5 Independence

'. . the concept of independence . . . plays a central role in probability theory; it is precisely this concept that distinguishes probability theory from the general theory of measure spaces', see Shiryayev (1984, p. 27).
In the sequel, $(\Omega, \mathfrak{A}, P)$ denotes a probability space and I is a non-empty set.
Definition 1. Let $A_{i} \in \mathfrak{A}$ for $i \in I$. Then $\left(A_{i}\right)_{i \in I}$ is independent if

$$
\begin{equation*}
P\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} P\left(A_{i}\right) \tag{1}
\end{equation*}
$$

for every $S \in \mathfrak{P}_{0}(I)$. Elementary case: $|I|=2$.
In the sequel, $\mathfrak{E}_{i} \subset \mathfrak{A}$ for $i \in I$.
Definition 2. $\left(\mathfrak{E}_{i}\right)_{i \in I}$ is independent if (1) holds for every $S \in \mathfrak{P}_{0}(I)$ and all $A_{i} \in \mathfrak{E}_{i}$ for $i \in S$.

Remark 1.

(i) $\left(\mathfrak{E}_{i}\right)_{i \in I}$ independent $\wedge \forall i \in I: \widetilde{\mathfrak{E}}_{i} \subset \mathfrak{E}_{i} \Rightarrow\left(\widetilde{\mathfrak{E}}_{i}\right)_{i \in I}$ independent.
(ii) $\left(\mathfrak{E}_{i}\right)_{i \in I}$ independent $\Leftrightarrow \forall S \in \mathfrak{P}_{0}(I):\left(\mathfrak{E}_{i}\right)_{i \in S}$ independent.

Lemma 1.

$$
\left(\mathfrak{E}_{i}\right)_{i \in I} \text { independent } \Rightarrow\left(\delta\left(\mathfrak{E}_{i}\right)\right)_{i \in I} \text { independent. }
$$

Proof. Without loss of generality, $I=\{1, \ldots, n\}$ and $n \geq 2$, see Remark 1.(ii). Put

$$
\mathfrak{D}_{1}=\left\{A \in \delta\left(\mathfrak{E}_{1}\right):\left(\{A\}, \mathfrak{E}_{2}, \ldots, \mathfrak{E}_{n}\right) \text { independent }\right\}
$$

Then \mathfrak{D}_{1} is a Dynkin class and $\mathfrak{E}_{1} \subset \mathfrak{D}_{1}$, hence $\delta\left(\mathfrak{E}_{1}\right)=\mathfrak{D}_{1}$. Thus

$$
\left(\delta\left(\mathfrak{E}_{1}\right), \mathfrak{E}_{2}, \ldots, \mathfrak{E}_{n}\right) \text { independent. }
$$

Repeat this step for $2, \ldots, n$.
Theorem 1. If

$$
\begin{equation*}
\left(\mathfrak{E}_{i}\right)_{i \in I} \text { independent } \wedge \forall i \in I: \mathfrak{E}_{i} \text { closed w.r.t. intersections } \tag{2}
\end{equation*}
$$

then

$$
\left(\sigma\left(\mathfrak{E}_{i}\right)\right)_{i \in I} \text { independent. }
$$

Proof. Use Theorem II.1.2.(i) and Lemma 1.
Corollary 1. Assume that $I=\bigcup_{j \in J} I_{j}$ for pairwise disjoint sets $I_{j} \neq \emptyset$. If (2) holds, then

$$
\left(\sigma\left(\bigcup_{i \in I_{j}} \mathfrak{E}_{i}\right)\right)_{j \in J} \text { independent. }
$$

Proof. Let

$$
\widetilde{\mathfrak{E}}_{j}=\left\{\bigcap_{i \in S} A_{i}: S \in \mathfrak{P}_{0}\left(I_{j}\right) \wedge A_{i} \in \mathfrak{E}_{i} \text { for } i \in S\right\} .
$$

