
3 Characteristic Functions

Characteristic functions (a straightforward generalization of Fourier transforms) yield

a very convenient way to deal with many properties of distributions; in particular,

they allow to describe weak convergence.

We use the notation 〈·, ·〉 and ‖ · ‖ for the euclidean inner product and norm. Recall

that M(Rk) denotes the class of all probability measures on (Rk, Bk). Further, ı

denotes the imaginary unit. Let µ ∈ M(Rk).

Definition 1. f : Rk → C is µ-integrable if <f and =f are µ-integrable, in which

case ∫
f dµ =

∫
<f dµ + ı ·

∫
=f dµ.

A bounded continuous function f : Rk → C is obviously µ–integrable. A special class

of such functions is given by fy(x) := exp(ı〈x, y〉) with y ∈ Rk.

Definition 2. The mapping µ̂ : Rk → C with

µ̂(y) =

∫
exp(ı〈x, y〉) µ(dx), y ∈ Rk,

is called the Fourier transform of µ.

Example 1.

(i) For µ discrete,

µ =
∞∑

j=1

αj · δxj

we have

µ̂(y) =
∞∑

j=1

αj · exp(ı〈xj, y〉).

For instance, if µ = Pois(λ) is the Poisson distribution with parameter λ > 0,

then

µ̂(y) = exp(−λ) ·
∞∑

j=0

λj

j!
· exp(ıjy) = exp(−λ) · exp(λ · exp(ıy))

= exp(λ · (exp(ıy)− 1)).

(ii) If µ = f · λk then

µ̂(y) =

∫
exp(ı〈x, y〉) · f(x) λk(dx).

For any λk-integrable function f , the right-hand side defines its Fourier trans-

form, see Analysis III. For instance, if µ is the k-dimensional standard normal

distribution, i.e.,

f(x) = (2π)−k/2 · exp(−‖x‖2/2),
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then

µ̂(y) = exp(−‖y‖2/2).

See Bauer (1996, p. 187) for the case k = 1. Use Fubini’s Theorem for k > 1.

Theorem 1.

(i) µ̂ is uniformly continuous on Rk,

(ii) |µ̂(y)| ≤ 1 = µ̂(0) for y ∈ Rk,

(iii) for n ∈ N, a1, . . . , an ∈ C, and y1, . . . , yn ∈ Rk,

n∑
j,`=1

aj · a` · µ̂(yj − y`) ≥ 0

(positive semi-definite).

Proof. Ad (i): Observe that∣∣exp(ı〈x, y1〉)− exp(ı〈x, y2〉)
∣∣ ≤ ‖x‖ · ‖y1 − y2‖.

For ε > 0 take r > 0 such that µ(B) ≥ 1− ε, where B = {x ∈ Rk : ‖x‖ ≤ r}. Then∣∣µ̂(y1)− µ̂(y2)
∣∣ ≤ ∫

B

∣∣exp(ı〈x, y1〉)− exp(ı〈x, y2〉)
∣∣ µ(dx) + 2 · ε

≤ r · ‖y1 − y2‖+ 2 · ε.

Properties (ii) and (iii) are easily verified.

Remark 1. Bochner’s Theorem states that every continuous, positive semi-definite

function ϕ : Rk → C with ϕ(0) = 1 is the Fourier transform of a probability measure

on (Rk, Bk). See Bauer (1996, p. 184) for references.

In the sequel: X, Y, . . . are k-dimensional random vectors on a probability space

(Ω, A, P ).

Definition 3. The characteristic function of X is given by

ϕX = P̂X .

Remark 2. Due to Theorem II.9.1

ϕX(y) =

∫
Rk

exp(ı〈x, y〉) PX(dx) = E eı〈X,y〉 .

Theorem 2.

(i) For every linear mapping T : Rk → R`

ϕT◦X = ϕX ◦ T t.
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(ii) For independent random vectors X and Y

ϕX+Y = ϕX · ϕY .

In particular, for a ∈ Rk,

ϕX+a = exp(ı〈a, ·〉) · ϕX .

Proof. Ad (i): Let z ∈ R`. Use PT◦X = T (PX) to obtain

ϕT◦X(z) =

∫
Rk

exp(ı〈T (x), z〉) PX(dx) = ϕX(T t(z)).

Ad (ii): Let z ∈ Rk. Fubini’s Theorem and Theorem III.5.5 imply

ϕX+Y (z) =

∫
R2k

exp(ı〈x + y, z〉) P(X,Y )(d(x, y)) = ϕX(z) · ϕY (z).

Corollary 1 (Convolution Theorem). For probability measures µj ∈ M(R),

µ̂1 ∗ µ2 = µ̂1 · µ̂2.

Proof. Use Theorem 2.(ii) and Theorem III.5.8.

Example 2. For µ = N(m,σ2) with σ ≥ 0 and m ∈ R

µ̂(y) = exp(ımy) · exp(−σ2y2/2).

See Example 1.(ii) and Theorem 2.

Lemma 1. For z ∈ R and σ > 0∫
exp(−ıyz/σ2) · µ̂(y/σ2) N(0, σ2)(dy) =

∫
exp

(
−(z − x)2/(2σ2)

)
µ(dx).

