
4 The Central Limit Theorem

4.1 CLT for the impatient

In order to get an intuition and to motivate our more detailed study in the sequel, we

will sketch the proof of a preliminary version of the CLT. 1 Obviously,

eıx = 1 + ıx− x2/2 + O(x3) , x ∈ R ;

hence, if (Xn)n∈N is an i.i.d. sequence with E X1 = 0, Var(X1) = 1 and E |X1|3 < ∞,

we have

ϕX1(γ) = E eıγX1 = 1− γ2/2 + E |X1|3 ·O(γ3) .

Consequently,

ϕ 1√
n

∑
i≤n Xi

(λ) = (ϕX1(λ/
√

n))n

=
[
1− λ2

2n
+ E |X1|3O

( λ3

n3/2

)]n

n→∞−→ e−λ2/2 = N̂ (0, 1)(λ) .

By Lévy’s continuity theorem, it follows that

1√
n

∑
i≤n

Xi
d−→ N (0, 1) .

Although this is already a nice result, a couple of questions deserve further investiga-

tion:

1. It seems odd to study one fixed sequence (Xn) if what matters is just the dis-

tribution of
∑

i≤n Xi as n →∞; this should be formalized and studied.

2. While independence seems a natural enough assumption, one surely cannot

guarantee identical distribution in most applications of interest. (Even in highly

idealized situations like molecular bombardement of a body, where Xn is the im-

pulse induced by the nth collision, there are molecules of different size.) Hence,

it is of interest to ask for generalizations to the non–i.i.d. case.

3. Is the assumption on E |X1|3 optimal, or can it be improved?

4.2 CLT in depth

Let now a triangular array of random variables Xn,k be given, where n ∈ N and

k ∈ {1, . . . , rn} with rn ∈ N. We assume throughout this section:

(i) E Xnk = 0 and σnk = Var(Xn,k) < ∞ for every n ∈ N and k ∈ {1, . . . , rn},
1The following reasoning is easily made rigorous, but we will have rigorous generalizations anyway,

hence we sacrifice rigorousity for ease of access.
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(ii) (Xn1, . . . , Xnrn) independent for every n ∈ N, and s2
n =

∑rn

k=1 σ2
n,k = 1.

Put

S∗n =
rn∑

k=1

Xnk ;

then E(S∗n) = 0 and Var(S∗n) = 1. Question: convergence in distribution of (S∗n)n∈N?

For notational convenience: all random variables Xnk are defined on a common prob-

ability space (Ω, A, P ).

Example 1. (Xn)n∈N i.i.d. with X1 ∈ L2 and Var(X1) = σ2 > 0. Put m = E(X1),

take

rn = n, Xnk = (Xk −m)/
√

nσ2.

Then

S∗n =

∑n
k=1 Xk − n ·m√

n · σ
.

Definition 1.

(i) The Lyapunov condition holds iff

∃ δ > 0 : lim
n→∞

rn∑
k=1

E(|Xnk|2+δ) = 0.

(ii) The Lindeberg condition holds iff

∀ ε > 0 : lim
n→∞

rn∑
k=1

∫
{|Xnk|≥ε}

X2
nk dP = 0.

Lemma 1. The Lyapunov condition entails the Lindeberg condition; further, from

the Lindeberg condition it follows that rn →∞ and that maxk≤rn σ2
n,k → 0.

Proof. If we have the Lyapunov condition, then∫
{|Xnk|≥ε}

X2
nk dP ≤ 1

εδ
·
∫
{|Xnk|≥ε}

|Xnk|2+δ dP ≤ 1

εδ
· E(|Xnk|2+δ) .

This entails the Lindeberg condition. Further, if the Lindeberg condition holds, for

every ε > 0 there is n0 such that for n ≥ n0 we have

1 =
∑
k≤rn

E X2
nk ≤ 1/2 +

∑
k≤rn

∫
|Xnk|≤ε

X2
nk ≤ 1/2 + ε2rn ;

this shows rn →∞. Finally, for any ε > 0,

lim
n→∞

max
k≤rn

σ2
nk ≤ ε + lim

n→∞

∑
k≤rn

∫
|Xn,k|≥ε

X2
n,k = ε .
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Example 2. In Example 1,

n∑
k=1

∫
{|Xnk|≥ε}

X2
nk dP =

1

σ2
·
∫
{|X1−m|≥ε·

√
n·σ}

(X1 −m)2 dP.

Hence the Lindeberg condition is satisfied.

In the sequel

ϕnk = ϕXnk

denotes the characteristic function of Xnk.

Lemma 2. For y ∈ R and ε > 0∣∣ϕnk(y)− (1− σ2
nk/2 · y2)

∣∣ ≤ y2 ·
(
ε · |y| · σ2

nk +

∫
{|Xnk|≥ε}

X2
nk dP

)
.