Then $\widetilde{\mathfrak{E}}_{j}$ is closed w.r.t. intersections and $\left(\widetilde{\mathfrak{E}}_{j}\right)_{j \in J}$ is independent. Finally

$$
\sigma\left(\bigcup_{i \in I_{j}} \mathfrak{E}_{i}\right)=\sigma\left(\widetilde{\mathfrak{E}}_{j}\right) .
$$

In the sequel, $\left(\Omega_{i}, \mathfrak{A}_{i}\right)$ denotes a measurable space for $i \in I$, and $X_{i}: \Omega \rightarrow \Omega_{i}$ is $\mathfrak{A}-\mathfrak{A}_{i}$-measurable for $i \in I$.

Definition 3. $\left(X_{i}\right)_{i \in I}$ is independent if $\left(\sigma\left(X_{i}\right)\right)_{i \in I}$ is independent.
Example 1. Actually, the essence of independence. Assume that

$$
(\Omega, \mathfrak{A}, P)=\left(\prod_{i \in I} \Omega_{i}, \bigotimes_{i \in I} \mathfrak{A}_{i}, \prod_{i \in I} P_{i}\right)
$$

for probability measures P_{i} on \mathfrak{A}_{i}. Let

$$
X_{i}=\pi_{i} .
$$

Then, for $S \in \mathfrak{P}_{0}(I)$ and $A_{i} \in \mathfrak{A}_{i}$ for $i \in S$

$$
P\left(\bigcap_{i \in S}\left\{X_{i} \in A_{i}\right\}\right)=P\left(\prod_{i \in S} A_{i} \times \prod_{i \in I \backslash S} \Omega_{i}\right)=\prod_{i \in S} P_{i}\left(A_{i}\right)=\prod_{i \in S} P\left(\left\{X_{i} \in A_{i}\right\}\right)
$$

Hence $\left(\pi_{i}\right)_{i \in I}$ is independent. Furthermore, $P_{X_{i}}=P_{i}$.
Recall the question that was posed in the introductory Example I.2.
Theorem 2. Given: probability spaces $\left(\Omega_{i}, \mathfrak{A}_{i}, P_{i}\right)$ for $i \in I$. Then there exist
(i) a probability space $(\Omega, \mathfrak{A}, P)$ and
(ii) $\mathfrak{A}-\mathfrak{A}_{i}$-measurable mappings $X_{i}: \Omega \rightarrow \Omega_{i}$ for $i \in I$
such that

$$
\left(X_{i}\right)_{i \in I} \text { independent } \wedge \forall i \in I: P_{X_{i}}=P_{i} .
$$

Proof. See Example 1.
Theorem 3. Let $\mathfrak{F}_{i} \subset \mathfrak{A}_{i}$ for $i \in I$. If

$$
\forall i \in I: \sigma\left(\mathfrak{F}_{i}\right)=\mathfrak{A}_{i} \wedge \mathfrak{F}_{i} \text { closed w.r.t. intersections }
$$

then

$$
\left(X_{i}\right)_{i \in I} \text { independent } \Leftrightarrow \quad\left(X_{i}^{-1}\left(\mathfrak{F}_{i}\right)\right)_{i \in I} \text { independent. }
$$

Proof. Recall that $\sigma\left(X_{i}\right)=X_{i}^{-1}\left(\mathfrak{A}_{i}\right)=\sigma\left(X_{i}^{-1}\left(\mathfrak{F}_{i}\right)\right) . ~ ' \Rightarrow$ ': See Remark 1.(i). ' \Leftarrow ': Note that $X_{i}^{-1}\left(\mathfrak{F}_{i}\right)$ is closed w.r.t. intersections. Use Theorem 1.
Example 2. Independence of a family of random variables X_{i}, i.e., $\left(\Omega_{i}, \mathfrak{A}_{i}\right)=(\mathbb{R}, \mathfrak{B})$ for $i \in I$. In this case $\left(X_{i}\right)_{i \in I}$ is independent iff

$$
\forall S \in \mathfrak{P}_{0}(I) \forall c_{i} \in \mathbb{R}, i \in S: P\left(\bigcap_{i \in S}\left\{X_{i} \leq c_{i}\right\}\right)=\prod_{i \in S} P\left(\left\{X_{i} \leq c_{i}\right\}\right)
$$

