5 Independence

"... the concept of independence ... plays a central role in probability theory; it is precisely this concept that distinguishes probability theory from the general theory of measure spaces', see Shiryayev (1984, p. 27).

In the sequel, $(\Omega, \mathfrak{A}, P)$ denotes a probability space and I is a non-empty set.

Definition 1. Let $A_i \in \mathfrak{A}$ for $i \in I$. Then $(A_i)_{i \in I}$ is independent if

$$P\left(\bigcap_{i\in S} A_i\right) = \prod_{i\in S} P(A_i) \tag{1}$$

for every $S \in \mathfrak{P}_0(I)$. Elementary case: |I| = 2.

In the sequel, $\mathfrak{E}_i \subset \mathfrak{A}$ for $i \in I$.

Definition 2. $(\mathfrak{E}_i)_{i\in I}$ is independent if (1) holds for every $S \in \mathfrak{P}_0(I)$ and all $A_i \in \mathfrak{E}_i$ for $i \in S$.

Remark 1.

- (i) $(\mathfrak{E}_i)_{i\in I}$ independent $\wedge \ \forall i \in I : \ \widetilde{\mathfrak{E}}_i \subset \mathfrak{E}_i \ \Rightarrow \ (\widetilde{\mathfrak{E}}_i)_{i\in I}$ independent.
- (ii) $(\mathfrak{E}_i)_{i\in I}$ independent $\Leftrightarrow \forall S \in \mathfrak{P}_0(I) : (\mathfrak{E}_i)_{i\in S}$ independent.

Lemma 1.

 $(\mathfrak{E}_i)_{i\in I}$ independent \Rightarrow $(\delta(\mathfrak{E}_i))_{i\in I}$ independent.

Proof. Without loss of generality, $I = \{1, ..., n\}$ and $n \ge 2$, see Remark 1.(ii). Put

$$\mathfrak{D}_1 = \{ A \in \delta(\mathfrak{E}_1) : (\{A\}, \mathfrak{E}_2, \dots, \mathfrak{E}_n) \text{ independent} \}.$$

Then \mathfrak{D}_1 is a Dynkin class and $\mathfrak{E}_1 \subset \mathfrak{D}_1$, hence $\delta(\mathfrak{E}_1) = \mathfrak{D}_1$. Thus

$$(\delta(\mathfrak{E}_1), \mathfrak{E}_2, \dots, \mathfrak{E}_n)$$
 independent.

Repeat this step for $2, \ldots, n$.

Theorem 1. If

$$(\mathfrak{E}_i)_{i \in I}$$
 independent $\land \forall i \in I : \mathfrak{E}_i$ closed w.r.t. intersections (2)

then

$$(\sigma(\mathfrak{E}_i))_{i\in I}$$
 independent.

Proof. Use Theorem II.1.2.(i) and Lemma 1.

Corollary 1. Assume that $I = \bigcup_{j \in J} I_j$ for pairwise disjoint sets $I_j \neq \emptyset$. If (2) holds, then

$$\left(\sigma\left(\bigcup_{i\in I_j}\mathfrak{E}_i\right)\right)_{j\in J}$$
 independent.

Proof. Let

$$\widetilde{\mathfrak{E}}_j = \left\{ \bigcap_{i \in S} A_i : S \in \mathfrak{P}_0(I_j) \land A_i \in \mathfrak{E}_i \text{ for } i \in S \right\}.$$

Then $\widetilde{\mathfrak{E}}_j$ is closed w.r.t. intersections and $\left(\widetilde{\mathfrak{E}}_j\right)_{j\in J}$ is independent. Finally

$$\sigma\bigg(\bigcup_{i\in I_j}\mathfrak{E}_i\bigg)=\sigma(\widetilde{\mathfrak{E}}_j).$$

In the sequel, $(\Omega_i, \mathfrak{A}_i)$ denotes a measurable space for $i \in I$, and $X_i : \Omega \to \Omega_i$ is $\mathfrak{A}\text{-}\mathfrak{A}_i$ -measurable for $i \in I$.

Definition 3. $(X_i)_{i\in I}$ is independent if $(\sigma(X_i))_{i\in I}$ is independent.