Proof. We note first that the function ϕ : R → C,

ϕ(r) :=

∫
R

e−(y−ır)2/2σ2

dy =

∫
R

e−(y2−r2)/2σ2+ıyr/σ2

dy

is constant. (This can be seen by computing ϕ′ by switching integration and differ-

entiation, or by Cauchy’s integral theorem.) The left hand side in the lemma equals∫ ∫
e−iyz/σ2

eiyx/σ2 1√
2πσ2

e−y2/(2σ2) dy dµ(x) =

∫
e−(z−x)2/(2σ2)·

( 1√
2πσ2

∫
e−(y2−(x−z)2)/(2σ2)+iy(x−z) dy

)
dµ(x) .

The inner integral equals ϕ(x− z) = ϕ(0) = 1.

Lemma 2. For σn > 0 with limn→∞ σn = 0,

N(0, σ2
n) ∗ µ

w−→ µ.
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Proof. Consider independent random variables Xn and Y such that Xn ∼ N(0, σ2
n)

and Y ∼ µ. Then Xn
L2

−→ 0, and therefore Xn + Y
L2

−→ Y , which implies

Xn + Y
d−→ Y.

Theorem 3 (Uniqueness Theorem). For probability measures µj ∈ M(Rk),

µ1 = µ2 ⇔ µ̂1 = µ̂2.

Proof. ‘⇒’ holds by definition. ‘⇐’: See Bauer (1996, Thm. 23.4) or Billingsley (1979,

Sec. 29) for the case k > 1. Here: the case k = 1. For σ > 0 and A ∈ B, Theorem

III.5.9 yields

N(0, σ2) ∗ µj(A) = (2πσ2)−1/2 ·
∫

A

∫
exp(−(z − x)2/(2σ2)) µj(dx) λ1(dz).

From Lemma 1 we conclude that

∀σ > 0 : N(0, σ2) ∗ µ1 = N(0, σ2) ∗ µ2.

Then, by Lemma 2 and Corollary III.3.1, µ1 = µ2.

Example 3. For independent random variables X1 and X2 with Xj ∼ π(λj) we have

X1 + X2 ∼ π(λ1 + λ2).

Proof: Theorem 2 and Example 1.(i) yield

ϕX1+X2(y) = exp(λ1 · (exp(ıy)− 1)) · exp(λ2 · (exp(ıy)− 1))

= exp((λ1 + λ2) · (exp(ıy)− 1)).

Use Theorem 3.

Lemma 3. For every ε > 0 and every probability measure µ ∈ M(R),

µ({x ∈ R : |x| ≥ 1/ε}) ≤ 7/ε ·
∫ ε

0

(1−<µ̂(y)) dy.

Proof. Clearly

<µ̂(y) =

∫
R

cos(xy) µ(dx).

Hence, with the convention sin(0)/0 = 1,

1/ε ·
∫ ε

0

(1−<µ̂(y)) dy = 1/ε ·
∫

[0,ε]

∫
R
(1− cos(xy)) µ(dx) λ1(dy)

=

∫
R

(
1/ε ·

∫ ε

0

(1− cos(xy)) dy

)
µ(dx)

=

∫
R
(1− sin(εx)/(εx)) µ(dx)

≥ inf
|z|≥1

(1− sin(z)/z) · µ({x ∈ R : |εx| ≥ 1}).

Finally,

inf
|z|≥1

(1− sin(z)/z) ≥ 1/7.
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Theorem 4 (Continuity Theorem, Lévy).

(i) Let µ, µn ∈ M(Rk) for n ∈ N. Then

µn
w−→ µ ⇒ ∀ y ∈ Rk : lim

n→∞
µ̂n(y) = µ̂(y).

(ii) Let µn ∈ M(Rk) for n ∈ N, and let ϕ : Rk → C be continuous at 0 with ϕ(0) = 1.

Then

∀ y ∈ Rk : lim
n→∞

µ̂n(y) = ϕ(y) ⇒ ∃µ ∈ M(Rk) : µ̂ = ϕ ∧ µn
w−→ µ.

Proof. Ad (i): Note that x 7→ exp(ı〈x, y〉) is bounded and continuous on Rk.

Ad (ii): See Bauer (1996, Thm. 23.8) or Billingsley (1979, Sec. 29) for the case k > 1.

Here: the case k = 1.

We first show that

{µn : n ∈ N} is tight. (1)

By Lemma 3

µn({x ∈ R : |x| ≥ 1/ε}) ≤ 7/ε · cn(ε)

with

cn(ε) =

∫ ε

0

(1−<µ̂n(y)) dy.

Since |Rµ̂n| ≤ |µ̂n| ≤ 1, we have by dominated convergence

lim
n→∞

cn(ε) = c(ε)

with

c(ε) =

∫ ε

0

(1−<ϕ(y)) dy .

Now we exploit the assumptions on ϕ; given δ > 0 take ε > 0 such that

7/ε · c(ε) ≤ δ/2.

Furthermore, take n0 ∈ N such that, for every n ≥ n0,

|cn(ε)− c(ε)| ≤ ε/7 · δ/2.

Hence, for n ≥ n0,

µn({x ∈ R : |x| ≥ 1/ε}) ≤ δ,

and hereby we get (1). Thus, by Prohorov’s Theorem, {µn : n ∈ N} is relatively

compact; on the other hand, for any point of accumulation µ of the sequence µn, Part

(i) implies that ϕ = µ̂. Hence, there is exactly one point µ of accumulation, and for

this µ we have µ̂ = ϕ. Finally, Remark 4.4 reveals that µn
w−→ µ.

Corollary 2. Weak convergence in M(Rk) is equivalent to pointwise convergence of

Fourier transforms.

88


