3 Characteristic Functions

Characteristic functions (a straightforward generalization of Fourier transforms) yield
a very convenient way to deal with many properties of distributions; in particular,
they allow to describe weak convergence.

We use the notation (-,-) and || - || for the euclidean inner product and norm. Recall
that 9 (R*) denotes the class of all probability measures on (R¥ 98;). Further, 2
denotes the imaginary unit. Let u € 9(RF).

Definition 1. f : R¥ — C is p-integrable if Rf and 3f are p-integrable, in which

case
/fd,u:/éﬁfdu—kz-/%fdu.

A bounded continuous function f : R¥ — C is obviously u—integrable. A special class
of such functions is given by f,(z) := exp(¢(z,y)) with y € R*.

Definition 2. The mapping 7i : R¥ — C with

() = / exp(ulz,y) p(dr),  y e R,

=)

is called the Fourier transform of p.

Example 1.
(i) For u discrete,
= Z Q- Og;
j=1

we have

iy) = Z a; - exp(1(z;,y)).

For instance, if = Pois(\) is the Poisson distribution with parameter A > 0,
then

. N
fi(y) = exp(— Z—, p(2jy) = exp(=A) - exp(X - exp (1))
1

= exp(\ - (exp(zy) —1)).
(ii) If p= f - Mg then
fty) = [ explate.) - £(o) M(de)

For any Ap-integrable function f, the right-hand side defines its Fourier trans-
form, see Analysis I1I. For instance, if p is the k-dimensional standard normal
distribution, i.e.,

f(z) = (2m) 7% - exp(—||2[|*/2),
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then
fily) = exp(—|lylI*/2).
See Bauer (1996, p. 187) for the case k = 1. Use Fubini’s Theorem for k& > 1.

Theorem 1.
(i) 7 is uniformly continuous on R¥,
(i) [A(y)] < 1= 7(0) for y € R,

(iii) forn € N, ay,...,a, € C, and v, ..., y, € R¥,
Z%'a_g'ﬁ@j —y) >0
jl=1
(positive semi-definite).
Proof. Ad (i): Observe that
lexp(e(z, y1)) — exp(e(w, y2))| < llz]l - llyr — ge]l-

For € > 0 take r > 0 such that u(B) > 1 — ¢, where B = {z € R*: ||z|| < r}. Then
) = 7| < [ expola,) - explute.go)| (o) + 2
B
<7r-llyr — el +2-e
Properties (ii) and (iii) are easily verified. O

Remark 1. Bochner’s Theorem states that every continuous, positive semi-definite
function ¢ : R* — C with ¢(0) = 1 is the Fourier transform of a probability measure
on (R* 9B,). See Bauer (1996, p. 184) for references.

In the sequel: X,Y,... are k-dimensional random vectors on a probability space
(Q,2(, P).

Definition 3. The characteristic function of X is given by
$Yx = }/7)\(
Remark 2. Due to Theorem I1.9.1
pxt) = [ explole. ) P(dr) =B
Theorem 2.
(i) For every linear mapping 7 : R¥ — R*
¢rox = px o T".
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(ii) For independent random vectors X and Y

PxX+y = X - Py-

In particular, for a € R”,
Px+a = exp(u(a, ) - px.

Proof. Ad (i): Let z € R®. Use Pr.x = T(Px) to obtain
prox (2) :/ exp(u(T'(z), ) Px (dz) = ox(T"(2)).
Rk
Ad (ii): Let z € R¥. Fubini’s Theorem and Theorem II1.5.5 imply

pxiv(:) = [ | explale +,2) P (dle.) = ox(2) - o ().

[l
Corollary 1 (Convolution Theorem). For probability measures p; € MM(R),
fir % iz = iy - fia.
Proof. Use Theorem 2.(ii) and Theorem II1.5.8. O

Example 2. For ;= N(m,0?) with 0 > 0 and m € R

jily) = exp(umy) - exp(—0?y*/2).
See Example 1.(ii) and Theorem 2.

