
3 Convergence in Distribution

Given: a metric space (M, ρ). Put

Cb(M) = {f : M → R : f bounded, continuous},

and consider the Borel-σ-algebra B(M) in M . Moreover, let M(M) denote the set of

all probability measures on B(M).

Definition 1.

(i) A sequence (Qn)n∈N in M(M) converges weakly to Q ∈ M(M) if

∀ f ∈ Cb(M) : lim
n→∞

∫
f dQn =

∫
f dQ.

Notation: Qn
w−→ Q.

(ii) A sequence (Xn)n∈N of random elements with values in M converges in distribu-

tion to a random element X with values in M iff L(Xn)
w−→ L(X) (recall L(X)

is the distribution of X).

Notation: Xn
d−→ X.

Remark 1. For convergence in distribution the random elements need not be defined

on a common probability space.

In the sequel: Qn, Q ∈ M(M) for n ∈ N.
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Example 1.

(i) For xn, x ∈ M

δxn

w−→ δx ⇔ lim
n→∞

ρ(xn, x) = 0.

For the proof of ‘⇐’, note that∫
f dεxn = f(xn),

∫
f dεx = f(x).

For the proof of ‘⇒’, suppose that lim supn→∞ ρ(xn, x) > 0. Take

f(y) = min(ρ(y, x), 1), y ∈ M,

and observe that f ∈ Cb(M) and

lim sup
n→∞

∫
f dδxn = lim sup

n→∞
(min(ρ(xn, x), 1)) > 0

while
∫

f dδx = 0.

(ii) Let (M, ρ) = (R, | · |), Qn = N(µn, σ
2
n) with µn ∈ R, σn > 0.

Claim:

Qn
w−→ Q ⇔ Q = N(µ, σ), µn → µ, σn → σ .

(Here, N(µ, 0) = δµ).

Proof: ’⇐’: For f ∈ Cb(R),∫
f dQn = 1/

√
2π·

∫
R

f(σn · x + µn)︸ ︷︷ ︸
→f(σx+µ),≤b

· exp(−1/2·x2) λ1(dx) →
∫

R
f(σ·x+µ)·exp(−1/2·x2) λ1(dx) =

∫
fdQ .

’⇒’: Übung 8.4.

Remark 2. Note that Qn
w−→ Q does not imply

∀A ∈ B(M) : lim
n→∞

Qn(A) = Q(A).

For instance, assume limn→∞ ρ(xn, x) = 0 with xn 6= x for every n ∈ N. Then

δxn({x}) = 0, δx({x}) = 1.
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Theorem 1 (Portmanteau Theorem). The following properties are equivalent:

(i) Qn
w−→ Q,

(ii) ∀ f ∈ Cb(M) uniformly continuous : limn→∞
∫

f dQn =
∫

f dQ,

(iii) ∀A ⊂ M closed : lim supn→∞Qn(A) ≤ Q(A),

(iv) ∀A ⊂ M open : lim infn→∞Qn(A) ≥ Q(A),

(v) ∀A ∈ B(M) : Q(∂A) = 0 ⇒ limn→∞Qn(A) = Q(A).

Proof. See Gänssler, Stute (1977, Satz 8.4.9).

In the sequel, we study the particular case (M, B(M)) = (R, B), i.e., convergence in

distribution for random variables. The Central Limit Theorem deals with this notion

of convergence, see the introductory Example I.1 and Section IV.5.

Notation: for any Q ∈ M(R)

FQ(x) = Q(]−∞, x]), x ∈ R,

and for any function F : R → R

Cont(F ) = {x ∈ R : F continuous at x}.

Theorem 2.

Qn
w−→ Q ⇔ ∀x ∈ Cont(FQ) : lim

n→∞
FQn(x) = FQ(x).

Moreover, if Qn
w−→ Q and Cont(FQ) = R then

lim
n→∞

sup
x∈R

|FQn(x)− FQ(x)| = 0.

Proof. ‘⇒’: If x ∈ Cont(FQ) and A = ]−∞, x] then Q(∂A) = Q({x}) = 0, see

Theorem 1.2. Hence Theorem 1 implies

lim
n→∞

FQn(x) = lim
n→∞

Qn(A) = Q(A) = FQ(x).