Example 1. Actually, the essence of independence. Assume that

$$(\Omega, \mathfrak{A}, P) = \left(\prod_{i \in I} \Omega_i, \bigotimes_{i \in I} \mathfrak{A}_i, \prod_{i \in I} P_i\right)$$

for probability measures P_i on \mathfrak{A}_i . Let

$$X_i = \pi_i$$
.

Then, for $S \in \mathfrak{P}_0(I)$ and $A_i \in \mathfrak{A}_i$ for $i \in S$

$$P\bigg(\bigcap_{i\in S} \{X_i \in A_i\}\bigg) = P\bigg(\prod_{i\in S} A_i \times \prod_{i\in I\setminus S} \Omega_i\bigg) = \prod_{i\in S} P_i(A_i) = \prod_{i\in S} P(\{X_i \in A_i\}).$$

Hence $(\pi_i)_{i \in I}$ is independent. Furthermore, $P_{X_i} = P_i$.

Recall the question that was posed in the introductory Example I.2.

Theorem 2. Given: probability spaces $(\Omega_i, \mathfrak{A}_i, P_i)$ for $i \in I$. Then there exist

- (i) a probability space $(\Omega, \mathfrak{A}, P)$ and
- (ii) $\mathfrak{A}\text{-}\mathfrak{A}_i$ -measurable mappings $X_i:\Omega\to\Omega_i$ for $i\in I$

such that

$$(X_i)_{i \in I}$$
 independent $\land \forall i \in I : P_{X_i} = P_i$.

Proof. See Example 1.

Theorem 3. Let $\mathfrak{F}_i \subset \mathfrak{A}_i$ for $i \in I$. If

$$\forall i \in I : \ \sigma(\mathfrak{F}_i) = \mathfrak{A}_i \ \land \ \mathfrak{F}_i \text{ closed w.r.t. intersections}$$

then

$$(X_i)_{i\in I}$$
 independent \Leftrightarrow $(X_i^{-1}(\mathfrak{F}_i))_{i\in I}$ independent.

Proof. Recall that $\sigma(X_i) = X_i^{-1}(\mathfrak{A}_i) = \sigma(X_i^{-1}(\mathfrak{F}_i))$. ' \Rightarrow ': See Remark 1.(i). ' \Leftarrow ': Note that $X_i^{-1}(\mathfrak{F}_i)$ is closed w.r.t. intersections. Use Theorem 1.

Example 2. Independence of a family of random variables X_i , i.e., $(\Omega_i, \mathfrak{A}_i) = (\mathbb{R}, \mathfrak{B})$ for $i \in I$. In this case $(X_i)_{i \in I}$ is independent iff

$$\forall S \in \mathfrak{P}_0(I) \ \forall c_i \in \mathbb{R}, i \in S : P\left(\bigcap_{i \in S} \{X_i \le c_i\}\right) = \prod_{i \in S} P(\{X_i \le c_i\}).$$

Theorem 4. Let

- (i) $I = \bigcup_{j \in J} I_j$ for pairwise disjoint sets $I_j \neq \emptyset$,
- (ii) $(\widetilde{\Omega}_j, \widetilde{\mathfrak{A}}_j)$ be measurable spaces for $j \in J$,
- (iii) $f_j: \prod_{i\in I_j} \Omega_i \to \widetilde{\Omega}_j$ be $\left(\bigotimes_{i\in I_j} \mathfrak{A}_i\right) \widetilde{\mathfrak{A}}_j$ measurable mappings for $j\in J$.

Put

$$Y_j = (X_i)_{i \in I_j} : \Omega \to \prod_{i \in I_j} \Omega_i.$$

Then

 $(X_i)_{i \in I}$ independent \Rightarrow $(f_j \circ Y_j)_{j \in J}$ independent.

Proof.

$$\sigma(f_j \circ Y_j) = Y_j^{-1}(f_j^{-1}(\widetilde{\mathfrak{A}}_j)) \subset Y_j^{-1} \left(\bigotimes_{i \in I_j} \mathfrak{A}_i \right)$$
$$= \sigma(\{X_i : i \in I_j\}) = \sigma\left(\bigcup_{i \in I_j} X_i^{-1}(\mathfrak{A}_i) \right).$$

Use Corollary 1 and Remark 1.(i).

