have

$$
\mathrm{E}\left(X_{m} \mid \mathfrak{F}_{n}\right)=X_{n} \cdot \mathrm{E}\left(\prod_{\ell=n+1}^{m} Y_{\ell}\right)=X_{n} \cdot \mathrm{E}\left(Y_{1}\right)^{m-n}
$$

Hence,

$$
\widetilde{X} \text { martingale } \quad \Leftrightarrow \quad \mathrm{E}\left(Y_{1}\right)=1,
$$

and in terms of p,

$$
\tilde{X} \text { Martingal } \quad \Leftrightarrow \quad d<1<u \wedge p=\frac{1-d}{u-d} \text {. }
$$

The same question as in example 2 occurs: Are there clever trading strategies which allow to make a profit on the average? (Further, is it a good idea to model the stock prices as a martingale?)

Let in the following be fixed:
(i) An \mathfrak{F}-martingale $X=\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$,
(ii) a stochastic process $H=\left(H_{n}\right)_{n \in \mathbb{N}_{0}}$ such that

$$
\forall n \in \mathbb{N}_{0}: H_{n} \mathfrak{F}_{n} \text {-measurable } \wedge H_{n} \cdot\left(X_{n+1}-X_{n}\right) \in \mathfrak{L}^{1} .
$$

Definition 3. The stochastic process $Z=\left(Z_{n}\right)_{n \in \mathbb{N}_{0}}$ with $Z_{0}=0$ and

$$
Z_{n}=\sum_{i=0}^{n-1} H_{i} \cdot\left(X_{i+1}-X_{i}\right), \quad n \geq 1
$$

is called martingale transformation of X by H. Shorthand: $Z=H \bullet X$.
(This is a discrete version of a stochastic integral.)
Example 4. In Example 2: H_{n} is the amount one wagers in the $(n+1)$ st (!) game or the amount of stock one buys at time n and sells at time $n+1$; it can be chosen cleverly, but using only knowledge obtainable at time n; this is modeled by the assumption that H_{n} is \mathfrak{F}_{n}-measurable. $Z=H \bullet X$ then is the cumulative gain at time n when the strategy H was used.

Theorem 1 (No way to beat the system). $Z=H \bullet X$ is an \mathfrak{F}-martingale.
This result says that no matter how clever (or stupid) I choose my strategy, I cannot escape the martingale setting.

Proof. Obviously, Z_{n} is \mathfrak{F}_{n}-measurable and in \mathfrak{L}^{1}; further,

$$
\mathrm{E}\left(Z_{n+1} \mid \mathfrak{A}_{n}\right)=Z_{n}+\mathrm{E}\left(H_{n} \cdot\left(X_{n+1}-X_{n}\right) \mid \mathfrak{A}_{n}\right),
$$

and by the Towering Lemma 1.2,

$$
\mathrm{E}\left(H_{n} \cdot\left(X_{n+1}-X_{n}\right) \mid \mathfrak{A}_{n}\right)=H_{n} \cdot \mathrm{E}\left(\left(X_{n+1}-X_{n}\right) \mid \mathfrak{A}_{n}\right)=0 .
$$

