3 Convergence in Distribution

Given: a metric space (M, ρ) . Put

 $C^{b}(M) = \{ f : M \to \mathbb{R} : f \text{ bounded, continuous} \},\$

and consider the Borel- σ -algebra $\mathfrak{B}(M)$ in M. Moreover, let $\mathfrak{M}(M)$ denote the set of all probability measures on $\mathfrak{B}(M)$.

Definition 1.

(i) A sequence $(Q_n)_{n \in \mathbb{N}}$ in $\mathfrak{M}(M)$ converges weakly to $Q \in \mathfrak{M}(M)$ if

$$\forall f \in C^b(M) : \lim_{n \to \infty} \int f \, dQ_n = \int f \, dQ.$$

Notation: $Q_n \xrightarrow{w} Q$.

(ii) A sequence $(X_n)_{n \in \mathbb{N}}$ of random elements with values in M converges in distribution to a random element X with values in M iff $\mathfrak{L}(X_n) \xrightarrow{w} \mathfrak{L}(X)$ (recall $\mathfrak{L}(X)$ is the distribution of X). **Notation:** $X_n \xrightarrow{d} X$.

Remark 1. For convergence in distribution the random elements need not be defined on a common probability space.

In the sequel: $Q_n, Q \in \mathfrak{M}(M)$ for $n \in \mathbb{N}$.

Example 1.

(i) For $x_n, x \in M$

$$\delta_{x_n} \xrightarrow{w} \delta_x \quad \Leftrightarrow \quad \lim_{n \to \infty} \rho(x_n, x) = 0.$$

For the proof of ' \Leftarrow ', note that

$$\int f d\varepsilon_{x_n} = f(x_n), \qquad \int f d\varepsilon_x = f(x).$$

For the proof of ' \Rightarrow ', suppose that $\limsup_{n\to\infty} \rho(x_n, x) > 0$. Take

$$f(y) = \min(\rho(y, x), 1), \qquad y \in M,$$

and observe that $f \in C^b(M)$ and

$$\limsup_{n \to \infty} \int f \, d\delta_{x_n} = \limsup_{n \to \infty} (\min(\rho(x_n, x), 1)) > 0$$

while $\int f d\delta_x = 0$.

(ii) Let $(M, \rho) = (\mathfrak{R}, |\cdot|), Q_n = N(\mu_n, \sigma_n^2)$ with $\mu_n \in \mathfrak{R}, \sigma_n > 0$. Claim:

$$Q_n \xrightarrow{w} Q \Leftrightarrow Q = N(\mu, \sigma), \mu_n \to \mu, \sigma_n \to \sigma$$
.

(Here, $N(\mu, 0) = \delta_{\mu}$). **Proof:** ' \Leftarrow ': For $f \in C_b(\mathfrak{R})$,

$$\int f \, dQ_n = 1/\sqrt{2\pi} \cdot \int_{\mathbb{R}} \underbrace{f(\sigma_n \cdot x + \mu_n)}_{\to f(\sigma x + \mu), \le b} \cdot \exp(-1/2 \cdot x^2) \,\lambda_1(dx) \to \int_{\mathbb{R}} f(\sigma \cdot x + \mu) \cdot \exp(-1/2 \cdot x^2) \,\lambda_1(dx)$$

' \Rightarrow ': Übung 8.4.

Remark 2. Note that $Q_n \xrightarrow{w} Q$ does not imply

$$\forall A \in \mathfrak{B}(M) : \lim_{n \to \infty} Q_n(A) = Q(A).$$

For instance, assume $\lim_{n\to\infty} \rho(x_n, x) = 0$ with $x_n \neq x$ for every $n \in \mathbb{N}$. Then

$$\delta_{x_n}(\{x\}) = 0, \qquad \delta_x(\{x\}) = 1.$$

Theorem 1 (Portmanteau Theorem). The following properties are equivalent:

- (i) $Q_n \xrightarrow{\mathrm{w}} Q$,
- (ii) $\forall f \in C^b(M)$ uniformly continuous : $\lim_{n \to \infty} \int f \, dQ_n = \int f \, dQ$,
- (iii) $\forall A \subset M \text{ closed}$: $\limsup_{n \to \infty} Q_n(A) \leq Q(A)$,
- (iv) $\forall A \subset M$ open : $\liminf_{n \to \infty} Q_n(A) \ge Q(A)$,
- (v) $\forall A \in \mathfrak{B}(M) : Q(\partial A) = 0 \implies \lim_{n \to \infty} Q_n(A) = Q(A).$

Proof. See Gänssler, Stute (1977, Satz 8.4.9).

