Chapter IV

Limit Theorems

Motivation: Given a sequence of random variables X_n , $n \in \mathbb{N}$, on a probability space $(\Omega, \mathfrak{A}, P)$, put

$$S_n = \sum_{i=1}^n X_i, \qquad n \in \mathbb{N}$$

For instance, S_n might be the cumulative gain after n trials or (one of the coordinates of) the position of a particle after n collisions.

Question: Convergence of S_n/a_n for suitable weights $0 < a_n \uparrow \infty$ in a suitable sense? Particular case: $a_n = n$.

1 Zero-One Laws

Zero–One Laws explain when and in which sense a 'limit' of random events is non-random. In the language of random variables, it explains when and in which sense limits of random variables will degenerate, i.e., become constant almost surely.

Definition 1. For σ -algebras $\mathfrak{A}_n \subset \mathfrak{A}, n \in \mathbb{N}$, the corresponding *tail* σ -algebra is

$$\mathfrak{A}_{\infty} = \bigcap_{n \in \mathbb{N}} \sigma \bigg(\bigcup_{m \ge n} \mathfrak{A}_m \bigg),$$

and $A \in \mathfrak{A}_{\infty}$ is called a *tail (terminal) event*.

It is useful to think of \mathfrak{A}_n as a σ -algebra containing information about 'random events' happening at some 'time' n. Terminal events can then be considered as limits of events which are 'decided in the distant future'. Analogously, \mathfrak{A}_{∞} -measurable r.v. are those r.v. whose values are 'determined in the distant future'.

Example 1. Let $\mathfrak{A}_n = \sigma(X_n)$. Then

$$\mathfrak{A}_{\infty} = \bigcap_{n \in \mathbb{N}} \sigma(\{X_m : m \ge n\})$$

For instance,

$$\{(S_n)_{n\in\mathbb{N}} \text{ converges}\}, \{(S_n/a_n)_{n\in\mathbb{N}} \text{ converges}\} \in \mathfrak{A}_{\infty},\$$

and the function $\liminf_{n\to\infty} S_n/a_n$ is \mathfrak{A}_{∞} - $\overline{\mathfrak{B}}$ -measurable. However, S_n as well as $\liminf_{n\to\infty} S_n$ are not \mathfrak{A}_{∞} - $\overline{\mathfrak{B}}$ -measurable, in general (why?). Analogously for the \limsup 's.

Theorem 1 (Kolmogorov's Zero-One Law). Let $(\mathfrak{A}_n)_{n\in\mathbb{N}}$ be an *independent* sequence of σ -algebras $\mathfrak{A}_n \subset \mathfrak{A}$. Then

$$\forall A \in \mathfrak{A}_{\infty} : P(A) \in \{0, 1\}.$$

This theorem says that terminal events of independent σ -algebras are actually non-random.

Proof. Since, for any $n, \mathfrak{A}_{\infty} \subset \sigma(\mathfrak{A}_{n+1} \cup \ldots)$, the family $(\mathfrak{A}_{\infty}, \mathfrak{A}_1, \mathfrak{A}_2, \ldots)$ is independent. dent. By Corollary III.5.1, \mathfrak{A}_{∞} is independent from $\sigma(\bigcup_n \mathfrak{A}_n)$. On the other hand,

$$\mathfrak{A}_{\infty} \subset \sigma\left(\bigcup_{n\in\mathbb{N}}\mathfrak{A}_n\right)$$
.

Thus, \mathfrak{A}_{∞} is independent of itself; in particular, for $A \in \mathfrak{A}_{\infty}$, we have $P(A) = P(A \cap A) = P(A)^2$. But this is only possible if $P(A) \in \{0, 1\}$. \Box

Corollary 1. Let $X \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A}_{\infty})$. Under the assumptions of Theorem 1, X is constant *P*-a.s.

Proof. For each $c \in \overline{\mathbb{R}}$,

$$P(X = c) = P(\underbrace{X^{-1}(\{c\})}_{\in \mathfrak{A}_{\infty}}) \in \{0, 1\}.$$

Remark 1. Assume that $(X_n)_{n \in \mathbb{N}}$ is independent. Then

$$P(\{(S_n)_{n\in\mathbb{N}} \text{ converges}\}), P(\{(S_n/a_n)_{n\in\mathbb{N}} \text{ converges}\}) \in \{0,1\}.$$

In case of convergence *P*-a.s., $\lim_{n\to\infty} S_n/a_n$ is constant *P*-a.s.