Example 3. For an independent sequence $(X_i)_{i\in\mathbb{N}}$ of random variables

$$\left(\max(X_1, X_2), \ 1_{\mathbb{R}_+}(X_3), \ \limsup_{n \to \infty} 1/n \sum_{i=1}^n X_i\right)$$

are independent.

Remark 2. Consider the mapping

$$X: \Omega \to \prod_{i \in I} \Omega_i : \omega \mapsto (X_i(\omega))_{i \in I}.$$

Clearly X is \mathfrak{A} - $\bigotimes_{i\in I}\mathfrak{A}_i$ -measurable. By definition, $P_X(A)=P(\{X\in A\})$ for $A\in\bigotimes_{i\in I}\mathfrak{A}_i$. In particular, for measurable rectangles $A\in\bigotimes_{i\in I}\mathfrak{A}_i$, i.e.,

$$A = \prod_{i \in S} A_i \times \prod_{i \in I \setminus S} \Omega_i \tag{3}$$

with $S \in \mathfrak{P}_0(I)$ and $A_i \in \mathfrak{A}_i$,

$$P_X(A) = P\left(\bigcap_{i \in S} \{X_i \in A_i\}\right). \tag{4}$$

Definition 4. P_X is called the *joint distribution* of X_i , $i \in I$.

Example 4. Let $\Omega = \{1, \dots, 6\}^2$ and consider the uniform distribution P on $\mathfrak{A} = \mathfrak{P}(\Omega)$, which is a model for rolling a die twice.

Moreover, let $\Omega_i = \mathbb{N}$ and $\mathfrak{A}_i = \mathfrak{P}(\Omega_i)$ such that $\bigotimes_{i=1}^2 \mathfrak{A}_i = \mathfrak{P}(\mathbb{N}^2)$. Consider the random variables

$$X_1(\omega_1, \omega_2) = \omega_1, \qquad X_2(\omega_1, \omega_2) = \omega_1 + \omega_2.$$

Then (X_1, X_2) are not independent. Indeed,

$$P({X_1 = 2} \cap {X_2 = 2}) = P(\emptyset) = 0$$
,

but

$$P({X_1 = 2}) \cdot P({X_2 = 2}) \neq 0$$
.

We add that

$$P_{X_1} = \sum_{k=1}^{6} 1/6 \cdot \delta_k, \qquad P_{X_2} = \sum_{\ell=2}^{12} (6 - |\ell - 7|)/36 \cdot \delta_\ell.$$

Theorem 5.

$$(X_i)_{i \in I}$$
 independent \Leftrightarrow $P_X = \prod_{i \in I} P_{X_i}$.

Proof. For A given by (3)

$$\left(\prod_{i \in I} P_{X_i}\right)(A) = \prod_{i \in S} P_{X_i}(A_i) = \prod_{i \in S} P(\{X_i \in A_i\}).$$

On the other hand, we have (4). Thus ' \Leftarrow ' hold trivially. Use Theorem II.4.4 to obtain ' \Rightarrow '.

In the sequel, we consider random variables X_i , i.e., $(\Omega_i, \mathfrak{A}_i) = (\mathbb{R}, \mathfrak{B})$ for $i \in I$.

Theorem 6. Let $I = \{1, ..., n\}$. If

$$(X_1, \ldots, X_n)$$
 independent $\land \forall i \in I : X_i \ge 0 \ (X_i \text{ integrable})$

then $(\prod_{i=1}^{n} X_i \text{ is integrable and})$

$$E\bigg(\prod_{i=1}^n X_i\bigg) = \prod_{i=1}^n E(X_i).$$

Proof. Use Fubini's Theorem and Theorem 5 to obtain

$$E\left(\left|\prod_{i=1}^{n} X_{i}\right|\right) = \int_{\mathbb{R}^{n}} |x_{1} \cdot \dots \cdot x_{n}| P_{(X_{1},\dots,X_{n})}(d(x_{1},\dots,x_{n}))$$

$$= \int_{\mathbb{R}^{n}} |x_{1} \cdot \dots \cdot x_{n}| (P_{X_{1}} \times \dots \times P_{X_{n}})(d(x_{1},\dots,x_{n}))$$

$$= \prod_{i=1}^{n} \int_{\mathbb{R}} |x_{i}| P_{X_{i}}(dx_{i}) = \prod_{i=1}^{n} E(|X_{i}|).$$

Drop $|\cdot|$ if the random variables are integrable.