In the sequel, we study the particular case $(M, \mathfrak{B}(M)) = (\mathbb{R}, \mathfrak{B})$, i.e., convergence in distribution for random variables. The Central Limit Theorem deals with this notion of convergence, see the introductory Example I.1 and Section IV.5. Notation: for any $Q \in \mathfrak{M}(\mathbb{R})$

$$F_Q(x) = Q(]-\infty, x]), \qquad x \in \mathbb{R},$$

and for any function $F : \mathbb{R} \to \mathbb{R}$

$$Cont(F) = \{ x \in \mathbb{R} : F \text{ continuous at } x \}.$$

Theorem 2.

$$Q_n \xrightarrow{w} Q \quad \Leftrightarrow \quad \forall x \in \operatorname{Cont}(F_Q) : \lim_{n \to \infty} F_{Q_n}(x) = F_Q(x).$$

Moreover, if $Q_n \xrightarrow{w} Q$ and $\operatorname{Cont}(F_Q) = \mathbb{R}$ then

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |F_{Q_n}(x) - F_Q(x)| = 0.$$

Proof. ' \Rightarrow ': If $x \in \text{Cont}(F_Q)$ and $A =]-\infty, x]$ then $Q(\partial A) = Q(\{x\}) = 0$, see Theorem 1.2. Hence Theorem 1 implies

$$\lim_{n \to \infty} F_{Q_n}(x) = \lim_{n \to \infty} Q_n(A) = Q(A) = F_Q(x).$$

'⇐': Consider a non-empty open set $A \subset \mathbb{R}$. Take pairwise disjoint open intervals A_1, A_2, \ldots such that $A = \bigcup_{i=1}^{\infty} A_i$. Fatous's Lemma implies

$$\liminf_{n \to \infty} Q_n(A) = \liminf_{n \to \infty} \sum_{i=1}^{\infty} Q_n(A_i) \ge \sum_{i=1}^{\infty} \liminf_{n \to \infty} Q_n(A_i).$$

Note that $\mathbb{R} \setminus \operatorname{Cont}(F_Q)$ is countable. Fix $\varepsilon > 0$, and take

$$A_i' = \left[a_i', b_i'\right] \subset A_i$$

for $i \in \mathbb{N}$ such that

$$a'_i, b'_i \in \operatorname{Cont}(F_Q) \land Q(A_i) \le Q(A'_i) + \varepsilon \cdot 2^{-i}.$$

Then

$$\liminf_{n \to \infty} Q_n(A_i) \ge \liminf_{n \to \infty} Q_n(A_i) = Q(A_i) \ge Q(A_i) - \varepsilon \cdot 2^{-i}.$$

We conclude that

$$\liminf_{n \to \infty} Q_n(A) \ge Q(A) - \varepsilon,$$

and therefore $Q_n \xrightarrow{\mathrm{w}} Q$ by Theorem 1. Uniform convergence, Übung 9.1.

Corollary 1.

$$Q_n \xrightarrow{w} Q \land Q_n \xrightarrow{w} \widetilde{Q} \Rightarrow Q = \widetilde{Q}.$$

Proof. By Theorem 2 $F_Q(x) = F_{\tilde{Q}}(x)$ if $x \in D = \operatorname{Cont}(F_Q) \cap \operatorname{Cont}(F_{\tilde{Q}})$. Since D is dense in \mathbb{R} and F_Q as well as $F_{\tilde{Q}}$ are right-continuous, we get $F_Q = F_{\tilde{Q}}$. Apply Theorem 1.3.

Given: random variables X_n , X on $(\Omega, \mathfrak{A}, P)$ for $n \in \mathbb{N}$.

Theorem 3.

$$X_n \xrightarrow{P} X \quad \Rightarrow \quad X_n \xrightarrow{d} X$$

and

$$X_n \xrightarrow{\mathrm{d}} X \land X \text{ constant a.s.} \Rightarrow X_n \xrightarrow{P} X.$$

Proof. Assume $X_n \xrightarrow{P} X$. For $\varepsilon > 0$ and $x \in \mathbb{R}$

$$P(\{X \le x - \varepsilon\}) - P(\{|X - X_n| > \varepsilon\})$$

$$\leq P(\{X \le x - \varepsilon\} \cap \{|X - X_n| \le \varepsilon\})$$

$$\leq P(\{X_n \le x\})$$

$$\leq P(\{X_n \le x\} \cap \{X \le x + \varepsilon\}) + P(\{X_n \le x\} \cap \{X > x + \varepsilon\})$$

$$\leq P(\{X \le x + \varepsilon\}) + P(\{|X - X_n| > \varepsilon\}).$$

Thus

$$F_X(x-\varepsilon) \le \liminf_{n\to\infty} F_{X_n}(x) \le \limsup_{n\to\infty} F_{X_n}(x) \le F_X(x+\varepsilon).$$

For $x \in \text{Cont}(F_X)$ we get $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$. Apply Theorem 2.

