
Chapter IV

Limit Theorems

Motivation: Given a sequence of random variables Xn, n ∈ N, on a probability

space (Ω, A, P ), put

Sn =
n∑

i=1

Xi, n ∈ N.

For instance, Sn might be the cumulative gain after n trials or (one of the coordinates

of) the position of a particle after n collisions.

Question: Convergence of Sn/an for suitable weights 0 < an ↑ ∞ in a suitable sense?

Particular case: an = n .

1 Zero-One Laws

Zero–One Laws explain when and in which sense a ‘limit’ of random events is non-random.
In the language of random variables, it explains when and in which sense limits of random
variables will degenerate, i.e., become constant almost surely.

Definition 1. For σ-algebras An ⊂ A, n ∈ N, the corresponding tail σ-algebra is

A∞ =
⋂
n∈N

σ

( ⋃
m≥n

Am

)
,

and A ∈ A∞ is called a tail (terminal) event .

It is useful to think of An as a σ–algebra containing information about ‘random events’

happening at some ‘time’ n. Terminal events can then be considered as limits of events

which are ‘decided in the distant future’. Analogously, A∞–measurable r.v. are those

r.v. whose values are ‘determined in the distant future’.

Example 1. Let An = σ(Xn). Then

A∞ =
⋂
n∈N

σ({Xm : m ≥ n}) .
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For instance,

{(Sn)n∈N converges}, {(Sn/an)n∈N converges} ∈ A∞,

and the function lim infn→∞ Sn/an is A∞-B-measurable. However, Sn as well as

lim infn→∞ Sn are not A∞-B-measurable, in general (why?). Analogously for the

lim sup’s.

Theorem 1 (Kolmogorov’s Zero-One Law). Let (An)n∈N be an independent se-

quence of σ-algebras An ⊂ A. Then

∀A ∈ A∞ : P (A) ∈ {0, 1} .

This theorem says that terminal events of independent σ–algebras are actually non-

random.

Proof. Since, for any n, A∞ ⊂ σ(An+1 ∪ . . . ), the family (A∞, A1, A2, . . .) is indepen-

dent. By Corollary III.5.1, A∞ is independent from σ(
⋃

n An). On the other hand,

A∞ ⊂ σ

( ⋃
n∈N

An

)
.

Thus, A∞ is independent of itself; in particular, for A ∈ A∞, we have P (A) =

P (A ∩ A) = P (A)2. But this is only possible if P (A) ∈ {0, 1}.

Corollary 1. Let X ∈ Z(Ω, A∞). Under the assumptions of Theorem 1, X is constant

P -a.s.

Proof. For each c ∈ R,

P (X = c) = P (X−1({c})︸ ︷︷ ︸
∈A∞

) ∈ {0, 1} .

Remark 1. Assume that (Xn)n∈N is independent. Then

P ({(Sn)n∈N converges}), P ({(Sn/an)n∈N converges}) ∈ {0, 1}.

In case of convergence P -a.s., limn→∞ Sn/an is constant P -a.s.

We know now that terminal events either happen ‘essentially always’ or ‘essentially

never’. But how to decide which case holds? A very powerful and surprisingly uni-

versal tool is Borell–Cantelli’s Lemma, which we will develop in the sequel.

Definition 2. Let An ∈ A for n ∈ N. Then

lim
n→∞

An =
⋃
n∈N

⋂
m≥n

Am, lim
n→∞

An =
⋂
n∈N

⋃
m≥n

Am.
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A more intuitive reformulation is as follows: ω ∈ limn An iff ω ∈ Am holds for all m ≥
m0(ω); in other words, limn An happens iff ‘eventually all’ Am happen. ω ∈ limn An iff

ω ∈ Am for infinitely many Am; in other words, limn An happens iff ‘infinitely often’

Am happens.

Remark 2.

(i)
(

lim
n→∞

An

)c

= lim
n→∞

Ac
n.

(ii) P
(

lim
n→∞

An

)
≤ lim

n→∞
P (An) ≤ lim

n→∞
P (An) ≤ P

(
lim

n→∞
An

)
.

(iii) If (An)n∈N is independent, then P
(

lim
n→∞

An

)
∈ {0, 1} (Borel’s Zero-One Law).

Proof: Übung 11.1, 11.2.

Theorem 2 (Borel-Cantelli Lemma). Let A = limn→∞An with An ∈ A.

(i) If
∑∞

n=1 P (An) < ∞ then P (A) = 0.

(ii) If
∑∞

n=1 P (An) = ∞ and (An)n∈N are independent, then P (A) = 1.

Proof. Ad (i): For all n,

P (A) ≤ P

( ⋃
m≥n

Am

)
≤

∞∑
m=n

P (Am)
n→∞−→ 0.

Ad (ii): We have

P (Ac) = P ( lim
n→∞

Ac
n) ≤

∞∑
n=1

P

( ⋂
m≥n

Ac
m

)
=

∞∑
n=1

inf
l≥n

∏̀
m=n

(1− P (Am)).

Use 1− x ≤ exp(−x) for x ≥ 0 to obtain

∏̀
m=n

(1− P (Am)) ≤
∏̀
m=n

exp(−P (Am)) = exp
(
−

∑̀
m=n

P (Am)
)
.

By assumption, the right-hand side tends to zero as ` tends to∞. Thus P (Ac) = 0.

Example 2. A fair coin is tossed an infinite number of times. Determine the prob-

ability that 0 occurs twice in a row infinitely often. Model: (Xn)n∈N is independent

and

P ({Xn = 0}) = P ({Xn = 1}) = 1/2, n ∈ N.

Put

An = {Xn = Xn+1 = 0}.

Then (A2n)n∈N is independent and P (A2n) = 1/4. Thus P (limn→∞An) = 1.
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Example 3. Let an ∈ [0, 1] and (Xn)n∈N a sequence of independent r.v., where Xn is

uniformly distributed on [0, 1]. Consider the event{
Xn ≤ an infinitely often

}
= lim

n
{Xn ≤ an}︸ ︷︷ ︸

=:An

.

Then P (An) = an; hence

{
Xn ≤ an infinitely often

}
=

{
0,

∑
n an < ∞ ,

1,
∑

n an = ∞ .

In particular, a sequence of numbers ‘drawn randomly from [0, 1]’ contains almost

surely a subsequence nk tending to zero faster than 1/nk, but almost surely no sub-

sequence nk tending to zero faster than 1/n2
k.
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