2 Strong Law of Large Numbers

Definition 1. $(X_n)_{n\in\mathbb{N}}$ independent and identically distributed (i.i.d.) iff $(X_n)_{n\in\mathbb{N}}$ is independent and $\forall n, k : X_n \stackrel{d}{=} X_k$.

Throughout this section: $(X_n)_{n\in\mathbb{N}}$ independent (but only i.i.d. if explicitly noted). Consider

$$C = \{(S_n)_{n \in \mathbb{N}} \text{ converges in } \mathbb{R}\}.$$

By Remark 1.1, $P(C) \in \{0, 1\}$.

First we provide sufficient conditions for P(C) = 1 to hold.

Theorem 1 (Kolmogorov's inequality). Assume that $X_i \in \mathcal{L}^2$ and $E X_i = 0$ for all i. Then

$$P\left(\left\{\sup_{1\leq k\leq n}|S_k|\geq \varepsilon\right\}\right)\leq \frac{1}{\varepsilon^2}\cdot \operatorname{Var}(S_n).$$

Proof. Let $1 \le k \le n$. We show that

$$\forall B \in \sigma(\{X_1, \dots, X_k\}) : \int_B S_k^2 dP \le \int_B S_n^2 dP. \tag{1}$$

Let $B \in \sigma(\{X_1, \dots, X_k\})$. We start with $S_n^2 = (S_k + S_n - S_k)^2$, which implies

$$E 1_B S_n^2 = E 1_B S_k^2 + 2 E[(1_B S_k) \cdot (S_n - S_k)] + E 1_B (S_n - S_k)^2$$

$$\geq E 1_B S_k^2 + 2 E[(1_B S_k) \cdot (S_n - S_k)].$$

Moreover, it follows easily from Theorem III.5.4 that 1_BS_k and $S_n - S_k$ are independent. Hence Theorem III.5.6 yields

$$E[(1_B S_k) \cdot (S_n - S_k)] = E(1_B \cdot S_k) \cdot E(S_n - S_k) = 0,$$

and thereby

$$E(1_B \cdot S_n^2) \ge E(1_B \cdot S_k^2).$$

This completes the proof of (1). For $k \leq n$, define

$$A_k = \left\{ |S_\ell| < \varepsilon, \forall \, l < k \land |S_k| \ge \varepsilon \right\}.$$

Then $A_k \in \sigma(\{X_1, \ldots, X_k\})$, the A_k are disjoint and $\sup_{k \leq n} |S_k| > \varepsilon$ iff one A_k happens; hence with the help of (1) we have

$$\varepsilon^{2} \cdot P\left(\left\{\sup_{1 \leq k \leq n} |S_{k}| \geq \varepsilon\right\}\right) = \varepsilon^{2} \cdot \sum_{k=1}^{n} P(A_{k}) \leq \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2} dP$$

$$\leq \sum_{k=1}^{n} \int_{A_{k}} S_{n}^{2} dP \leq \int_{\Omega} S_{n}^{2} dP$$

$$= \operatorname{Var}(S_{n}).$$

Theorem 2. If $X_n \in \mathfrak{L}^2$ and $\mathrm{E}(X_n) = 0$ for all n, and

$$\sum_{i=1}^{\infty} \operatorname{Var}(X_i) < \infty,$$

then S_n converges a.s..

Proof. S_n converges iff it is Cauchy; hence, for

$$M := \inf_{n \in \mathbb{N}} \sup_{k \in \mathbb{N}} |S_{n+k} - S_n|,$$

 S_n converges iff M=0. Fix $n\in\mathbb{N}$. Then $M>\varepsilon$ implies that for one $r\in\mathbb{N}$ we have $\sup_{1\leq k\leq r}|S_{n+k}-S_n|>\varepsilon$. Hence,

$$P(\{M > \varepsilon\}) \le \sup_{r} P\Big(\Big\{\sup_{1 \le k \le r} |S_{n+k} - S_n| > \varepsilon\Big\}\Big),$$

and Kolmogorov's inequality yields

$$P\left(\left\{\sup_{1\leq k\leq r}|S_{n+k}-S_n|>\varepsilon\right\}\right)\leq \frac{1}{\varepsilon^2}\cdot\sum_{i=n+1}^{n+r}\operatorname{Var}(X_i)\leq \frac{1}{\varepsilon^2}\cdot\sum_{i=n+1}^{\infty}\operatorname{Var}(X_i).$$

