2 Strong Law of Large Numbers

Definition 1. (X,,),en independent and identically distributed (i.i.d.) iff (X,)nen is
independent and Vn,k : X, 2 Xk

Throughout this section: (X, ),en independent (but only i.i.d. if explicitly noted).
Consider
C= {(Sn)neN converges in ]R}.

By Remark 1.1, P(C) € {0,1}.
First we provide sufficient conditions for P(C') = 1 to hold.

Theorem 1 (Kolmogorov’s inequality). Assume that X; € £2 and E X; = 0 for
all 7. Then

P({ sup |Sk| > 5}) < }2 - Var(S,).

1<k<n

Proof. Let 1 < k <n. We show that
VBeao({X1,...,Xp}): /Sgdpgfsgdp. (1)
B B

Let B € o({X1,..., X}}). We start with S? = (S}, + S, — Si)?, which implies

E1pS2 = El1pS;+2E[(15Sk) - (Sn — Sk)] + E1p(S, — Sk)?
> E1pS?+2E[(15Sk) - (S, — Si)] -

Moreover, it follows easily from Theorem II1.5.4 that 135S, and S,, — S} are indepen-
dent. Hence Theorem II1.5.6 yields

E[(15Sk) - (Sn — Sk)] = E(15 - Sk) - E(S, — Sk) =0,

and thereby
E(1p-S?) > E(1p - S).

This completes the proof of (1). For k < n, define
Ay = {ysg\ <e VI<kA|SH > 5}.

Then Ay € o({X1,..., Xx}), the A, are disjoint and sup,.,, [Sk| > ¢ iff one A,
happens; hence with the help of (1) we have

52-P<{ sup |l zg}) - 52-§:P(Ak) gi/A S2dP
k=1 k=1 k

1<k<n

n

2 2
< Z/A S2dp < /andp
k=1 k

= Var(S,).
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Theorem 2. If X,, € £ and E(X,,) = 0 for all n, and

Z Var(X;) < oo,
i=1

then S,, converges a.s..
Proof. S, converges iff it is Cauchy; hence, for

M := inf sup | S,k — Sal ,
neN peN

S, converges iff M = 0. Fix n € N. Then M > ¢ implies that for one » € N we have
SUP)<p<; |Snak — Sn| > €. Hence,

PH{M >¢e}) < supP({ sup |Spik — Sn| > 6}),
T 1<k<r
and Kolmogorov’s inequality yields
P({ sup I 5|>5})<1 §V(X)<1 iV(X)
su ik — Sn < —=- ar(X;) < — - ar(X;).
15’“27" - e’ i=n+1 e i=n+1

Since n was arbitrary, we get P({M > ¢e}) =0 for every € > 0,ie., M =0as.. O

Example 1. Let (Y},)en be i.i.d. with EY,, = 0, EY,? < oo, and let b, such that 1/02
is summable. Then

> Var(Y,/by) < oo,

hence ) Y, /b, converges.

In the sequel, 0 < a, T co. We now study convergence almost surely of (S,,/a,)nen-

Lemma 1 (Kronecker’s Lemma). Let (z,)nen be a sequence in R. Then if 3 377,

converges, = - > x; — 0.
Proof. Consider N with the counting measure v, and define
, T
fn(z) = _’L . _Z . 11§n .
a; Qnp

Then f, — 0 pointwise, and since a, is monotone, | f,(i)| < #, which is y-integrable
by assumption. Hence, by Lebesgue’s theorem,

=Y = [ fudy =0,

n .
i<n
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Theorem 3 (Strong Law of Large Numbers, £? Case). If X,, € £2 for all n,
and
=1
VneN: X,eg A > —-Var(X;) < oo (2)
i=1 1

then

1 S (X - B(X) 0.

a, “4
i=1
Proof. Put Y,, = 1/a, - (X,, — E(X,,)). Then E(Y,,) = 0 and (Y},),en is independent.

Moreover,
o0

= 1
> Var(yi) =) — + Var(X;) < oo.
i=1 J

=1

Thus )2, Y; converges P-a.s. due to Theorem 2. Apply Lemma 1. O]

Remark 1. 1. Assume that the variances Var(X,) are bounded and that ¢ > 0.
Then it follows (with a, = n'/?(logn)'/?*¢) in particular that

n2(logn)~V/2F . [ZX EZX] Paas

i<n i<n

This means that for the ‘cumulative effect’ > . X; the deviation from mean
‘typically’ grows slower than n'/?(logn)/?*¢. (This will be refined by the CLT.)
The independence of the X, is of course crucial for this; if X; = Xy =+, we
have a growth rate of n.

2. If additionally X,, is an i.i.d. sequence with X; € £2, we may choose a,, = n and
derive that

- ZX B B(X).
In fact, this conclusion already holds if X; € £!, see Theorem 4 below.

