
2 Convergence in Probability

Motivated by the Examples II.5.2 and II.6.1 we introduce a notion of convergence

that is weaker than convergence in mean and convergence almost surely.

In the sequel, X, Xn, etc. random variables on a common probability space (Ω, A, P ).

Lemma 1.

Xn
P -a.s.−→ X ⇔ ∀ ε > 0 : lim

n→∞
P

({
sup
m≥n

|Xm −X| > ε

})
= 0.

Proof. Clearly, {
Xn → X

}︸ ︷︷ ︸
=:A

=
⋂
k∈N

⋃
n∈N

⋂
m≥n

{
|Xm −X| ≤ 1/k

}
︸ ︷︷ ︸

=:Cn,k︸ ︷︷ ︸
=:Bk

.

Hence, Bk ↓ A and Ck,n ↑ Bk. Thus, using the σ-continuity of P ,

Xn
P -a.s.−→ X

⇔ ∀ k ∈ N : P (Bk) = 1

⇔ ∀ k ∈ N : lim
n→∞

P (Ck,n) = 1

⇔ ∀ k ∈ N : lim
n→∞

P

({
sup
m≥n

|Xm −X| > 1/k

})
= 0.

Definition 1. (Xn)n converges to X in probability if

∀ ε > 0 : lim
n→∞

P ({|Xn −X| > ε}) = 0.

Notation: Xn
P−→ X.

Remark 1. By Lemma 1,

Xn
P -a.s.−→ X ⇒ Xn

P−→ X.

Example II.6.1 shows that ‘⇐’ does not hold in general. The Law of Large Numbers

deals with convergence almost surely or convergence in probability, see the introduc-

tory Example I.1 and Sections IV.2 and IV.3.

Theorem 1 (Chebyshev-Markov Inequality). For every ε > 0 and every p ∈
[1,∞[ we have

P (|X| > ε) ≤ 1

εp
· E|X|p.

Proof.

E|X|p =

∫
Ω

|X|pdP ≥
∫
{|X|≥ε}

|X|pdP ≥ εp · P ({|X| > ε}) .
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Replace X by X − E(X) to derive

Corollary 1 (Chebyshev Inequality, original version). If E(X2) < ∞, then

P ({|X − E(X)| ≥ ε}) ≤ 1

ε2
· Var(X).

Theorem 2.

d(X,Y ) =

∫
min(1, |X − Y |) dP

defines a semi-metric on Z(Ω, A), and

Xn
P−→ X ⇔ lim

n→∞
d(Xn, X) = 0.

Proof. ‘⇒’: Let Xn
P−→ X. For ε > 0∫

min(1, |Xn −X|) dP

=

∫
{|Xn−X|>ε}

min(1, |Xn −X|) dP +

∫
{|Xn−X|≤ε}

min(1, |Xn −X|) dP

≤ P ({|Xn −X| > ε}) + min(1, ε).

‘⇐’: Let 0 < ε < 1. Use Theorem 1 to obtain

P ({|Xn −X| > ε}) = P ({min(1, |Xn −X|) > ε})

≤ 1

ε
·
∫

min(1, |Xn −X|) dP =
1

ε
· d(Xn, X).

Remark 2. By Theorem 2,

Xn
Lp

−→ X ⇒ Xn
P−→ X.

Example II.5.2 shows that ‘⇐’ does not hold in general.

Corollary 2.

Xn
P−→ X ⇒ ∃nk

Xnk

P -a.s.−→ X.

(Read: There exists a subsequence indexed by nk, such that..)

Proof. Due to Theorems II.6.3 and 2 there exists a subsequence (Xnk
)k∈N such that

min(1, |Xnk
−X|) P -a.s.−→ 0.

Remark 3. In any semi-metric space (M, d), for any an, a ∈ M we have

an → a ⇔ ∀nk
∃nkl

ankl
→ a .

This is easily verified by reduction (via d(an, n)) to convergence of reals to 0, then

proof by contradiction.
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Corollary 3.

Xn
P−→ X ⇔ ∀nk

∃nkl
Xnk`

P -a.s.−→ X.

Proof. ‘⇒’: Corollary 2. ‘⇐’: Remarks 1 and 3 together with Theorem 2.

Remark 4. We conclude that, in general, there is no semi-metric on Z(Ω, A) that

defines a.s.-convergence. However, if Ω is countable, then

Xn
P -a.s.−→ X ⇔ Xn

P−→ X.

Proof: Übung 8.2.

Lemma 2. Let −→ denote convergence almost everywhere or convergence in proba-

bility. If X
(i)
n −→ X(i) for i = 1, . . . , k and f : Rk → R is continuous, then

f ◦ (X(1)
n , . . . , X(k)

n ) −→ f ◦ (X(1), . . . , X(k)).

Proof. Trivial for convergence almost everywhere, and by Corollary 3 the conclusion

holds for convergence in probability, too.

Corollary 4. Let Xn
P−→ X. Then

Xn
P−→ Y ⇔ X = Y P -a.s.

Proof. Corollary 3 and Lemma II.6.1.
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