‘⇐’: Consider a non-empty open set A ⊂ R. Take pairwise disjoint open intervals

A1, A2, . . . such that A =
⋃∞

i=1 Ai. Fatous’s Lemma implies

lim inf
n→∞

Qn(A) = lim inf
n→∞

∞∑
i=1

Qn(Ai) ≥
∞∑
i=1

lim inf
n→∞

Qn(Ai).

Note that R \ Cont(FQ) is countable. Fix ε > 0, and take

A′
i = ]a′i, b

′
i] ⊂ Ai

for i ∈ N such that

a′i, b
′
i ∈ Cont(FQ) ∧ Q(Ai) ≤ Q(A′

i) + ε · 2−i.
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Then

lim inf
n→∞

Qn(Ai) ≥ lim inf
n→∞

Qn(A′
i) = Q(A′

i) ≥ Q(Ai)− ε · 2−i.

We conclude that

lim inf
n→∞

Qn(A) ≥ Q(A)− ε,

and therefore Qn
w−→ Q by Theorem 1.

Uniform convergence, Übung 9.1.

Corollary 1.

Qn
w−→ Q ∧ Qn

w−→ Q̃ ⇒ Q = Q̃.

Proof. By Theorem 2 FQ(x) = FQ̃(x) if x ∈ D = Cont(FQ) ∩ Cont(FQ̃). Since D

is dense in R and FQ as well as FQ̃ are right-continuous, we get FQ = FQ̃. Apply

Theorem 1.3.

Given: random variables Xn, X on (Ω, A, P ) for n ∈ N.

Theorem 3.

Xn
P−→ X ⇒ Xn

d−→ X

and

Xn
d−→ X ∧ X constant a.s. ⇒ Xn

P−→ X.

Proof. Assume Xn
P−→ X. For ε > 0 and x ∈ R

P ({X ≤ x− ε})− P ({|X −Xn| > ε})
≤ P ({X ≤ x− ε} ∩ {|X −Xn| ≤ ε})
≤ P ({Xn ≤ x})
≤ P ({Xn ≤ x} ∩ {X ≤ x + ε}) + P ({Xn ≤ x} ∩ {X > x + ε})
≤ P ({X ≤ x + ε}) + P ({|X −Xn| > ε}).

Thus

FX(x− ε) ≤ lim inf
n→∞

FXn(x) ≤ lim sup
n→∞

FXn(x) ≤ FX(x + ε).

For x ∈ Cont(FX) we get limn→∞ FXn(x) = FX(x). Apply Theorem 2.

Now, assume that Xn
d−→ X and PX = εx. Let ε > 0 and take f ∈ Cb(R) such that

f ≥ 0, f(x) = 0, and f(y) = 1 if |x− y| ≥ ε. Then

P ({|X −Xn| > ε}) = P ({|x−Xn| > ε}) ≤
∫

1R\[x−ε,x+ε] dPXn ≤
∫

f dPXn

and

lim
n→∞

∫
f dPXn =

∫
f dPX = 0.
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Example 2. Consider the uniform distribution P on Ω = {0, 1}. Put

Xn(ω) = ω, X(ω) = 1− ω.

Then PXn = PX and therefore

Xn
d−→ X.

However, {|Xn −X| < 1/2} = ∅ and therefore

Xn
P−→ X does not hold.

We quote without proof an interesting converse to Theorem 3:

Theorem 4 (Skorohod). Let Ω =]0, 1[ with the uniform distribution, and Qn, Q ∈
M(R). If Qn

w−→ Q, then for the random variables

XQn(ω) := F−
Qn

(z) := inf{z ∈ R : ω ≤ FQn(z)}, ω ∈]0, 1[

we have PXQn
= Qn and XQn → XQ P–a.s..

Remark 3. Skorohod’s Theorem is based on a general method to transform uniformly

distributed ‘random numbers’ from ]0, 1[ into ‘random numbers’ with distribution Q.

Namely, if U is uniformly distributed on ]0, 1[ and F is some distribution function,

X := F−(U) has F as distribution function.

Remark 4. Let µ, µn ∈ M(M). Then

µn
w−→ µ ⇔ ∀nk

∃nkl
µnkl

w−→ µ ,

see Übung8.3.