We know now that terminal events either happen 'essentially always' or 'essentially never'. But how to decide which case holds? A very powerful and surprisingly universal tool is Borell–Cantelli's Lemma, which we will develop in the sequel.

Definition 2. Let $A_n \in \mathfrak{A}$ for $n \in \mathbb{N}$. Then

$$\lim_{n \to \infty} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{m \ge n} A_m, \qquad \overline{\lim}_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n} A_m.$$

A more intuitive reformulation is as follows: $\omega \in \underline{\lim}_n A_n$ iff $\omega \in A_m$ holds for all $m \ge m_0(\omega)$; in other words, $\underline{\lim}_n A_n$ happens iff 'eventually all' A_m happen. $\omega \in \overline{\lim}_n A_n$ iff $\omega \in A_m$ for infinitely many A_m ; in other words, $\overline{\lim}_n A_n$ happens iff 'infinitely often' A_m happens.

Remark 2.

(i)
$$\left(\lim_{n \to \infty} A_n\right)^c = \lim_{n \to \infty} A_n^c$$
.

(ii) $P\left(\lim_{n \to \infty} A_n\right) \le \lim_{n \to \infty} P(A_n) \le \overline{\lim_{n \to \infty}} P(A_n) \le P\left(\overline{\lim_{n \to \infty}} A_n\right).$

(iii) If $(A_n)_{n \in \mathbb{N}}$ is independent, then $P\left(\lim_{n \to \infty} A_n\right) \in \{0, 1\}$ (Borel's Zero-One Law).

Proof: Übung 11.1, 11.2.

Theorem 2 (Borel-Cantelli Lemma). Let $A = \overline{\lim}_{n \to \infty} A_n$ with $A_n \in \mathfrak{A}$.

- (i) If $\sum_{n=1}^{\infty} P(A_n) < \infty$ then P(A) = 0.
- (ii) If $\sum_{n=1}^{\infty} P(A_n) = \infty$ and $(A_n)_{n \in \mathbb{N}}$ are independent, then P(A) = 1.

Proof. Ad (i): For all n,

$$P(A) \le P\left(\bigcup_{m \ge n} A_m\right) \le \sum_{m=n}^{\infty} P(A_m) \xrightarrow{n \to \infty} 0.$$

Ad (ii): We have

$$P(A^c) = P(\lim_{n \to \infty} A_n^c) \le \sum_{n=1}^{\infty} P\left(\bigcap_{m \ge n} A_m^c\right) = \sum_{n=1}^{\infty} \inf_{l \ge n} \prod_{m=n}^{\ell} (1 - P(A_m)).$$

Use $1 - x \leq \exp(-x)$ for $x \geq 0$ to obtain

$$\prod_{m=n}^{\ell} (1 - P(A_m)) \le \prod_{m=n}^{\ell} \exp(-P(A_m)) = \exp\left(-\sum_{m=n}^{\ell} P(A_m)\right).$$

By assumption, the right tends to zero as ℓ tends to ∞ . Thus $P(A^c) = 0$. \Box

Example 2. A fair coin is tossed an infinite number of times. Determine the probability that 0 occurs twice in a row infinitely often. Model: $(X_n)_{n \in \mathbb{N}}$ is independent and

$$P(\{X_n = 0\}) = P(\{X_n = 1\}) = 1/2, \qquad n \in \mathbb{N}.$$

Put

$$A_n = \{X_n = X_{n+1} = 0\}.$$

Then $(A_{2n})_{n \in \mathbb{N}}$ is independent and $P(A_{2n}) = 1/4$. Thus $P(\overline{\lim}_{n \to \infty} A_n) = 1$.

Example 3. Let $a_n \in [0, 1]$ and $(X_n)_{n \in \mathbb{N}}$ a sequence of independent r.v., where X_n is uniformly distributed on [0, 1]. Consider the event

$$\left\{X_n \le a_n \text{ infinitely often}\right\} = \overline{\lim_n} \underbrace{\{X_n \le a_n\}}_{=:A_n}$$
.

Then $P(A_n) = a_n$; hence

$$\left\{X_n \le a_n \text{ infinitely often}\right\} = \begin{cases} 0, & \sum_n a_n < \infty \\ 1, & \sum_n a_n = \infty \end{cases}$$

In particular, a sequence of numbers 'drawn randomly from [0, 1]' contains almost surely a subsequence n_k tending to zero faster than $1/n_k$, but almost surely no subsequence n_k tending to zero faster than $1/n_k^2$.