Since n was arbitrary, we get $P(\{M>\varepsilon\})=0$ for every $\varepsilon>0$, i.e., M=0 a.s.. \square

Example 1. Let $(Y_n)_{n\in\mathbb{N}}$ be i.i.d. with $\mathrm{E}\,Y_n=0$, $\mathrm{E}\,Y_n^2<\infty$, and let b_n such that $1/b_n^2$ is summable. Then

$$\sum_{n} \operatorname{Var}(Y_n/b_n) < \infty ,$$

hence $\sum_{n} Y_n/b_n$ converges.

In the sequel, $0 < a_n \uparrow \infty$. We now study convergence almost surely of $(S_n/a_n)_{n \in \mathbb{N}}$.

Lemma 1 (Kronecker's Lemma). Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Then if $\sum_{i=1}^{\infty} \frac{x_i}{a_i}$ converges, $\frac{1}{a_n} \cdot \sum_{i=1}^n x_i \to 0$.

Proof. Consider \mathbb{N} with the counting measure γ , and define

$$f_n(i) := \frac{x_i}{a_i} \cdot \frac{a_i}{a_n} \cdot \mathbf{1}_{i \le n} .$$

Then $f_n \to 0$ pointwise, and since a_n is monotone, $|f_n(i)| \le \frac{x_i}{a_i}$, which is γ -integrable by assumption. Hence, by Lebesgue's theorem,

$$\frac{1}{a_n} \cdot \sum_{i \le n} x_i = \int_{\mathbb{N}} f_n \, d\gamma \to 0 .$$

Theorem 3 (Strong Law of Large Numbers, \mathfrak{L}^2 Case). If $X_n \in \mathfrak{L}^2$ for all n, and

$$\forall n \in \mathbb{N}: X_n \in \mathfrak{L}^2 \quad \wedge \quad \sum_{i=1}^{\infty} \frac{1}{a_i^2} \cdot \operatorname{Var}(X_i) < \infty$$
 (2)

then

$$\frac{1}{a_n} \cdot \sum_{i=1}^n (X_i - \mathrm{E}(X_i)) \stackrel{P\text{-a.s.}}{\longrightarrow} 0.$$

Proof. Put $Y_n = 1/a_n \cdot (X_n - E(X_n))$. Then $E(Y_n) = 0$ and $(Y_n)_{n \in \mathbb{N}}$ is independent. Moreover,

$$\sum_{i=1}^{\infty} \operatorname{Var}(Y_i) = \sum_{i=1}^{\infty} \frac{1}{a_i^2} \cdot \operatorname{Var}(X_i) < \infty.$$

Thus $\sum_{i=1}^{\infty} Y_i$ converges P-a.s. due to Theorem 2. Apply Lemma 1.

Remark 1. 1. Assume that the variances $Var(X_n)$ are bounded and that $\varepsilon > 0$. Then it follows (with $a_n = n^{1/2}(\log n)^{1/2+\varepsilon}$) in particular that

$$n^{-1/2} (\log n)^{-1/2 - \varepsilon} \cdot \left[\sum_{i \le n} X_i - E \sum_{i \le n} X_i \right] \stackrel{P\text{-a.s.}}{\longrightarrow} 0.$$

This means that for the 'cumulative effect' $\sum_{i\leq n} X_i$ the deviation from mean 'typically' grows slower than $n^{1/2}(\log n)^{1/2+\varepsilon}$. (This will be refined by the CLT.) The independence of the X_n is of course crucial for this; if $X_1=X_2=\cdots$, we have a growth rate of n.

2. If additionally X_n is an i.i.d. sequence with $X_1 \in \mathfrak{L}^2$, we may choose $a_n = n$ and derive that

$$\frac{1}{n} \cdot \sum_{i=1}^{n} X_i \xrightarrow{P\text{-a.s.}} E(X_1).$$

In fact, this conclusion already holds if $X_1 \in \mathfrak{L}^1$, see Theorem 4 below.

