3 Convergence in Distribution

Given: a metric space (M, p). Put
C*(M)={f: M — R : f bounded, continuous},

and consider the Borel-o-algebra B(M) in M. Moreover, let (M) denote the set of
all probability measures on B(M).

Definition 1.

(i) A sequence (Qp)nen in M(M) converges weakly to Q € M(M) if
vrechan;: lim [ dQ. - [ fiQ

Notation: Q,, — Q.

(ii) A sequence (X,,)nen of random elements with values in M converges in distribu-
tion to a random element X with values in M iff £(X,) — £(X) (recall £(X)
is the distribution of X).

Notation: X, 4 x.

Remark 1. For convergence in distribution the random elements need not be defined
on a common probability space.

In the sequel: @,, @ € M(M) for n € N.
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Example 1.

(i) For z,, v € M
0p, —= 0, & lim p(z,,z)=0.

n—oo

For the proof of ‘<=’ note that

[den= s [ gde=fa)
For the proof of ‘=, suppose that limsup,,_, . p(x,,x) > 0. Take

f(y) :min(p(y,m),l), yeM,

and observe that f € C*(M) and

lim sup/fdéxn = lim sup(min(p(x,,x),1)) > 0

n—oo n—oo

while [ fdd, =0.

(ii) Let (M,p) = (R,|-|), Qn = N(jtn,0?) with p, € R, 7, > 0.
Claim:
QnLQ@Q:N(MaU)aﬂnHMagn_}U-

(Here, N(11,0) =4,,).
Proof: '<’: For f € Cy(*R),

[ £dQu=1Ver [ flon- 5+ pa)-ep(-1/2a%) Mldo) [ flotexp(-1/2:5%) d(da)
R ~——— R
—floz+p),<b
'=": Ubung 8.4.
Remark 2. Note that @, — @ does not imply

VAeB(M): lim Q.(A) = Q(A).

n—oo

For instance, assume lim,, .o, p(x,, ) = 0 with z,, # x for every n € N. Then

00, ({x}) =0, &:({z}) =1
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Theorem 1 (Portmanteau Theorem). The following properties are equivalent:
() Q- Q.

(ii) V f € C*(M) uniformly continuous : lim, . [ fdQ, = [ fdQ,

(iii) VA C M closed : limsup,,_. Qn(A4) < Q(A),

(iv) VA C M open : liminf, . Q,(A4) > Q(A),

(v) VAeB(M): QOA) =0 = lim,_o @n(A) = Q(A).

Proof. See Géanssler, Stute (1977, Satz 8.4.9). O

In the sequel, we study the particular case (M,B(M)) = (R,B), i.e., convergence in
distribution for random variables. The Central Limit Theorem deals with this notion
of convergence, see the introductory Example 1.1 and Section IV.5.

Notation: for any @) € M(R)
Fo(z) = Q(]—o0, ), z €R,
and for any function F': R — R
Cont(F) = {z € R: F continuous at z}.
Theorem 2.

Qn — Q < Ve Cont(Fy): lim Fy, (z) = Fo(x).

n—oo

Moreover, if @), — @ and Cont(Fg) = R then

lim sup |Fy, (x) — Fg(x)| = 0.

n—00 zeR
Proof. ‘=" If © € Cont(Fyp) and A = |—o0,z] then Q(0A) = Q({z}) = 0, see

Theorem 1.2. Hence Theorem 1 implies

lim Fp, () = lim Qu(4) = Q(A) = Fy(x).

n—oo

‘=": Consider a non-empty open set A C R. Take pairwise disjoint open intervals
Ay, Ay, ... such that A =J;°, A;. Fatous’s Lemma implies

n—oo n—oo n—oo

lim inf Qn(A) = liminf Y~ Qn(A;) > > liminf Q,(A;).
i=1 i=1
Note that R\ Cont(Fy) is countable. Fix ¢ > 0, and take
A; = ]aiab;] - AZ

for 7 € N such that

a;, b, € Cont(Fg) A Q(A;) < Q(A) +e-27".

1) 71
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Then
liminf Q,(4;) > liminf Q,(A)) = Q(4)) > Q(A;) —e-27".

n—oo n—oo

We conclude that
liminf Q,(4) > Q(4) — e,

n—oo

and therefore ),, — @ by Theorem 1.

Uniform convergence, Ubung 9.1. O

Corollary 1. B N

Proof. By Theorem 2 Fg(x) = Fg(z) if x € D = Cont(Fg) N Cont(Fg). Since D

is dense in R and Fq as well as Fjz are right-continuous, we get Fo = Fp. Apply
Theorem 1.3. [

Given: random variables X,,, X on (2,2, P) for n € N.

Theorem 3.
X, 5Hx = Xx,%LXx

and
X 4, X A X constant a.s. = X, X

Proof. Assume X, L X. Fore>0andz € R

PH{X <z —e}) - P{IX = Xu| > €})

(X <z—e}n{lX - X,[<e})

{Xn <a})
{Xp<z}n{X <z+e})+ P{X,<z}n{X >z+¢})
{X <z+e}h)+ P{|X — X,,| > ¢}).

