
Chapter V

Conditional Expectations,

Martingales, Ergodicity

1 Conditional Expectations

‘Access to the martingale concept is afforded by one of the truely basic ideas of probability
theory, that of conditional expectation.’, see Bauer (1996, p. 109).

Recall the elementary conditional probability

P (A |B) =
P (A ∩B)

P (B)
, A, B ∈ A, P (B) > 0.

Alternately, we can say, that given B, we consider a probability measure P (· |B) with

P–density 1/P (B) · 1B.

Next, for a random variable X ∈ L1(Ω, A, P ), we define the elementary conditional

expectation

E(X |B) =
1

P (B)
· E(1B ·X) =

∫
X dP (· |B).

For A ∈ A, we have

E(1A |B) = P (A |B).

A first generalization: Let I be finite or countable, and let (Bi)i∈I be a partition

of Ω, Bi ∈ A with P (Bi) > 0. Then

G =

{⋃
j∈J

Bj : J ⊂ I

}
is the σ–algebra generated by the Bi. Then we define a G–measurable mapping by

E(X |G)(ω) =
∑
i∈I

E(X |Bi) · 1Bi
(ω), ω ∈ Ω. (1)

We have the property∫
Bj

E(X |G) dP = E(X |Bj) · P (Bj) =

∫
Bj

X dP,
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and thus for every G ∈ G ∫
G

E(X |G) dP =

∫
G

X dP.

Intuitively speaking, we refined the idea of the expectation as a mean; we defined a re-

fined, ‘localized mean’. The way we localize is through a σ–algebra; the localized mean

is G–measurable. The larger the σ–algebra, the finer our refined mean. A second,

just as valid, point of view is that passing from X to E(X |G) is a coarsening; again,

the strictness of this coarsening is described by the σ–algebra G. We already met the

underlying idea – it was prevalent in the proof of the Radon–Nikodym Theorem.

Example 1. Extremal cases: If |I| = 1, we have G = {∅, Ω} and

E(X |G) = E(X).

On tho other hand, if Ω is countable and G = P(Ω), we have

E(X |G) = X.

Now the real thing: Let X ∈ L1(Ω, A, P ) and let G ⊂ A be a sub–σ–algebra.

Definition 1. A random variable Z ∈ L1(Ω, A, P ) with

(i) Z is G-measurable;

(ii) ∀ G ∈ G :
∫

G
Z dP =

∫
G

X dP

is called (a version of) the conditional expectation of X, given (or w.r.t.) G. Notation:

Z = E(X |G).

If X = 1A with A ∈ A we say also that Z is (a version of) the conditional probability

of A, given (or w.r.t.) G Notation: Z = P (A |G).

We stress that both quantities, conditional expectation and probability, are random

variables. Further, it is important that unlike in the elementary case, we allow the

σ–algebra to contain nontrivial sets of zero measure.

Theorem 1. In the above situation, there exists a conditional expectation; two con-

ditional expectations coincide P–a.s.

Proof. Existence:

Case 1: X ≥ 0. Then

Q(G) :=

∫
G

X dP, G ∈ G,

defines (see Theorem II.7.1) a finite measure on (Ω, G). Further, Q � P |G. We apply

the Radon–Nikodym Theorem: There is a density, in other words a G-measurable

mapping Z : Ω → [0,∞[ such that

∀ G ∈ G : Q(G) =

∫
G

Z dP.
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This Z obviously is a conditional expectation.

Case 2: X arbitrary. Then there are conditional expectations Z+, Z− for X+, X−;

Z = Z+ − Z− is a conditional expectation for X.

Uniqueness:

As a general fact, if Z,Z ′ are G–measurable and∫
G

Z dP ≤
∫

G

Z ′ dP ∀G ∈ G ,

then Z ≤ Z ′ a.s.. (Compare the proof of Theorem II.7.3.)

In the sequel we will write X = Y /X ≤ Y etc. iff we have X = Y /X ≤ Y etc. a.s..

The theorem was suspiciously simple to prove. Indeed, there is a pitfall: It is in general

not trivial to explicitly calculate the conditional expectation. We will collect a bunch

of helpful tools and try to develop an intuition about the conditional expectation

along the way.

Remark 1. 1. Two extremal cases: If X itself is G–measurable, then X itself

qualifies as conditional expectation; hence E(X |G) = X. If, on the other hand,

G consists only of sets A with P (A) ∈ {0, 1}, then the unconditional expectation

E(X) qualifies as conditional expectation, hence E(X |G) = E(X).

2. Since always Ω ∈ G, we have

E(X) =

∫
Ω

E(X |G) dP = E(E(X |G)).

In the special case of (1) (X = 1A with A ∈ A) this yields the classical formula

of total probability, i.e.,

P (A) =
∑
i∈I

P (A |Bi) · P (Bi).