Theorem 4. Let
(i) $I=\bigcup_{j \in J} I_{j}$ for pairwise disjoint sets $I_{j} \neq \emptyset$,
(ii) $\left(\widetilde{\Omega}_{j}, \widetilde{\mathfrak{A}}_{j}\right)$ be measurable spaces for $j \in J$,
(iii) $f_{j}: \prod_{i \in I_{j}} \Omega_{i} \rightarrow \widetilde{\Omega}_{j}$ be $\left(\bigotimes_{i \in I_{j}} \mathfrak{A}_{i}\right)-\widetilde{\mathfrak{A}}_{j}$ measurable mappings for $j \in J$.

Put

$$
Y_{j}=\left(X_{i}\right)_{i \in I_{j}}: \Omega \rightarrow \prod_{i \in I_{j}} \Omega_{i} .
$$

Then

$$
\left(X_{i}\right)_{i \in I} \text { independent } \Rightarrow \quad\left(f_{j} \circ Y_{j}\right)_{j \in J} \text { independent. }
$$

Proof.

$$
\begin{aligned}
\sigma\left(f_{j} \circ Y_{j}\right) & =Y_{j}^{-1}\left(f_{j}^{-1}\left(\widetilde{\mathfrak{A}}_{j}\right)\right) \subset Y_{j}^{-1}\left(\bigotimes_{i \in I_{j}} \mathfrak{A}_{i}\right) \\
& =\sigma\left(\left\{X_{i}: i \in I_{j}\right\}\right)=\sigma\left(\bigcup_{i \in I_{j}} X_{i}^{-1}\left(\mathfrak{A}_{i}\right)\right) .
\end{aligned}
$$

Use Corollary 1 and Remark 1.(i).
Example 3. For an independent sequence $\left(X_{i}\right)_{i \in \mathbb{N}}$ of random variables

$$
\left(\max \left(X_{1}, X_{2}\right), 1_{\mathbb{R}_{+}}\left(X_{3}\right), \limsup _{n \rightarrow \infty} 1 / n \sum_{i=1}^{n} X_{i}\right)
$$

are independent.
Remark 2. Consider the mapping

$$
X: \Omega \rightarrow \prod_{i \in I} \Omega_{i}: \omega \mapsto\left(X_{i}(\omega)\right)_{i \in I}
$$

Clearly X is $\mathfrak{A}-\bigotimes_{i \in I} \mathfrak{A}_{i}$-measurable. By definition, $P_{X}(A)=P(\{X \in A\})$ for $A \in$ $\bigotimes_{i \in I} \mathfrak{A}_{i}$. In particular, for measurable rectangles $A \in \bigotimes_{i \in I} \mathfrak{A}_{i}$, i.e.,

$$
\begin{equation*}
A=\prod_{i \in S} A_{i} \times \prod_{i \in I \backslash S} \Omega_{i} \tag{3}
\end{equation*}
$$

with $S \in \mathfrak{P}_{0}(I)$ and $A_{i} \in \mathfrak{A}_{i}$,

$$
\begin{equation*}
P_{X}(A)=P\left(\bigcap_{i \in S}\left\{X_{i} \in A_{i}\right\}\right) . \tag{4}
\end{equation*}
$$

Definition 4. P_{X} is called the joint distribution of $X_{i}, i \in I$.
Example 4. Let $\Omega=\{1, \ldots, 6\}^{2}$ and consider the uniform distribution P on $\mathfrak{A}=$ $\mathfrak{P}(\Omega)$, which is a model for rolling a die twice.
Moreover, let $\Omega_{i}=\mathbb{N}$ and $\mathfrak{A}_{i}=\mathfrak{P}\left(\Omega_{i}\right)$ such that $\bigotimes_{i=1}^{2} \mathfrak{A}_{i}=\mathfrak{P}\left(\mathbb{N}^{2}\right)$. Consider the random variables

$$
X_{1}\left(\omega_{1}, \omega_{2}\right)=\omega_{1}, \quad X_{2}\left(\omega_{1}, \omega_{2}\right)=\omega_{1}+\omega_{2} .
$$