VAN VAN VAR VAN
ST

Thus
Fx(x —¢) <liminf Fx, (x) < limsup Fx, (z) < Fx(z + ¢).

n—oo n—o0o

For z € Cont(Fy) we get lim,,_,, Fx, () = Fx(z). Apply Theorem 2.

Now, assume that X, 9, X and Px = ¢,. Let ¢ > 0 and take f € C*(R) such that
f>0, f(x) =0, and f(y) =1if |t —y| > . Then

PUIX = X[ > e}) = Ple = Xl > ) < [ taocanadPy, < [ faPy,

and
lim [ fdPx, = /fdPX = 0.
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Example 2. Consider the uniform distribution P on 2 = {0,1}. Put
Xp(w) =w, Xw)=1-w.

Then Px, = Px and therefore
X, L x.

However, {| X, — X| < 1/2} = 0 and therefore
X, P, X does not hold.

We quote without proof an interesting converse to Theorem 3:

Theorem 4 (Skorohod). Let 2 =|0, 1] with the uniform distribution, and @,,Q €
M(NR). If Q,, — Q, then for the random variables

Xq,(w) =F, () =inf{z e R : w<Fy,(2)}, w €]0,1]
we have Px, = Q, and X, — Xg P-as..

Remark 3. Skorohod’s Theorem is based on a general method to transform uniformly
distributed ‘random numbers’ from |0, 1[ into ‘random numbers’ with distribution Q.
Namely, if U is uniformly distributed on ]0,1[ and F' is some distribution function,
X = F~(U) has F as distribution function.

Remark 4. Let p, p1,, € M(M). Then
Hn — poos Elml Hny,, — s
see Ubung8.3.

Finally, we present a compactness criterion, which is very useful for construction of
probability measures on B(M). We need a generalized Bolzano—Weierstrass Theorem:

Lemma 1. Let 2,0 € R for n,¢ € N with

VeeN: sup |, < .
neN

Then there exists an increasing sequence (n;);eny in N such that
V0 eN: (xp,4)ien converges.

Proof. (Sketch, see Billingsley (1979, Thm. 25.13 for details): For fixed [, z,,; is a
bounded sequence. Hence, by the original Bolzano—Weierstrass Theorem, there is a
subsequence 71 (n) (where m; : 9 — I is a monotone mapping) such that (z(n)1)
converges. Next, (%, (n)2) is bounded, hence there is 7, : 9 — 91 monotone such
that @, (x,(n),2) converges. Set 7% := my o m. Iterating, we can find for each m some
" = T, o w1 such that for [ < m, @zm(y) s converges. Define n; = (7). O

Definition 2.
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(i) P C M(M) tight if
Ve>03dK C M compact VPeP: P(K)>1-—c¢.

(i) P C M(M) relatively compact if every sequence in P contains a subsequence
that converges weakly.

Theorem 5 (Prohorov). Assume that M is a complete separable metric space and
B C M(M). Then
B relatively compact < P tight.

Proof. We only treat the case M = fR; see Parthasarathy (1967, Thm. I1.6.7) for the
general case.
‘=": Suppose that P is not tight. Then, for some € > 0, there exists a sequence
(Pp)nen in B such that

P,([-n,n]) <1 —e.

For a suitable subsequence, P,, — P € M(R). Take m > 0 such that
P(l—m,m[) >1—¢.
Theorem 1 implies

P(]—m,m]) < lign inf P, (]—m,m[) < li}gn inf P, ([—ng,ni]) <1 —¢,

which is a contradiction.

‘=": Consider any sequence (P,)nen in P and the corresponding sequence (F,)nen
of distribution functions. Use Lemma 1 to obtain a subsequence (F,,);eny and a non-
decreasing function G : Q — [0, 1] with

VgeQ: lim £, (q) = G(q).

Put
F(z) =inf{G(q) : q € Q ANz < ¢}, z e R.

Claim (Helly’s Theorem):

(i) F' is non-decreasing and right-continuous,
(ii)) Vo € Cont(F) : lim; o F, () = F(x).

Proof: Ad (i): Obviously F' is non-decreasing. For z € R and ¢ > 0 take dy > 0 such
that
VgeQnlz,z+d): G(g) < F(x)+e.

Thus, for z € |x,x + ds],
Fz) < F(z) < Fz) +e.

Ad (ii): If z € Cont(F) take 6; > 0 such that

F(x) —e < F(x — 01).
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Thus, for q1, ¢, € Q with

T—0 <1 << <x+ 0o,

we get
Flz)—e<F(x—68)<G(qn)< liggf F,,(z) <limsup F, (z)
< G(g2) < F(x) +¢.
Claim:

IE@WF(x) =0 A gclirgloF(x) = 1.
Proof: For € > 0 take m € Q such that
VneN: P,(]J-m,m]) >1—e.
Thus
G(m) = G(=m) = lim (Fy, (m) — Fy,(=m)) = lim Py (J=m,m]) = 1 <.
Since F(m) > G(m) and F(—m — 1) < G(—m), we obtain
F(m)—F(-m—-1)>1—-c¢.

It remains to apply Theorems 1.3 and 2.
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