Chapter III

Basic Concepts of Probability Theory

Context for probability theoretical concepts: a probability space $(\Omega, \mathfrak{A}, P)$.
Terminology: $A \in \mathfrak{A}$ event, $P(A)$ probability of the event $A \in \mathfrak{A}$.

1 Random Variables and Distributions

Given: a probability space $(\Omega, \mathfrak{A}, P)$ and a measurable space $\left(\Omega^{\prime}, \mathfrak{A}^{\prime}\right)$.
Definition 1. $X: \Omega \rightarrow \Omega^{\prime}$ random element if X is $\mathfrak{A}-\mathfrak{A}^{\prime}$-measurable. Particular cases:
(i) X (real) random variable if $\left(\Omega^{\prime}, \mathfrak{A}^{\prime}\right)=(\mathbb{R}, \mathfrak{B})$,
(ii) X numerical random variable if $\left(\Omega^{\prime}, \mathfrak{A}^{\prime}\right)=(\overline{\mathbb{R}}, \overline{\mathfrak{B}})$,
(iii) $X k$-dimensional (real) random vector if $\left(\Omega^{\prime}, \mathfrak{A}^{\prime}\right)=\left(\mathbb{R}^{k}, \mathfrak{B}_{k}\right)$,
(iv) $X k$-dimensional numerical random vector if $\left(\Omega^{\prime}, \mathfrak{A}^{\prime}\right)=\left(\overline{\mathbb{R}}^{k}, \overline{\mathfrak{B}}_{k}\right)$.

Definition 2.

(i) Distribution (probability law) of a random element $X: \Omega \rightarrow \Omega^{\prime}$ (with respect to P)

$$
\mathfrak{L}(X):=P_{X}\left(A^{\prime}\right):=P\left(\left\{X^{-1}\left(A^{\prime}\right)\right\}\right), \quad A^{\prime} \in \mathfrak{A}^{\prime}
$$

Notation: Q Prob. measure on $\left(\Omega^{\prime}, \mathfrak{A}^{\prime}\right)$, then $X \sim Q$ iff $P_{X}=Q$.
(ii) Given: probability spaces $\left(\Omega_{1}, \mathfrak{A}_{1}, P_{1}\right),\left(\Omega_{2}, \mathfrak{A}_{2}, P_{2}\right)$ and random elements

$$
X_{1}: \Omega_{1} \rightarrow \Omega^{\prime}, \quad X_{2}: \Omega_{2} \rightarrow \Omega^{\prime} .
$$

X_{1} and X_{2} are identically distributed if

$$
\left(P_{1}\right)_{X_{1}}=\left(P_{2}\right)_{X_{2}} .
$$

Remark 1.

(i) For random elements $X, Y: \Omega \rightarrow \Omega^{\prime}$

$$
X=Y P \text {-a.s. } \quad \Rightarrow \quad P_{X}=P_{Y},
$$

but the converse is not true in general. For instance, let P be the uniform distribution on $\Omega=\{0,1\}$ and define $X(\omega)=\omega$ and $Y(\omega)=1-\omega$.
(ii) For every probability measure Q on $\left(\Omega^{\prime}, \mathfrak{A}^{\prime}\right)$ there exists a probability space $(\Omega, \mathfrak{A}, P)$ and a random element $X: \Omega \rightarrow \Omega^{\prime}$ such that $X \sim Q$: Choose $(\Omega, \mathfrak{A}, P)=\left(\Omega^{\prime}, \mathfrak{A}^{\prime}, Q\right)$ and $X=\operatorname{id}_{\Omega}$.
(iii) A major part of probability theory deals with properties of random elements that can be formulated in terms of their distributions.

Example 1.

(i) Discrete distributions, specified by a countable set $\emptyset \neq D \subset \Omega^{\prime}$ and a mapping $p: D \rightarrow \mathbb{R}$ such that

$$
\forall r \in D: p(r) \geq 0 \quad \wedge \quad \sum_{r \in D} p(r)=1,
$$

namely,

$$
P_{X}=\sum_{r \in D} p(r) \cdot \varepsilon_{r} .
$$

Thus, if $\{r\} \in \mathfrak{A}^{\prime}$ for every $r \in D$,

$$
P(\{X=r\})=p(r) .
$$

If $|D|<\infty$ then $p(r)=\frac{1}{|D|}$ yields the uniform distribution on D.
For $\left(\Omega^{\prime}, \mathfrak{A}^{\prime}\right)=(\mathbb{R}, \mathfrak{B})$

