Chapter IV

Limit Theorems

Motivation: Given a sequence of random variables $X_{n}, n \in \mathbb{N}$, on a probability space $(\Omega, \mathfrak{A}, P)$, put

$$
S_{n}=\sum_{i=1}^{n} X_{i}, \quad n \in \mathbb{N}
$$

For instance, S_{n} might be the cumulative gain after n trials or (one of the coordinates of) the position of a particle after n collisions.
Question: Convergence of S_{n} / a_{n} for suitable weights $0<a_{n} \uparrow \infty$ in a suitable sense? Particular case: $a_{n}=n$.

1 Zero-One Laws

Zero-One Laws explain when and in which sense a 'limit' of random events is non-random. In the language of random variables, it explains when and in which sense limits of random variables will degenerate, i.e., become constant almost surely.

Definition 1. For σ-algebras $\mathfrak{A}_{n} \subset \mathfrak{A}, n \in \mathbb{N}$, the corresponding tail σ-algebra is

$$
\mathfrak{A}_{\infty}=\bigcap_{n \in \mathbb{N}} \sigma\left(\bigcup_{m \geq n} \mathfrak{A}_{m}\right),
$$

and $A \in \mathfrak{A}_{\infty}$ is called a tail (terminal) event.
It is useful to think of \mathfrak{A}_{n} as a σ-algebra containing information about 'random events' happening at some 'time' n. Terminal events can then be considered as limits of events which are 'decided in the distant future'. Analogously, \mathfrak{A}_{∞}-measurable r.v. are those r.v. whose values are 'determined in the distant future'.

Example 1. Let $\mathfrak{A}_{n}=\sigma\left(X_{n}\right)$. Then

$$
\mathfrak{A}_{\infty}=\bigcap_{n \in \mathbb{N}} \sigma\left(\left\{X_{m}: m \geq n\right\}\right) .
$$

For instance,

$$
\left\{\left(S_{n}\right)_{n \in \mathbb{N}} \text { converges }\right\}, \quad\left\{\left(S_{n} / a_{n}\right)_{n \in \mathbb{N}} \text { converges }\right\} \in \mathfrak{A}_{\infty},
$$

and the function $\liminf _{n \rightarrow \infty} S_{n} / a_{n}$ is $\mathfrak{A}_{\infty}-\overline{\mathfrak{B}}$-measurable. However, S_{n} as well as $\lim \inf _{n \rightarrow \infty} S_{n}$ are not $\mathfrak{A}_{\infty}-\overline{\mathfrak{B}}$-measurable, in general (why?). Analogously for the lim sup's.

Theorem 1 (Kolmogorov's Zero-One Law). Let $\left(\mathfrak{A}_{n}\right)_{n \in \mathbb{N}}$ be an independent sequence of σ-algebras $\mathfrak{A}_{n} \subset \mathfrak{A}$. Then

$$
\forall A \in \mathfrak{A}_{\infty}: P(A) \in\{0,1\} .
$$

This theorem says that terminal events of independent σ-algebras are actually nonrandom.

Proof. Since, for any $n, \mathfrak{A}_{\infty} \subset \sigma\left(\mathfrak{A}_{n+1} \cup \ldots\right)$, the family $\left(\mathfrak{A}_{\infty}, \mathfrak{A}_{1}, \mathfrak{A}_{2}, \ldots\right)$ is independent. By Corollary III.5.1, \mathfrak{A}_{∞} is independent from $\sigma\left(\bigcup_{n} \mathfrak{A}_{n}\right)$. On the other hand,

$$
\mathfrak{A}_{\infty} \subset \sigma\left(\bigcup_{n \in \mathbb{N}} \mathfrak{A}_{n}\right)
$$

Thus, \mathfrak{A}_{∞} is independent of itself; in particular, for $A \in \mathfrak{A}_{\infty}$, we have $P(A)=$ $P(A \cap A)=P(A)^{2}$. But this is only possible if $P(A) \in\{0,1\}$.

Corollary 1. Let $X \in \overline{\mathfrak{Z}}\left(\Omega, \mathfrak{A}_{\infty}\right)$. Under the assumptions of Theorem 1, X is constant P-a.s.

Proof. For each $c \in \overline{\mathbb{R}}$,

$$
P(X=c)=P(\underbrace{X^{-1}(\{c\})}_{\in \mathfrak{A}_{\infty}}) \in\{0,1\} .
$$

Remark 1. Assume that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is independent. Then

$$
P\left(\left\{\left(S_{n}\right)_{n \in \mathbb{N}} \text { converges }\right\}\right), P\left(\left\{\left(S_{n} / a_{n}\right)_{n \in \mathbb{N}} \text { converges }\right\}\right) \in\{0,1\} .
$$

In case of convergence P-a.s., $\lim _{n \rightarrow \infty} S_{n} / a_{n}$ is constant P-a.s.
We know now that terminal events either happen 'essentially always' or 'essentially never'. But how to decide which case holds? A very powerful and surprisingly universal tool is Borell-Cantelli's Lemma, which we will develop in the sequel.