Lemma 1. For fixed G, the conditional probability

E(· |G) : L1(Ω, A, P ) → L1(Ω, G, P )

is positive, linear and continuous. Further, if Xn ↑ X, E(X |G) ↑ E(X |G).

Proof. Linearity: If Z is a conditional expectation for X and Z ′ a condtional expec-

tation for Y , then Z + Z ′ is a conditional expectation for X + Y .

Positiveness: If X ≥ 0 and Z is a conditional expectation for X, then G = {Z <

0} ∈ G and ∫
G

Z =

∫
G

X ≥ 0 ;

hence Z ≥ 0.

Continuity: Let X = X+−X− and Z+, Z− be conditional expectations of X+, X−.

Then Z+, Z− ≥ 0, and

E |Z| ≤ E Z+ + E Z− = E X+ + E X− = E |X| .
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Linearity entails continuity.

Monotone convergence: Denote Zn = E(Xn |G), Z = E(X |G). By linearity and

positiveness, we know Zn is monotonically increasing; by continuity and monotone

convergence of the unconditional expectation we know that

E |Z − Zn| ≤ E |X −Xn| = E X − E Xn → 0 .

Hence Zn → Z in L1, by ?? there is a subsequence tending to Z a.s.; since Zn is

monotone, this entails that Zn ↑ Z a.s..

Lemma 2 (Factor out measurable parts). Let Y G-measurable, X · Y ∈ L1.

Then

E(X · Y |G) = Y · E(X |G).

Proof. Obviously, Y · E(X |G) ist G-meßbar.

Case 1: Y = 1C for C ∈ G. Then for G ∈ G∫
G

Y · E(X |G) dP =

∫
G∩C

E(X |G) dP =

∫
G∩C

X dP =

∫
G

X · Y dP.

Case 2: Y simple. Use linearity of conditional expectation.

Case 3: Y positive. Use monotone convergence of conditional expectation.

Case 4: Y arbitrary. Split Y = Y + − Y −.

It is noteworthy that our old friend, algebraic induction, works just as well with

conditional expectations, as sketched in the above proof.

Lemma 3 (Coarsening/Towering Lemma). Let G1 ⊂ G2 ⊂ A be σ-algebras.

Then

E(E(X |G1) |G2) = E(X |G1) = E(E(X |G2) |G1).

Proof. The first equality is within the scope of Remark 1. For the second equality, fix

G ∈ G1 ⊂ G2; then∫
G

E(E(X |G2) |G1) dP =

∫
G

E(X |G2) dP =

∫
G

X dP.

We say that X and G are independent iff (σ(X), G) are independent.

Lemma 4 (Independence Lemma). If X, G are independent, then

E(X |G) = E(X).

Proof. Let G ∈ G. Then X, 1G independent. Hence∫
G

X dP = E(X · 1G) = E(X) E(1G) =

∫
G

E(X) dP .

This shows that E(X) qualifies for the conditional expectation.
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Theorem 2 (Jensen’s inequality). Let J ⊂ R be an interval such that X(ω) ∈ J

for all ω ∈ Ω. Further, let ϕ : J → R be convex such that ϕ ◦ X ∈ L1. Then

E(X |G) ∈ J a.s., and

ϕ ◦ E(X |G) ≤ E(ϕ ◦X |G).

Proof. If a ≤ X ≤ b a.s., a ≤ E(X |G) ≤ b a.s. by monotonicity of the conditional

expectation. Further, we note that for a countable family (Yn)n∈N of integrable r.v.

such that supn∈N Yn is integrable, we have

E(sup
n∈N

Yn |G) ≥ sup
n∈N

E(Yn |G) a.s..

Let now ϕ : J → R be convex; then there is a sequence an of linear mappings such

that, for all x ∈ J , ϕ(x) = supn an(x). Thus, we can estimate

E(ϕ(X) |G) = E(sup
n

an(X) |G)

≥ sup
n

E(an(X) |G)

= sup
n

an(E(X |G))

= ϕ(E(X |G)) .

Remark 2. Special case: J = R and ϕ(u) = |u|p/q with 1 ≤ q ≤ p. Then

(E(|X|q |G))1/q ≤ (E(|X|p |G))1/p

for X ∈ Lp; further,

E(|E(X |G)|p) ≤ E[E(|X|p |G)] = E |X|p . (2)

Estimate (2) shows that E(· |G) : Lp → Lp is a continuous linear operator with

norm 1; by Remark 1, it is idempotent (i.e., a projection). In particular, for p = 2,

this means that E(· |G) is the orthogonal projection on the closed linear subspace

L2(Ω, G, P ).