Example 2. Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d. with $P_{X_1} = p \cdot \delta_1 + (1-p) \cdot \delta_{-1}$. Due to the Strong Law of Large Numbers

$$\frac{1}{n} \cdot S_n \xrightarrow{P\text{-a.s.}} 2p - 1.$$

Moreover, if p = 1/2, for every $\varepsilon > 0$

$$\frac{1}{\sqrt{n} \cdot (\log n)^{1/2+\varepsilon}} \cdot S_n \stackrel{P\text{-a.s.}}{\longrightarrow} 0.$$

Precise description of the fluctuation of $S_n(\omega)$ for P-a.e. $\omega \in \Omega$: Law of the Iterated Logarithm.

Lemma 2. Let $U_i, V_i, W \in \mathfrak{Z}(\Omega, \mathfrak{A})$ such that

$$\sum_{i=1}^{\infty} P(\{U_i \neq V_i\}) < \infty.$$

Then

$$\frac{1}{n} \cdot \sum_{i=1}^{n} U_i \stackrel{P\text{-a.s.}}{\longrightarrow} W \quad \Leftrightarrow \quad \frac{1}{n} \cdot \sum_{i=1}^{n} V_i \stackrel{P\text{-a.s.}}{\longrightarrow} W.$$

Proof. The Borel-Cantelli Lemma implies $P(\overline{\lim}_{i\to\infty}\{U_i\neq V_i\})=0.$

Lemma 3. For $X \in \mathfrak{Z}_+(\Omega,\mathfrak{A})$

$$E(X) \le \sum_{k=0}^{\infty} P(\{X > k\}) \le E(X) + 1.$$

(Cf. Corollary II.8.2.)

Proof. We have

$$E(X) = \sum_{k=1}^{\infty} \int_{\{k-1 < X \le k\}} X \, dP,$$

and therefore

$$E(X) \le \sum_{k=1}^{\infty} k \cdot P(\{k-1 < X \le k\}) = \sum_{k=0}^{\infty} P(\{X > k\})$$

as well as

$$E(X) \ge \sum_{k=1}^{\infty} (k-1) \cdot P(\{k-1 < X \le k\}) \ge \sum_{k=0}^{\infty} P(\{X > k\}) - 1.$$

Theorem 4 (Strong Law of Large Numbers, i.i.d. Case). Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d.

Then

$$\exists Z \in \mathfrak{Z}(\Omega, \mathfrak{A}): \ \frac{1}{n} \cdot S_n \stackrel{P\text{-a.s.}}{\longrightarrow} Z \quad \Leftrightarrow \quad X_1 \in \mathfrak{L}^1,$$

in which case $Z = E(X_1)$ *P*-a.s.

Proof. ' \Rightarrow ': From the assumption we derive

$$\frac{1}{n} \cdot X_n = \frac{1}{n} \cdot S_n - \frac{n-1}{n} \cdot \frac{1}{n-1} \cdot S_{n-1} \stackrel{P\text{-a.s.}}{\longrightarrow} 0.$$

Hence, for the independent events $A_n = \{|X_n| > n\}$ we have

$$P(\overline{\lim}_{n\to\infty}A_n)=0.$$

The Borel-Cantelli Lemma implies

$$\sum_{n=1}^{\infty} \underbrace{P(A_n)}_{=P(|X_1| > n)} < \infty.$$

Use Lemma 3 to obtain $E(|X_1|) < \infty$.

'←': Consider the truncated random variables

$$Y_n = \begin{cases} X_n & \text{if } |X_n| < n \\ 0 & \text{otherwise.} \end{cases}$$

We will first show that

$$\sum_{i=1}^{\infty} \frac{1}{i^2} \cdot \text{Var}(Y_i) < \infty. \tag{3}$$

To this end, observe that

$$Var(Y_i) \le E(Y_i^2) = \sum_{k=1}^i E[Y_i^2 \cdot 1_{[k-1,k[}(|Y_i|)]]$$

$$= \sum_{k=1}^i E[X_i^2 \cdot 1_{[k-1,k[}(|X_i|)]]$$

$$\le \sum_{k=1}^i k^2 \cdot P(\{k-1 \le |X_1| < k\}).$$

Thus

$$\sum_{i=1}^{\infty} \frac{1}{i^2} \cdot \text{Var}(Y_i) \le \sum_{k=1}^{\infty} k^2 \cdot P(\{k-1 \le |X_1| < k\}) \cdot \sum_{i=k}^{\infty} \frac{1}{i^2}$$

$$\le 2 \cdot \sum_{k=1}^{\infty} k \cdot P(\{k-1 \le |X_1| < k\})$$

$$\le 2 \cdot (\mathbb{E}(|X_1|) + 1) < \infty,$$

cf. the proof of Lemma 3. (3) follows. Theorem 3 now asserts that

$$\frac{1}{n} \cdot \sum_{i=1}^{n} (Y_i - \mathbf{E}(Y_i)) \stackrel{P\text{-a.s.}}{\longrightarrow} 0.$$