Now, assume that $X_n \xrightarrow{d} X$ and $P_X = \varepsilon_x$. Let $\varepsilon > 0$ and take $f \in C^b(\mathbb{R})$ such that $f \ge 0$, f(x) = 0, and f(y) = 1 if $|x - y| \ge \varepsilon$. Then

$$P(\{|X - X_n| > \varepsilon\}) = P(\{|x - X_n| > \varepsilon\}) \le \int \mathbb{1}_{\mathbb{R} \setminus [x - \varepsilon, x + \varepsilon]} dP_{X_n} \le \int f \, dP_{X_n}$$

and

$$\lim_{n \to \infty} \int f \, dP_{X_n} = \int f \, dP_X = 0.$$

Example 2. Consider the uniform distribution P on $\Omega = \{0, 1\}$. Put

$$X_n(\omega) = \omega, \qquad X(\omega) = 1 - \omega.$$

Then $P_{X_n} = P_X$ and therefore

$$X_n \xrightarrow{\mathrm{d}} X.$$

However, $\{|X_n - X| < 1/2\} = \emptyset$ and therefore

$$X_n \xrightarrow{P} X$$
 does not hold.

We quote without proof an interesting converse to Theorem 3:

Theorem 4 (Skorohod). Let $\Omega =]0, 1[$ with the uniform distribution, and $Q_n, Q \in \mathfrak{M}(\mathfrak{R})$. If $Q_n \xrightarrow{w} Q$, then for the random variables

$$X_{Q_n}(\omega) := F_{Q_n}^{-}(z) := \inf\{z \in \Re : \omega \le F_{Q_n}(z)\}, \qquad \omega \in]0, 1[$$

we have $P_{X_{Q_n}} = Q_n$ and $X_{Q_n} \to X_Q$ *P*-a.s..

Remark 3. Skorohod's Theorem is based on a general method to transform uniformly distributed 'random numbers' from]0, 1[into 'random numbers' with distribution Q. Namely, if U is uniformly distributed on]0, 1[and F is some distribution function, $X := F^{-}(U)$ has F as distribution function.

Remark 4.

Let $\mu, \mu_n \in \mathfrak{M}(M)$. Then $\mu_n \xrightarrow{w} \mu \quad \Leftrightarrow \quad \forall_{n_k} \exists_{n_{k_l}} \mu_{n_{k_l}} \xrightarrow{w} \mu$,

see Übung8.3.

Finally, we present a compactness criterion, which is very useful for construction of probability measures on $\mathfrak{B}(M)$. We need a generalized Bolzano–Weierstrass Theorem:

Lemma 1. Let $x_{n,\ell} \in \mathbb{R}$ for $n, \ell \in \mathbb{N}$ with

$$\forall \ell \in \mathbb{N} : \sup_{n \in \mathbb{N}} |x_{n,\ell}| < \infty.$$

Then there exists an increasing sequence $(n_i)_{i \in \mathbb{N}}$ in \mathbb{N} such that

$$\forall \ell \in \mathbb{N} : (x_{n_i,\ell})_{i \in \mathbb{N}}$$
 converges.

Proof. (Sketch, see Billingsley (1979, Thm. 25.13 for details): For fixed l, $x_{n,l}$ is a bounded sequence. Hence, by the original Bolzano–Weierstrass Theorem, there is a subsequence $\pi_1(n)$ (where $\pi_1 : \mathfrak{N} \to \mathfrak{N}$ is a monotone mapping) such that $(x_{\pi(n),1})$ converges. Next, $(x_{\pi_1(n),2})$ is bounded, hence there is $\pi_2 : \mathfrak{N} \to \mathfrak{N}$ monotone such that $x_{\pi_2(\pi_1(n),2)}$ converges. Set $\pi^2 := \pi_2 \circ \pi_1$. Iterating, we can find for each m some $\pi^m = \pi_m \circ \pi^{m-1}$ such that for $l \leq m$, $x_{\pi^m(n),k}$ converges. Define $n_i = \pi^i(i)$.