Conditional expectations are particularly interesting if G is encoding ‘knowledge ob-

tainable by evaluating a r.v. ’Y : Ω → Ω′. This is formalized by setting G = σ(Y ).

Definition 2. Let X : Ω → R, Y : Ω → Ω′ be measurable. The conditional expecta-

tion of X given Y is

E(X |Y ) := E(X |σ(Y )).

The most fundamental insight about conditional expectations given Y is that they

are functions of Y ; indeed, by Theorem II.2.8, there exists a measurable mapping

g : Ω′ → R such that the σ(Y )–measurable r.v. E(X |Y ) can be factorized as

E(X |Y ) = g(Y ) .

Further, any two such mappings g are equal PY –a.s..

The next definition is mildly confusing at first, but is most useful if applied properly.
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Definition 3. In the above situation, g(y) is called the conditional expectation of X

given Y = y, written

E(X |Y = y) = g(y) .

Analogously,

P (A |Y = y) := E(1A |Y = y) .

Note that we do not näıvely condition on the event {Y = y}, since this usually is an

event of probability zero. However, if {Y = y} has positive probability, the definitions

coincide with the above elementary ones of conditional probabilities and expectations.

Example 2. Let (Ω, A, P ) = ([0, 1], B([0, 1]), λ) and (Ω′, A′) = (R, B), and define

X(ω) = ω2, Y (ω) =

{
1, if ω ∈ [0, 1/2],

ω − 1/2, if ω ∈ ]1/2, 1].

Then

σ(Y ) = {A ∪B : A ∈ {∅, [0, 1/2]}, B ⊂ ]1/2, 1] , B ∈ A}

and it is not difficult to check that

E(X |Y )(ω) =

{
1/12, falls ω ∈ [0, 1/2],

ω2, falls ω ∈ ]1/2, 1] .

This entails

E(X |Y = y) =

{
1/12, falls y = 1,

(y + 1/2)2, falls y ∈ ]0, 1/2].

(Note that P ({Y = y}) = 0 for all y ∈ ]0, 1/2].)

Remark 3. For measurable A′ ⊂ Ω′ we have by the transformation theorem that

E X1A′(Y ) = E(E(X |Y )1A′(Y )) = E(X |Y = y) PY (dy) (3)

and in particular

P (A ∩ {Y ∈ A′}) =

∫
A′

P (A |Y = y) PY (dy)

for A ∈ A. This is a continuous analogue of the formula of total probability. Equation

(3) characterizes the function E(X |Y = ·); if g′ : Ω′ → R is measurable and satisfies

E X1A′(Y ) =

∫
A′

g′(y) PY (dy) , ∀A′ ∈ A′,

then g′ = E(X |Y = ·) PY –a.s..

The following theorem reveals a fact of utmost importance for both probability and

statistics: E(X |Y ) is the best estimator for X using Y concerning the mean

square error. Compare with Übung 10.4 and Lemma 4.
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Theorem 3. For X ∈ L2 and any measurable ϕ : Ω′ → R we have

E
(
X − E(X |Y )

)2 ≤ E
(
X − ϕ ◦ Y

)2
;

equality holds iff ϕ = E(X |Y = ·) PY -a.s..

Proof. Let Z∗ = E(X |Y ) and Z = ϕ ◦ Y . By ((2)), Z ∈ L2; we can assume that also

Z ∈ L2. Then

E(X − Z)2 = E(X − Z∗)2 + E(Z∗ − Z)2︸ ︷︷ ︸
≥0

+2 · E((X − Z∗)(Z∗ − Z)).

We employ Lemma 1 and 2:

E((X − Z∗)(Z∗ − Z)) =

∫
Ω

E((X − Z∗)(Z∗ − Z) |Y ) dP

=

∫
Ω

(Z∗ − Z) · E((X − Z∗) |Y ) dP

=

∫
Ω

(Z∗ − Z) · (E(X |Y )− Z∗)︸ ︷︷ ︸
=0

dP.

Markov kernels have a natural and important connection to conditional expectations.

Let (Ω, A), (Ω′, A′), (Ω′′, A′′) measurable spaces, P a probability measure on Ω, and

Y : Ω → Ω′, X : Ω → Ω′′ random elements.

Lemma 5. For a mapping PX |Y : Ω′ × A′′ → R, TFAE:

(i) PX |Y Markov-kernel from (Ω′, A′) to (Ω′′, A′′) such that

P(Y,X) = PY × PX |Y ; (4)

(ii) for any y ∈ Ω′, PX |Y (y, ·) is a probability measure on (Ω′′, A′′) and for arbitrary

A′′ ∈ A′′ we have

PX |Y (·, A′′) = P ({X ∈ A′′} |Y = ·).

If these conditions hold, X and Y are independent if and only if

PX |Y (y, ·) = PX

PY -a.e.(in y).