Lemma 1. For z € R and 0 > 0
2y~ 2 2 _ 2 2
[ expl-w2/o%) Rtw)o?) N(0.0%)(dy) = [ exp(~(z ~ 0)*/(20) ulde).
Proof. We note first that the function ¢ : R — C,

o(r) = / o~ /20% gy / o~ 0P=r) /2% [0? g
R R

is constant. (This can be seen by computing ¢" by switching integration and differ-
entiation, or by Cauchy’s integral theorem.) The left hand side in the lemma equals

o 1 1 .
/ / pivz/o? iye /o . 1) dy dp () = / e—(z—w)?/@o—?).( / o~ 0=/ 20 Hiv(o—2) g
V 2O

V2mo?
The inner integral equals p(x — z) = ¢(0) = 1. O
Lemma 2. For ¢, > 0 with lim,,_.,, 0, =0,

N(0,07) % pp — p.
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Proof. Consider independent random variables X,, and Y such that X,, ~ N(0,02)
and Y ~ p. Then X, =, 0, and therefore X,, +Y =, Y, which implies

X, +y Ly

Theorem 3 (Uniqueness Theorem). For probability measures p; € 9(RF),

H1 = f2 < [y = f13.
Proof. ‘=" holds by definition. ‘<=’: See Bauer (1996, Thm. 23.4) or Billingsley (1979,

Sec. 29) for the case k > 1. Here: the case k = 1. For 0 > 0 and A € B, Theorem
I11.5.9 yields

N(0.0%) () = (2m0%) 2 [ [exp(-(z = 0/ (20%) ) M)
A
From Lemma 1 we conclude that
Vo >0: N(0,0%) % = N(0,0?) * pig.
Then, by Lemma 2 and Corollary I11.3.1, p1 = po. O

Example 3. For independent random variables X; and X, with X; ~ m();) we have
X1 -+ XQ ~ 7'('()\1 + )\2)
Proof: Theorem 2 and Example 1.(i) yield

px1+x:(y) = exp(Ar - (exp(zy) — 1)) - exp(As - (exp(wy) — 1))
= exp((A1 + Az) - (exp(zy) — 1)).
Use Theorem 3.
Lemma 3. For every € > 0 and every probability measure p € MM(R),

il €R: el 2 ) < 7/e- [ (1 - R(y)) dy.
Proof. Clearly
Ryi(y) = /R cos(zy) p(dz).

Hence, with the convention sin(0)/0 = 1,

e / (1 Rly)) dy = 1< /[ | / (1 — cos(zy)) pulde) M (dy)

:/R<1/5./06(1—cos(xy))dy) u(dz)

- / (1 — sin(ex) /(e2)) p(de)
> inf (1 —sin(z)/2) - u({x € R : |ex| > 1}).

=
Finally,
inf (1 —sin(z)/z) > 1/7.

|z|>1
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Theorem 4 (Continuity Theorem, Lévy).

(i) Let u, p, € M(R¥) for n € N. Then

~

o =@ = Yy eRY: lim fin(y) = Ay).

(i) Let p, € M(R*) for n € N, and let o : R¥ — C be continuous at 0 with ¢(0) = 1.

Then

Vy €R": lim fin(y) =¢(y) = FpEMRY) =@, — p.

Proof. Ad (i): Note that z + exp(:(z, y)) is bounded and continuous on R*.

Ad (ii): See Bauer (1996, Thm. 23.8) or Billingsley (1979, Sec. 29) for the case k > 1.

Here: the case k = 1.

We first show that
{{tn : n € N} is tight.

By Lemma 3
pn({z € R: [z 2 1/e}) < T/e-cnle)

with 8
eale) = / (1 - R7m(y)) dy.

Since |Rit,| < |ftn] < 1, we have by dominated convergence

lim ¢, () = c(e)

n—oo
with

)= [ (1= Rolw)dy
Now we exploit the assumptions on ¢; given o > 0 take £ > 0 such that
T/e-c(e) < /2.
Furthermore, take ny € N such that, for every n > ny,
len(e) —c(e)| <e/T-0/2.

Hence, for n > ng,
p({r € R: || = 1/e}) <6,

(1)

and hereby we get (1). Thus, by Prohorov’s Theorem, {u, : n € N} is relatively
compact; on the other hand, for any point of accumulation p of the sequence p,, Part
(i) implies that ¢ = i. Hence, there is exactly one point p of accumulation, and for

this 1 we have i = ¢. Finally, Remark 4.4 reveals that p, — L.

]

Corollary 2. Weak convergence in D (R¥) is equivalent to pointwise convergence of

Fourier transforms.
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