Proof. For u ∈ R ∣∣exp(ıu)− (1 + ıu− u2/2)
∣∣ ≤ min(u2, |u|3/6),

see Billingsley (1979, Eqn. (26.4)). Hence∣∣ϕnk(y)− (1− σ2
nk/2 · y2)

∣∣
=

∣∣E(exp(ı ·Xnk · y))− E
(
1 + ı ·Xnk · y −X2

nk · y2/2)
∣∣

≤ E
(
min(y2 ·X2

nk , |y|3 · |Xnk|3)
)

≤ |y|3 ·
∫
{|Xnk|<ε}

ε ·X2
nk dP + y2 ·

∫
{|Xnk|≥ε}

X2
nk dP

≤ ε · |y|3 · σ2
nk + y2 ·

∫
{|Xnk|≥ε}

X2
nk dP.

Lemma 3. Put

∆n(y) =
rn∏

k=1

ϕnk(y)− exp(−y2/2), y ∈ R.

If the Lindeberg condition is satisfied, then

∀ y ∈ R : lim
n→∞

∆n(y) = 0.

Proof. From the triangle inequality one has for any complex xi, yi,∣∣∣∏
i≤m

xi −
∏
i≤m

yi

∣∣∣ ≤ ∣∣∣ ∏
i≤m−1

xi

∣∣∣ · |ym − xm|+ |ym| ·
∣∣∣ ∏
i≤m−1

xi −
∏

i≤m−1

yi

∣∣∣ ;

hence, if |xi|, |yi| ≤ 1, we get by induction∣∣∣∏
i≤m

xi −
∏
i≤m

yi

∣∣∣ ≤ ∑
i≤m

|xi − yi| .
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Since |ϕnk(y)| ≤ 1 and | exp(−y2σ2
nk/2)| ≤ 1, this applies, and

|∆n(y)| =
∣∣ rn∏
k=1

ϕnk(y)−
rn∏

k=1

exp(−y2σ2
nk/2)

∣∣
≤

rn∑
k=1

∣∣ϕnk(y)− exp(−y2σ2
nk/2)

∣∣ .

We assume

max
1≤k≤rn

σ2
nk · y2 ≤ 1 ,

which holds for fixed y ∈ R if n is sufficiently large, see Lemma 1. Using

0 ≤ u ≤ 1/2 ⇒ | exp(−u)− (1− u)| ≤ u2

and Lemma 2 we obtain

|∆n(y)| ≤
rn∑

k=1

|ϕnk(y)− (1− y2σ2
nk/2)|+

rn∑
k=1

y4σ4
nk/4

≤ y2 ·
(
ε · |y|+

rn∑
k=1

∫
{|Xnk|≥ε}

X2
nk dP

)
+ y4/4 · max

1≤k≤rn

σ2
nk

for every ε > 0. Thus Lemma 1 yields

lim sup
n→∞

|∆n(y)| ≤ |y|3 · ε.

Theorem 1 (Central Limit Theorem). If (Xnk)n,k satisfies the Lindeberg condi-

tion, then PS∗n

w−→ N(0, 1).

Proof. Recall that µ̂(y) = exp(−y2/2) for the standard normal distribution µ. Con-

sider the characteristic function ϕn = ϕS∗n of S∗n. By Theorem 3.2.(ii)

ϕn =
rn∏

k=1

ϕnk,

and therefore Lemma 3 implies

∀ y ∈ R : lim
n→∞

ϕn(y) = µ̂(y).

It remains to apply Corollary 3.2.

Corollary 1. Let (Xn)n∈N be i.i.d. with X1 ∈ L2 and σ2 = Var(X1) > 0. Then∑n
k=1 Xk − n · E(X1)√

n · σ
d−→ Z

where Z ∼ N(0, 1).
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Proof. Theorem 1 and Example 2.

Example 3. Example 2 continued, and Corollary 1 reformulated. Let

Φ(x) =
1√
2π

·
∫ x

−∞
exp(−u2/2) du, x ∈ R,

denote the distribution function of the standard normal distribution. Due to the

Central Limit Theorem and Theorem III.3.2

sup
x∈R

∣∣P ({Sn ≤ x ·
√

n · σ})− Φ(x)
∣∣ = sup

x∈R

∣∣P ({Sn ≤ x})− Φ(x/(
√

n · σ))
∣∣ → 0 .

The speed of this convergence can be further quantified (Berry–Essén Theorem).

Let now

Bc = { lim
n→∞

Sn/
√

n ≥ c} ⊃ lim
n→∞

{Sn/
√

n > c}, c > 0.

Using Remark 1.2.(ii) we get

P (Bc) ≥ P ( lim
n→∞

{Sn/
√

n > c}) ≥ lim
n→∞

P ({Sn/
√

n > c}) = 1− Φ(c/σ) > 0.

Kolmogorov’s Zero-One Law yields

P (Bc) = 1,

and therefore

P ({ lim
n→∞

Sn/
√

n = ∞}) = P

( ⋂
c∈N

Bc

)
= 1.

By symmetry

P ({ lim
n→∞

Sn/
√

n = −∞}) = 1.

In particular, for PX1 = 1/2(δ1 + δ−1), we have

P ( lim
n→∞

{Sn = 0}) = 1 ;

this is the simplest recurrence result: Almost surely, the random walk Sn returns to

0 infinitely often.
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