Example 2. Let (X,,)nen be id.d. with Py, = p-d; + (1 —p)-d_1. Due to the Strong

Law of Large Numbers

]- a.S.
=8, % op 1.
n

Moreover, if p = 1/2, for every € > 0

1 P-a.s.

.S,
Vi~ (ogn) /7

Precise description of the fluctuation of S,,(w) for P-a.e. w € Q: Law of the Iterated
Logarithm.

Lemma 2. Let U;, V;, W € 3(Q,2() such that
> P{U #Vi}) < 0
i=1
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Then

1 <~ Pas 1 o, Pas

i=1
Proof. The Borel-Cantelli Lemma implies P(lim;_.{U; # Vi}) = 0. ]

Lemma 3. For X € 3,(Q,%2)

o0

Z {X > k}) <BE(X)+1.

(Cf. Corollary 11.8.2.)

Proof. We have

BE(X) = i/ X dP,

=1 Y 1k—1<X<k}

and therefore

E(X) gik P{k—1<X <k} :ip({ch})

as well as

i P{k—1<X<k}) > iP({X>k})—1.

k=1 k=0

Theorem 4 (Strong Law of Large Numbers, i.i.d. Case). Let (X,,),en be i.i.d.
Then

P-a.s.

3Z2ec3(Q,A): =-S5, =7 & X gl
in which case Z = E(X,) P-as.

Proof. ‘=": From the assumption we derive
p

1 1 _
—Xpy=— Sy —— .S, 250,
n n

Hence, for the independent events A, = {|X,| > n} we have

P(lim A,)=0.

n—od

The Borel-Cantelli Lemma implies

> PlA)
n=l_ (|X1|>n>

Use Lemma 3 to obtain E(|X;|) < co.
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‘<’: Consider the truncated random variables

v _ X, if|X,|<n
"o otherwise.

We will first show that

To this end, observe that

Var(V;) < E(Y?) = Y B[ - Ipyu([Yi])]

k=1
= Y EX7 - L a(| X))
k=1
<> (k-1 <[Xy| <k})
k=1
Thus
(e 1 o0 ) o 1
;Z_—Q-Var(Y,-) g;k CP({k—1<|X{| <k})-;i—2

<2-) k-P{k-1<|Xi| <k}
<2-(E(|X1])+1) < o0

cf. the proof of Lemma 3. (3) follows. Theorem 3 now asserts that

1 ¢
— Y (G E(Y) 0.
[ —
Furthermore, Y,, is easily seen to be uniformly integrable, and thus

lim E(Y,) = E(X)). (4)

n—oo

Due to (4),

P-a.s.

- ZY—>EX1.

Moreover,
> PUX:#Yi}) < oo, (5)

since, by Lemma 3,

ZP({X#Y} ZP {1Xil = 4}) <ZP {IX:]>4}) < BE(Xu]) +1 < 0.

i=1
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Finally, by Lemma 2 and (5)

- ZXP—"‘?EXl.

What happens if X, is not integrable?
Theorem 5. Let (X,,)nen be i.i.d..
(i) If E(X;) < oo AE(X{) = oo then

1 P-a.s.

-5, — 0.
n
(ii) If E(]X1|) = oo then
lim ‘l - S,| = oo P-a.s.
n—ool|ln

Proof. (i) follows from Theorem 4, and (ii) is an application of the Borel-Cantelli
Lemma, see Génssler, Stute (1977, p. 131). O]

Remark 2. Let (X,,),en be i.d.d. with g = Py, and corresponding distribution func-
tion F' = F,. Suppose that p is unknown, but observations X;(w),..., X, (w) are
available for ‘estimation of u’.

Fix x € SR. Due to Theorem 4, we have
, < : i < -a.s.
#{i<n : X;(w) <z} Peas
n

F.(r,w):= F(x).

F.(x,w) is called the empirical distribution function F,(-,w); analogously, one can

define the empirical distribution
#i<n : X;(w)eA
fin (A, w) == t " wed

To be precise, we know about the empirical distribution function that

VreRIAeA: P(A)=1A (Vw cA: lim F(z,w0) :F(x)>.

n—od

Therefore
JAe: P(A) =14 (YeeQVwe A lim Fqw) = F(g)),
which easily implies
JAeA: P(A)=1A (Vw €A (-, w) L,u),
see p. 63, and Theorem III.3.2. This result can be strengthened to the Glivenko-
Cantelli Theorem
JAeA: P(A)=1A (Vw € A: lim sup |F,(z,w) — F(z)| = 0),

n—00 zeR

see Billingsley (1979, Theorem 20.6). (From Ubung9.2, this result immediately follows
for continuous F'.)
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