Finally, we present a compactness criterion, which is very useful for construction of

probability measures on B(M). We need a generalized Bolzano–Weierstrass Theorem:

Lemma 1. Let xn,` ∈ R for n, ` ∈ N with

∀ ` ∈ N : sup
n∈N

|xn,`| < ∞.

Then there exists an increasing sequence (ni)i∈N in N such that

∀ ` ∈ N : (xni,`)i∈N converges.

Proof. (Sketch, see Billingsley (1979, Thm. 25.13 for details): For fixed l, xn,l is a

bounded sequence. Hence, by the original Bolzano–Weierstrass Theorem, there is a

subsequence π1(n) (where π1 : N → N is a monotone mapping) such that (xπ(n),1)

converges. Next, (xπ1(n),2) is bounded, hence there is π2 : N → N monotone such

that xπ2(π1(n),2) converges. Set π2 := π2 ◦ π1. Iterating, we can find for each m some

πm = πm ◦ πm−1 such that for l ≤ m, xπm(n),k converges. Define ni = πi(i).

Definition 2.
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(i) P ⊂ M(M) tight if

∀ ε > 0 ∃K ⊂ M compact ∀P ∈ P : P (K) ≥ 1− ε.

(ii) P ⊂ M(M) relatively compact if every sequence in P contains a subsequence

that converges weakly.

Theorem 5 (Prohorov). Assume that M is a complete separable metric space and

P ⊂ M(M). Then

P relatively compact ⇔ P tight.

Proof. We only treat the case M = R; see Parthasarathy (1967, Thm. II.6.7) for the

general case.

‘⇒’: Suppose that P is not tight. Then, for some ε > 0, there exists a sequence

(Pn)n∈N in P such that

Pn([−n, n]) < 1− ε.

For a suitable subsequence, Pnk

w−→ P ∈ M(R). Take m > 0 such that

P (]−m, m[) > 1− ε.

Theorem 1 implies

P (]−m, m[) ≤ lim inf
k→∞

Pnk
(]−m,m[) ≤ lim inf

k→∞
Pnk

([−nk, nk]) < 1− ε,

which is a contradiction.

‘⇐’: Consider any sequence (Pn)n∈N in P and the corresponding sequence (Fn)n∈N
of distribution functions. Use Lemma 1 to obtain a subsequence (Fni

)i∈N and a non-

decreasing function G : Q → [0, 1] with

∀ q ∈ Q : lim
i→∞

Fni
(q) = G(q).

Put

F (x) = inf{G(q) : q ∈ Q ∧ x < q}, x ∈ R.

Claim (Helly’s Theorem):

(i) F is non-decreasing and right-continuous,

(ii) ∀x ∈ Cont(F ) : limi→∞ Fni
(x) = F (x).

Proof: Ad (i): Obviously F is non-decreasing. For x ∈ R and ε > 0 take δ2 > 0 such

that

∀ q ∈ Q ∩ ]x, x + δ2[ : G(q) ≤ F (x) + ε.

Thus, for z ∈ ]x, x + δ2[,

F (x) ≤ F (z) ≤ F (x) + ε.

Ad (ii): If x ∈ Cont(F ) take δ1 > 0 such that

F (x)− ε ≤ F (x− δ1).
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Thus, for q1, q2 ∈ Q with

x− δ1 < q1 < x < q2 < x + δ2,

we get

F (x)− ε ≤ F (x− δ1) ≤ G(q1) ≤ lim inf
i→∞

Fni
(x) ≤ lim sup

i→∞
Fni

(x)

≤ G(q2) ≤ F (x) + ε.

Claim:

lim
x→−∞

F (x) = 0 ∧ lim
x→∞

F (x) = 1.

Proof: For ε > 0 take m ∈ Q such that

∀n ∈ N : Pn(]−m,m]) ≥ 1− ε.

Thus

G(m)−G(−m) = lim
i→∞

(
Fni

(m)− Fni
(−m)

)
= lim

i→∞
Pni

(]−m, m]) ≥ 1− ε.

Since F (m) ≥ G(m) and F (−m− 1) ≤ G(−m), we obtain

F (m)− F (−m− 1) ≥ 1− ε.

It remains to apply Theorems 1.3 and 2.
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