Proof. Let A′ ∈ A′ and A′′ ∈ A′′; then by definition of the product measure,

(PY × PX |Y )(A′ × A′′) =

∫
A′

PX |Y (y, A′′) PY (dy) ;

on the other hand, by Remark 3, it follows that

P(Y,X)(A
′ × A′′) =

∫
A′

P ({X ∈ A′′} |Y = y) PY (dy).

From this the equivalence of (i) and (ii) easily follows. Assertion about independence:

Übung 14.2.
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Definition 4. A Markov kernel PX |Y from (Ω′, A′) to (Ω′′, A′′) with the property

(4) is called a regular conditional probability of X given Y . The representation (4) is

called the desintegration of the common distribution P(X,Y ).

Remark 4. Let X = id : Ω → Ω, and insert in (4) pairwise disjoint sets A1, A2, · · · ∈
A. For A′ ∈ A′ it follows∫

A′
P

(
∞⋃
i=1

Ai |Y = y

)
PY (dy) = P

(
∞⋃
i=1

Ai ∩ {Y ∈ A′}

)

=
∞∑
i=1

P (Ai ∩ {Y ∈ A′})

=
∞∑
i=1

∫
A′

P (Ai |Y = y) PY (dy)

=

∫
A′

∞∑
i=1

P (Ai |Y = y) PY (dy).

Thus, we have equality PY –a.s. of

P

(
∞⋃
i=1

Ai |Y = ·

)
=

∞∑
i=1

P (Ai |Y = ·).

It is important to note that the null set where this equality does not hold is, in general,

dependent on the sets Ai.

Example 3. Consider a Markov kernel K from (Ω′, A′) nach (Ω′′, A′′), and a proba-

bility measure µ on (Ω′, A′). On the product space

(Ω, A) = (Ω′ × Ω′′, A′ ⊗ A′′)

let

Y (ω′, ω′′) = ω′, X(ω′, ω′′) = ω′′.

Then, under the probability measure P := µ×K, the pair (Y,X) of random variables

models the result of ‘first draw randomly from Ω′ according to µ, then draw randomly

from Ω′′ according to the first result and K’. Our new knowledge yields that K is a

regular distribution of X given Y ; in particular,

K(y, A) = P (X ∈ A|Y = y) .

Finding a desintegration of a common distribution P(X,Y ) thus can be considered the

inverse problem to the construction of P(X,Y ) with the kernel; it is an important tool

in statistics to model the dependence of X from Y . The above relation reveals that

this is equivalent to determine the conditional probabilities given Y . This is another

reason why efficient methods to estimate and/or approximate conditional expectations

and probabilities is of great interest in statistics and probability.
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Example 4. Let (Ω′, A′) = (Ω′′, A′′) = (R, B) and assume that P(X,Y ) has the

Lebesgue density f . It is then trivial to obtain from Fubini’s theorem that PY has

Lebesgue density

h(y) =

∫
R

f(y, ·) dλ1, y ∈ R.

We claim that the function

f(x | y) =

{
f(y, x)/h(y) if h(y) > 0

1[0,1](x) otherwise .

is a conditional density of X given Y , i.e.,

PX |Y (y, A) :=

∫
A

f(x | y) dx

is a regular probability distribution of X given Y . Indeed,

P(Y,X)(A
′ × A′′) =

∫
A′

∫
A′′

f(x | y) λ1(dx) · h(y) λ1(dy)

=

∫
A′

PX |Y (y, A′′) PY (dy).

In Übung 14.2 it will be shown that

E(X |Y = y) =

∫
R

x PX |Y (y, dx) =

∫
R

x · f(x | y) λ1(dx). (5)

It is not clear at all whether for given (X, Y ), a regular probability distribution (and

thus a modelation as two-step experiment using a Markov kernel) always exists. We

quote without proof a far–reaching positive result:

Theorem 4. If (Ω′, A′) = (M, B(M)) where M is a complete and separable metric

space, then for any pair (X, Y ) there is a (essentially unique) regular conditional

distribution of X given Y .

Proof. See Gänssler, Stute (1977, Kap. V.3) oder Yeh (1995, App. C).

Theorem 5. If X ∈ L1(Ω, A, P ) and Pid |Y is a regular conditional probability,

E(X |Y = y) =

∫
Ω

X(ω) Pid |Y (y, dω).

Proof. We have to prove that

(i)

∫
Ω

X(ω) Pid |Y (·, dω) A′-measurable,

(ii)

∫
A′

∫
Ω

X(ω) Pid |Y (y, dω) PY (dy) =

∫
{Y ∈A′}

X dP for A′ ∈ A′.

This is straightforward with algebraic induction over X.

We have found in this section final and satisfying answers to the questions posed in

Example I.4.
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