Definition 2.

(i) $\mathfrak{P} \subset \mathfrak{M}(M)$ tight if

$$\forall \varepsilon > 0 \; \exists K \subset M \text{ compact } \forall P \in \mathfrak{P}: \quad P(K) \ge 1 - \varepsilon.$$

(ii) $\mathfrak{P} \subset \mathfrak{M}(M)$ relatively compact if every sequence in \mathfrak{P} contains a subsequence that converges weakly.

Theorem 5 (Prohorov). Assume that M is a complete separable metric space and $\mathfrak{P} \subset \mathfrak{M}(M)$. Then

 \mathfrak{P} relatively compact $\Leftrightarrow \mathfrak{P}$ tight.

Proof. We only treat the case $M = \Re$; see Parthasarathy (1967, Thm. II.6.7) for the general case.

'⇒': Suppose that \mathfrak{P} is not tight. Then, for some $\varepsilon > 0$, there exists a sequence $(P_n)_{n \in \mathbb{N}}$ in \mathfrak{P} such that

$$P_n([-n,n]) < 1 - \varepsilon.$$

For a suitable subsequence, $P_{n_k} \xrightarrow{w} P \in \mathfrak{M}(\mathbb{R})$. Take m > 0 such that

$$P(]-m,m[) > 1-\varepsilon.$$

Theorem 1 implies

$$P(]-m,m[) \le \liminf_{k \to \infty} P_{n_k}(]-m,m[) \le \liminf_{k \to \infty} P_{n_k}([-n_k,n_k]) < 1-\varepsilon,$$

which is a contradiction.

'⇐': Consider any sequence $(P_n)_{n \in \mathbb{N}}$ in \mathfrak{P} and the corresponding sequence $(F_n)_{n \in \mathbb{N}}$ of distribution functions. Use Lemma 1 to obtain a subsequence $(F_{n_i})_{i \in \mathbb{N}}$ and a nondecreasing function $G : \mathbb{Q} \to [0, 1]$ with

$$\forall q \in \mathbb{Q} : \lim_{i \to \infty} F_{n_i}(q) = G(q).$$

Put

$$F(x) = \inf\{G(q) : q \in \mathbb{Q} \land x < q\}, \qquad x \in \mathbb{R}.$$

Claim (*Helly's Theorem*):

- (i) F is non-decreasing and right-continuous,
- (ii) $\forall x \in \operatorname{Cont}(F)$: $\lim_{i \to \infty} F_{n_i}(x) = F(x)$.

Proof: Ad (i): Obviously F is non-decreasing. For $x \in \mathbb{R}$ and $\varepsilon > 0$ take $\delta_2 > 0$ such that

$$\forall q \in \mathbb{Q} \cap]x, x + \delta_2[: \quad G(q) \le F(x) + \varepsilon.$$

Thus, for $z \in]x, x + \delta_2[$,

$$F(x) \le F(z) \le F(x) + \varepsilon.$$

Ad (ii): If $x \in \text{Cont}(F)$ take $\delta_1 > 0$ such that

$$F(x) - \varepsilon \le F(x - \delta_1).$$

Thus, for $q_1, q_2 \in \mathbb{Q}$ with

$$x - \delta_1 < q_1 < x < q_2 < x + \delta_2,$$

we get

$$F(x) - \varepsilon \leq F(x - \delta_1) \leq G(q_1) \leq \liminf_{i \to \infty} F_{n_i}(x) \leq \limsup_{i \to \infty} F_{n_i}(x)$$
$$\leq G(q_2) \leq F(x) + \varepsilon.$$

Claim:

$$\lim_{x \to -\infty} F(x) = 0 \land \lim_{x \to \infty} F(x) = 1.$$

Proof: For $\varepsilon>0$ take $m\in\mathbb{Q}$ such that

$$\forall n \in \mathbb{N} : P_n(]-m,m]) \ge 1-\varepsilon.$$

Thus

$$G(m) - G(-m) = \lim_{i \to \infty} (F_{n_i}(m) - F_{n_i}(-m)) = \lim_{i \to \infty} P_{n_i}([-m,m]) \ge 1 - \varepsilon.$$

Since $F(m) \ge G(m)$ and $F(-m-1) \le G(-m)$, we obtain

$$F(m) - F(-m-1) \ge 1 - \varepsilon.$$

It remains to apply Theorems 1.3 and 2.

64