Then (X_{1}, X_{2}) are not independent. Indeed,

$$
P\left(\left\{X_{1}=2\right\} \cap\left\{X_{2}=2\right\}\right)=P(\emptyset)=0
$$

but

$$
P\left(\left\{X_{1}=2\right\}\right) \cdot P\left(\left\{X_{2}=2\right\}\right) \neq 0
$$

We add that

$$
P_{X_{1}}=\sum_{k=1}^{6} 1 / 6 \cdot \delta_{k}, \quad P_{X_{2}}=\sum_{\ell=2}^{12}(6-|\ell-7|) / 36 \cdot \delta_{\ell} .
$$

Theorem 5.

$$
\left(X_{i}\right)_{i \in I} \text { independent } \Leftrightarrow P_{X}=\prod_{i \in I} P_{X_{i}} .
$$

Proof. For A given by (3)

$$
\left(\prod_{i \in I} P_{X_{i}}\right)(A)=\prod_{i \in S} P_{X_{i}}\left(A_{i}\right)=\prod_{i \in S} P\left(\left\{X_{i} \in A_{i}\right\}\right) .
$$

On the other hand, we have (4). Thus ' \Leftarrow ' hold trivially. Use Theorem II.4.4 to obtain ' \Rightarrow ' .

In the sequel, we consider random variables X_{i}, i.e., $\left(\Omega_{i}, \mathfrak{A}_{i}\right)=(\mathbb{R}, \mathfrak{B})$ for $i \in I$.
Theorem 6. Let $I=\{1, \ldots, n\}$. If
$\left(X_{1}, \ldots, X_{n}\right)$ independent $\wedge \forall i \in I: X_{i} \geq 0$ (X_{i} integrable)
then ($\prod_{i=1}^{n} X_{i}$ is integrable and)

$$
\mathrm{E}\left(\prod_{i=1}^{n} X_{i}\right)=\prod_{i=1}^{n} \mathrm{E}\left(X_{i}\right)
$$

Proof. Use Fubini's Theorem and Theorem 5 to obtain

$$
\begin{aligned}
\mathrm{E}\left(\left|\prod_{i=1}^{n} X_{i}\right|\right) & =\int_{\mathbb{R}^{n}}\left|x_{1} \cdots \cdots x_{n}\right| P_{\left(X_{1}, \ldots, X_{n}\right)}\left(d\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =\int_{\mathbb{R}^{n}}\left|x_{1} \cdots x_{n}\right|\left(P_{X_{1}} \times \cdots \times P_{X_{n}}\right)\left(d\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =\prod_{i=1}^{n} \int_{\mathbb{R}}\left|x_{i}\right| P_{X_{i}}\left(d x_{i}\right)=\prod_{i=1}^{n} \mathrm{E}\left(\left|X_{i}\right|\right) .
\end{aligned}
$$

Drop $|\cdot|$ if the random variables are integrable.

Definition 5. $X_{1}, X_{2} \in \mathfrak{L}^{2}$ are uncorrelated if

$$
\mathrm{E}\left(X_{1} \cdot X_{2}\right)=\mathrm{E}\left(X_{1}\right) \cdot \mathrm{E}\left(X_{2}\right) .
$$

Theorem 7 (Bienaymé). Let $X_{1}, \ldots, X_{n} \in \mathfrak{L}^{2}$ be pairwise uncorrelated. Then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) .
$$