Definition 2. Let $A_{n} \in \mathfrak{A}$ for $n \in \mathbb{N}$. Then

$$
\underline{\lim } A_{n \rightarrow \infty}=\bigcup_{n \in \mathbb{N}} \bigcap_{m \geq n} A_{m}, \quad \varlimsup_{n \rightarrow \infty} A_{n}=\bigcap_{n \in \mathbb{N}} \bigcup_{m \geq n} A_{m} .
$$

A more intuitive reformulation is as follows: $\omega \in \underline{\lim }_{n} A_{n}$ iff $\omega \in A_{m}$ holds for all $m \geq$ $m_{0}(\omega)$; in other words, $\underline{\lim }_{n} A_{n}$ happens iff 'eventually all' A_{m} happen. $\omega \in \varlimsup_{n} A_{n}$ iff $\omega \in A_{m}$ for infinitely many A_{m}; in other words, $\varlimsup_{n} A_{n}$ happens iff 'infinitely often' A_{m} happens.

Remark 2.

(i) $\left(\underline{\lim }_{n \rightarrow \infty} A_{n}\right)^{c}=\varlimsup_{n \rightarrow \infty} A_{n}^{c}$.
(ii) $P\left(\underset{n \rightarrow \infty}{\lim } A_{n}\right) \leq \underline{\lim }_{n \rightarrow \infty} P\left(A_{n}\right) \leq \varlimsup_{n \rightarrow \infty} P\left(A_{n}\right) \leq P\left(\varlimsup_{n \rightarrow \infty} A_{n}\right)$.
(iii) If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is independent, then $P\left(\varlimsup_{n \rightarrow \infty} A_{n}\right) \in\{0,1\}$ (Borel's Zero-One Law).

Proof: Übung 11.1, 11.2.
Theorem 2 (Borel-Cantelli Lemma). Let $A=\varlimsup_{n \rightarrow \infty} A_{n}$ with $A_{n} \in \mathfrak{A}$.
(i) If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$ then $P(A)=0$.
(ii) If $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$ and $\left(A_{n}\right)_{n \in \mathbb{N}}$ are independent, then $P(A)=1$.

Proof. Ad (i): For all n,

$$
P(A) \leq P\left(\bigcup_{m \geq n} A_{m}\right) \leq \sum_{m=n}^{\infty} P\left(A_{m}\right) \xrightarrow{n \rightarrow \infty} 0 .
$$

Ad (ii): We have

$$
P\left(A^{c}\right)=P\left(\underline{\lim }_{n \rightarrow \infty} A_{n}^{c}\right) \leq \sum_{n=1}^{\infty} P\left(\bigcap_{m \geq n} A_{m}^{c}\right)=\sum_{n=1}^{\infty} \inf _{l \geq n} \prod_{m=n}^{\ell}\left(1-P\left(A_{m}\right)\right) .
$$

Use $1-x \leq \exp (-x)$ for $x \geq 0$ to obtain

$$
\prod_{m=n}^{\ell}\left(1-P\left(A_{m}\right)\right) \leq \prod_{m=n}^{\ell} \exp \left(-P\left(A_{m}\right)\right)=\exp \left(-\sum_{m=n}^{\ell} P\left(A_{m}\right)\right)
$$

By assumption, the right-hand side tends to zero as ℓ tends to ∞. Thus $P\left(A^{c}\right)=0$.
Example 2. A fair coin is tossed an infinite number of times. Determine the probability that 0 occurs twice in a row infinitely often. Model: $\left(X_{n}\right)_{n \in \mathbb{N}}$ is independent and

$$
P\left(\left\{X_{n}=0\right\}\right)=P\left(\left\{X_{n}=1\right\}\right)=1 / 2, \quad n \in \mathbb{N} .
$$

Put

$$
A_{n}=\left\{X_{n}=X_{n+1}=0\right\} .
$$

Then $\left(A_{2 n}\right)_{n \in \mathbb{N}}$ is independent and $P\left(A_{2 n}\right)=1 / 4$. Thus $P\left(\overline{\lim }_{n \rightarrow \infty} A_{n}\right)=1$.

Example 3. Let $a_{n} \in[0,1]$ and $\left(X_{n}\right)_{n \in \mathbb{N}}$ a sequence of independent r.v., where X_{n} is uniformly distributed on $[0,1]$. Consider the event

$$
\left\{X_{n} \leq a_{n} \text { infinitely often }\right\}=\varlimsup_{n} \underbrace{\left\{X_{n} \leq a_{n}\right\}}_{=: A_{n}}
$$

Then $P\left(A_{n}\right)=a_{n}$; hence

$$
\left\{X_{n} \leq a_{n} \text { infinitely often }\right\}= \begin{cases}0, & \sum_{n} a_{n}<\infty \\ 1, & \sum_{n} a_{n}=\infty\end{cases}
$$

In particular, a sequence of numbers 'drawn randomly from $[0,1]$ ' contains almost surely a subsequence n_{k} tending to zero faster than $1 / n_{k}$, but almost surely no subsequence n_{k} tending to zero faster than $1 / n_{k}^{2}$.

