Chapter IV

Limit Theorems

Motivation: Given a sequence of random variables X,,, n € N, on a probability
space (€,2, P), put

Sn:ilXi, n € N.

For instance, S,, might be the cumulative gain after n trials or (one of the coordinates
of) the position of a particle after n collisions.

Question: Convergence of S,,/a,, for suitable weights 0 < a,, T 0o in a suitable sense?

Particular case: .

1 Zero-One Laws

Zero—One Laws explain when and in which sense a ‘limit’ of random events is non-random.
In the language of random variables, it explains when and in which sense limits of random
variables will degenerate, i.e., become constant almost surely.

Definition 1. For o-algebras 21, C 2, n € N, the corresponding tail o-algebra is
Ao = ) 0( U mm)
neN m>n

and A € U, is called a tail (terminal) event.

It is useful to think of 2, as a o—algebra containing information about ‘random events’
happening at some ‘time’ n. Terminal events can then be considered as limits of events
which are ‘decided in the distant future’. Analogously, 2.,—measurable r.v. are those
r.v. whose values are ‘determined in the distant future’.

Example 1. Let 2, = 0(X,,). Then

Qloo:ﬂa({Xm:mZn}).

neN
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For instance,
{(Sn)neN CODVGI‘gGS}, {(Sn/an)nGN converges} € Qloo:

and the function liminf, . S,/a, is A-B-measurable. However, S, as well as
liminf, .. S, are not 2A,-B-measurable, in general (why?). Analogously for the
lim sup’s.

Theorem 1 (Kolmogorov’s Zero-One Law). Let (2,),en be an independent se-
quence of og-algebras 2, C 2. Then

VAeA,: P(A) e{0,1}.

This theorem says that terminal events of independent o—algebras are actually non-
random.

Proof. Since, for any n, Ao, C 0(A,41 U...), the family (A, A;,™As,...) is indepen-
dent. By Corollary II1.5.1, 2, is independent from o(|J, ,). On the other hand,

A, C 0( U an) .
neN

Thus, A, is independent of itself; in particular, for A € A, we have P(A) =
P(AN A) = P(A)%. But this is only possible if P(A) € {0,1}. O

Corollary 1. Let X € 3(Q,2). Under the assumptions of Theorem 1, X is constant
P-as.

Proof. For each ¢ € R,

Remark 1. Assume that (X,,),en is independent. Then

P({(Sn)nen converges}), P({(S,/a,)nen converges}) € {0, 1}.

In case of convergence P-a.s., lim, .., S,/a, is constant P-a.s.

We know now that terminal events either happen ‘essentially always’ or ‘essentially
never’. But how to decide which case holds? A very powerful and surprisingly uni-
versal tool is Borell-Cantelli’s Lemma, which we will develop in the sequel.

Definition 2. Let A, € 2 for n € N. Then

n—oo neNm>n neNm>n
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A more intuitive reformulation is as follows: w € lim, A,, iff w € A,, holds for all m >
mo(w); in other words, lim,, A,, happens iff ‘eventually all’ A,, happen. w € lim,, A, iff
w € A,, for infinitely many A,,; in other words, lim,, A,, happens iff ‘infinitely often’
A, happens.

Remark 2.

n—oo

() (lm A4,) = T A5,

(ii) P(h_m An) < lim P(A,) < Tim P(A,) < P(m An).

n—oo n—oo n—oo n—oo

(iii) If (A,)nen is independent, then P( lim An> € {0,1} (Borel’s Zero-One Law).
Proof: Ubung 11.1, 11.2.
Theorem 2 (Borel-Cantelli Lemma). Let A = lim,, ., A, with A, € 2.

(i) If Y>> P(A,) < oo then P(A) = 0.

(i) If > P(A,) = oo and (A, ),en are independent, then P(A) = 1.

Proof. Ad (i): For all n,

P(A) < P( U Am) < f: P(A,,) =% 0.
Ad (ii): We have
oS [eS) l
Pl = (i 4 < 3o p(() 45) =St [T 0 PA,)

Use 1 —z < exp(—z) for x > 0 to obtain

4

[T - Pan) < TT exp(=P(An)) = exp(= 3 P(An)).

By assumption, the right-hand side tends to zero as £ tends to co. Thus P(A°) =0. O

Example 2. A fair coin is tossed an infinite number of times. Determine the prob-
ability that 0 occurs twice in a row infinitely often. Model: (X,,),en is independent
and

PHX,=0})=P{X,=1}) =1/2, n € N.

Put
A, ={X, = X,11 =0}

Then (Ay,)nen is independent and P(As,) = 1/4. Thus P(lim,, .. 4,) = 1.
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Example 3. Let a, € [0,1] and (X, ),en a sequence of independent r.v., where X, is
uniformly distributed on [0, 1]. Consider the event

{Xn < a,, infinitely often} =lim{X, <a,} .
n H,—/

=:A,
Then P(A,) = a,; hence
0 W < 00,
{Xn < a,, infinitely often} . dona o0
1’ Zn an == OO .

In particular, a sequence of numbers ‘drawn randomly from [0, 1]’ contains almost
surely a subsequence ny, tending to zero faster than 1/ny, but almost surely no sub-
sequence ny, tending to zero faster than 1/n?.
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