Proof. We have

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) & =\mathrm{E}\left(\sum_{i=1}^{n}\left(X_{i}-\mathrm{E}\left(X_{i}\right)\right)\right)^{2} \\
& =\sum_{i=1}^{n} \mathrm{E}\left(X_{i}-\mathrm{E}\left(X_{i}\right)\right)^{2}+\sum_{\substack{i, j=1 \\
i \neq j}}^{n} \mathrm{E}\left(\left(X_{i}-\mathrm{E}\left(X_{i}\right)\right) \cdot\left(X_{j}-\mathrm{E}\left(X_{j}\right)\right)\right) .
\end{aligned}
$$

Moreover,

$$
\mathrm{E}\left(\left(X_{i}-\mathrm{E}\left(X_{i}\right)\right) \cdot\left(X_{j}-\mathrm{E}\left(X_{j}\right)\right)\right)=\mathrm{E}\left(X_{i} \cdot X_{j}\right)-\mathrm{E}\left(X_{i}\right) \cdot \mathrm{E}\left(X_{j}\right) .
$$

(The latter quantity is called the covariance between X_{i} and X_{j}.)
Definition 6. The convolution product of probability measures P_{1}, \ldots, P_{n} on \mathfrak{B} is defined by

$$
P_{1} * \cdots * P_{n}=s\left(P_{1} \times \cdots \times P_{n}\right)
$$

where

$$
s\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n} .
$$

Theorem 8. Let $\left(X_{1}, \ldots, X_{n}\right)$ be independent and $S=\sum_{i=1}^{n} X_{i}$. Then

$$
P_{S}=P_{X_{1}} * \cdots * P_{X_{n}} .
$$

Proof. Put $X=\left(X_{1}, \ldots, X_{n}\right)$. Since $S=s \circ\left(X_{1}, \ldots, X_{n}\right)$ we get

$$
P_{S}=s\left(P_{X}\right)=s\left(P_{X_{1}} \times \cdots \times P_{X_{n}}\right) .
$$

Remark 3. The class of probability measure on \mathfrak{B} forms an abelian semi-group w.r.t. $*$, and $P * \varepsilon_{0}=P$.

Theorem 9. For all probability measures P_{1}, P_{2} on \mathfrak{B} and every $P_{1} * P_{2}$-integrable function f

$$
\int_{\mathbb{R}} f d\left(P_{1} * P_{2}\right)=\int_{\mathbb{R}} \int_{\mathbb{R}} f(x+y) P_{1}(d x) P_{2}(d y) .
$$

If $P_{1}=h_{1} \cdot \lambda_{1}$ then $P_{1} * P_{2}=h \cdot \lambda_{1}$ with

$$
h(x)=\int_{\mathbb{R}} h_{1}(x-y) P_{2}(d y) .
$$

If $P_{2}=h_{2} \cdot \lambda_{1}$, additionally, then

$$
h(x)=\int_{\mathbb{R}} h_{1}(x-y) \cdot h_{2}(y) \lambda(d y) .
$$

Proof. Use Fubini's Theorem and the transformation theorem. See Billingsley (1979, p. 230).

Example 5.

(i) Put $N(\mu, 0)=\varepsilon_{\mu}$. By Theorem 9

$$
N\left(\mu_{1}, \sigma_{1}^{2}\right) * N\left(\mu_{2}, \sigma_{2}^{2}\right)=N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

for $\mu_{i} \in \mathbb{R}$ and $\sigma_{i} \geq 0$.
(ii) Consider n independent Bernoulli trials, i.e., $\left(X_{1}, \ldots, X_{n}\right)$ independent with

$$
P_{X_{i}}=p \cdot \varepsilon_{1}+(1-p) \cdot \varepsilon_{0}
$$

for every $i \in\{1, \ldots, n\}$, where $p \in[0,1]$. Inductively, we get for $k \in\{1, \ldots, n\}$

$$
\sum_{i=1}^{k} X_{i} \sim B(k, p)
$$

see also Übung 8.1. Thus, for any $n, m \in \mathbb{N}$,

$$
B(n, p) * B(m, p)=B(n+m, p)
$$