Furthermore, Y_n is easily seen to be uniformly integrable, and thus

$$\lim_{n \to \infty} \mathcal{E}(Y_n) = \mathcal{E}(X_1) \ . \tag{4}$$

Due to (4),

$$\frac{1}{n} \cdot \sum_{i=1}^{n} Y_i \stackrel{P\text{-a.s.}}{\longrightarrow} \mathrm{E}(X_1) \ .$$

Moreover,

$$\sum_{i=1}^{\infty} P(\{X_i \neq Y_i\}) < \infty, \tag{5}$$

since, by Lemma 3,

$$\sum_{i=1}^{\infty} P(\{X_i \neq Y_i\}) = \sum_{i=1}^{\infty} P(\{|X_i| \geq i\}) \leq \sum_{i=0}^{\infty} P(\{|X_1| > i\}) \leq \mathrm{E}(|X_1|) + 1 < \infty.$$

Finally, by Lemma 2 and (5)

$$\frac{1}{n} \cdot \sum_{i=1}^{n} X_i \stackrel{P\text{-a.s.}}{\longrightarrow} \mathrm{E}(X_1) \ .$$

What happens if X_n is not integrable?

Theorem 5. Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d..

(i) If $E(X_1^-) < \infty \wedge E(X_1^+) = \infty$ then

$$\frac{1}{n} \cdot S_n \stackrel{P\text{-a.s.}}{\longrightarrow} \infty.$$

(ii) If $E(|X_1|) = \infty$ then

$$\overline{\lim}_{n\to\infty} \left| \frac{1}{n} \cdot S_n \right| = \infty \ P\text{-a.s.}$$

Proof. (i) follows from Theorem 4, and (ii) is an application of the Borel-Cantelli Lemma, see Gänssler, Stute (1977, p. 131). \Box

Remark 2. Let $(X_n)_{n\in\mathbb{N}}$ be i.i.d. with $\mu = P_{X_1}$ and corresponding distribution function $F = F_{X_1}$. Suppose that μ is unknown, but observations $X_1(\omega), \ldots, X_n(\omega)$ are available for 'estimation of μ '.

Fix $x \in \mathfrak{R}$. Due to Theorem 4, we have

$$F_n(x,\omega) := \frac{\#\{i \le n : X_i(\omega) \le x\}}{n} \xrightarrow{P\text{-a.s.}} F(x).$$

 $F_n(x,\omega)$ is called the *empirical distribution function* $F_n(\cdot,\omega)$; analogously, one can define the *empirical distribution*

$$\mu_n(A,\omega) := \frac{\#\{i \le n : X_i(\omega) \in A\}}{n}$$

To be precise, we know about the empirical distribution function that

$$\forall x \in \mathbb{R} \ \exists A \in \mathfrak{A} : \ P(A) = 1 \land \Big(\forall \omega \in A : \lim_{n \to \infty} F_n(x, \omega) = F(x) \Big).$$

Therefore

$$\exists A \in \mathfrak{A} : P(A) = 1 \land \Big(\forall q \in \mathbb{Q} \ \forall \omega \in A : \lim_{n \to \infty} F_n(q, \omega) = F(q) \Big),$$

which easily implies

$$\exists A \in \mathfrak{A} : P(A) = 1 \land \left(\forall \omega \in A : \mu_n(\cdot, \omega) \xrightarrow{\mathbf{w}} \mu \right),$$

see p. 63, and Theorem III.3.2. This result can be strengthened to the *Glivenko-Cantelli Theorem*

$$\exists A \in \mathfrak{A} : P(A) = 1 \land \Big(\forall \omega \in A : \lim_{n \to \infty} \sup_{x \in \mathbb{D}} |F_n(x, \omega) - F(x)| = 0 \Big),$$

see Billingsley (1979, Theorem 20.6). (From "Ubung"9.2, this result immediately follows for continuous F.)