Definition 5. $X_1, X_2 \in \mathfrak{L}^2$ are uncorrelated if

$$E(X_1 \cdot X_2) = E(X_1) \cdot E(X_2).$$

Theorem 7 (Bienaymé). Let $X_1, \ldots, X_n \in \mathcal{L}^2$ be pairwise uncorrelated. Then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i).$$

Proof. We have

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{E}\left(\sum_{i=1}^{n} (X_{i} - \operatorname{E}(X_{i}))\right)^{2}$$

$$= \sum_{i=1}^{n} \operatorname{E}(X_{i} - \operatorname{E}(X_{i}))^{2} + \sum_{\substack{i,j=1\\i\neq j}}^{n} \operatorname{E}((X_{i} - \operatorname{E}(X_{i})) \cdot (X_{j} - \operatorname{E}(X_{j}))).$$

Moreover,

$$E((X_i - E(X_i)) \cdot (X_j - E(X_j))) = E(X_i \cdot X_j) - E(X_i) \cdot E(X_j).$$

(The latter quantity is called the *covariance* between X_i and X_j .)

Definition 6. The *convolution product* of probability measures P_1, \ldots, P_n on \mathfrak{B} is defined by

$$P_1 * \cdots * P_n = s(P_1 \times \cdots \times P_n)$$

where

$$s(x_1,\ldots,x_n)=x_1+\cdots+x_n.$$

Theorem 8. Let (X_1, \ldots, X_n) be independent and $S = \sum_{i=1}^n X_i$. Then

$$P_S = P_{X_1} * \cdots * P_{X_n}.$$

Proof. Put $X = (X_1, \ldots, X_n)$. Since $S = s \circ (X_1, \ldots, X_n)$ we get

$$P_S = s(P_X) = s(P_{X_1} \times \cdots \times P_{X_n}).$$

Remark 3. The class of probability measure on \mathfrak{B} forms an abelian semi-group w.r.t. *, and $P * \varepsilon_0 = P$.

Theorem 9. For all probability measures P_1 , P_2 on \mathfrak{B} and every $P_1 * P_2$ -integrable function f

$$\int_{\mathbb{R}} f \, d(P_1 * P_2) = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x+y) \, P_1(dx) \, P_2(dy).$$

If $P_1 = h_1 \cdot \lambda_1$ then $P_1 * P_2 = h \cdot \lambda_1$ with

$$h(x) = \int_{\mathbb{D}} h_1(x - y) P_2(dy).$$

If $P_2 = h_2 \cdot \lambda_1$, additionally, then

$$h(x) = \int_{\mathbb{R}} h_1(x - y) \cdot h_2(y) \,\lambda(dy).$$

Proof. Use Fubini's Theorem and the transformation theorem. See Billingsley (1979, p. 230). \Box

Example 5.

(i) Put $N(\mu, 0) = \varepsilon_{\mu}$. By Theorem 9

$$N(\mu_1, \sigma_1^2) * N(\mu_2, \sigma_2^2) = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

for $\mu_i \in \mathbb{R}$ and $\sigma_i \geq 0$.

(ii) Consider n independent Bernoulli trials, i.e., (X_1, \ldots, X_n) independent with

$$P_{X_i} = p \cdot \varepsilon_1 + (1 - p) \cdot \varepsilon_0$$

for every $i \in \{1, ..., n\}$, where $p \in [0, 1]$. Inductively, we get for $k \in \{1, ..., n\}$

$$\sum_{i=1}^{k} X_i \sim B(k, p),$$

see also Übung 8.1. Thus, for any $n, m \in \mathbb{N}$,

$$B(n,p) * B(m,p) = B(n+m,p).$$