$$
B(n, p)=\sum_{k=0}^{n}\binom{n}{k} \cdot p^{k}(1-p)^{n-k} \cdot \varepsilon_{k}
$$

is the binomial distribution with parameters $n \in \mathbb{N}$ and $p \in[0,1]$. In particular, for $n=1$ we get the Bernoulli distribution

$$
B(1, p)=(1-p) \cdot \varepsilon_{0}+p \cdot \varepsilon_{1} .
$$

Further examples include the geometric distribution with parameter $p \in] 0,1]$,

$$
G(p)=\sum_{k=1}^{\infty} p \cdot(1-p)^{k-1} \cdot \varepsilon_{k},
$$

and the Poisson distribution with parameter $\lambda>0$,

$$
\pi(\lambda)=\sum_{k=0}^{\infty} \exp (-\lambda) \cdot \frac{\lambda^{k}}{k!} \cdot \varepsilon_{k} .
$$

(ii) Distributions on $\left(\mathbb{R}^{k}, \mathfrak{B}_{k}\right)$ that are absolutely continuous w.r.t. λ_{k}, namely, due to the Radon-Nikodym-Theorem

$$
P_{X}=f \cdot \lambda_{k},
$$

where

$$
f \in \overline{\mathfrak{Z}}_{+}\left(\mathbb{R}^{k}, \mathfrak{B}_{k}\right) \quad \wedge \quad \int f d \lambda_{k}=1
$$

Thus

$$
P\left(\left\{X \in A^{\prime}\right\}\right)=\int_{A^{\prime}} f d \lambda_{k}
$$

for every $A^{\prime} \in \mathfrak{B}_{k}$.
We present some examples in the case $k=1$. The normal distribution

$$
N\left(\mu, \sigma^{2}\right)=f \cdot \lambda_{1}
$$

with parameters $\mu \in \mathbb{R}$ and σ^{2}, where $\sigma>0$, is obtained by

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right), \quad x \in \mathbb{R}
$$

The exponential distribution with parameter $\lambda>0$ is obtained by

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ \lambda \cdot \exp (-\lambda x) & \text { if } x \geq 0\end{cases}
$$

The uniform distribution on $D \in \mathfrak{B}$ with $\left.\lambda_{1}(D) \in\right] 0, \infty[$ is obtained by

$$
f=\frac{1}{\lambda_{1}(D)} \cdot 1_{D}
$$

(iii) Distributions on product spaces can be constructed by means of the results from Section II.8.

Remark 2. Define $\infty^{r}=\infty$ for $r>0$. For $1 \leq p<q<\infty$ and $X \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$

$$
\int|X|^{p} d P \leq\left(\int|X|^{q} d P\right)^{p / q}
$$

due to Hölder's inequality.
Notation:

$$
\mathfrak{L}=\mathfrak{L}(\Omega, \mathfrak{A}, P)=\left\{X \in \mathfrak{Z}(\Omega, \mathfrak{A}): \int|X| d P<\infty\right\}
$$

is the class of P-integrable random variables, and analogously

$$
\overline{\mathfrak{L}}=\overline{\mathfrak{L}}(\Omega, \mathfrak{A}, P)=\left\{X \in \overline{\mathfrak{J}}(\Omega, \mathfrak{A}): \int|X| d P<\infty\right\}
$$

is the class of P-integrable numerical random variables. We consider P_{X} as a distribution on $(\mathbb{R}, \mathfrak{B})$ if $P(\{X \in \mathbb{R}\})=1$ for a numerical random variable X, and we consider \mathfrak{L} as a subspace of $\overline{\mathfrak{L}}$.

Definition 3. For $X \in \overline{\mathfrak{L}}$

$$
\mathrm{E}(X)=\int X d P
$$

is the expectation of X. For $X \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ such that $X^{2} \in \overline{\mathfrak{L}}$

$$
\operatorname{Var}(X)=\int(X-\mathrm{E}(X))^{2} d P
$$

and $\sqrt{\operatorname{Var}(X)}$ are the variance and the standard deviation of X, respectively.
Remark 3. Theorem II.9.1 implies

$$
\int_{\Omega}|X|^{p} d P<\infty \quad \Leftrightarrow \quad \int_{\mathbb{R}}|x|^{p} P_{X}(d x)<\infty
$$

for $X \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$, in which case, for $p=1$

$$
\mathrm{E}(X)=\int_{\mathbb{R}} x P_{X}(d x)
$$

and for $p=2$

$$
\operatorname{Var}(X)=\int_{\mathbb{R}}(x-\mathrm{E}(X))^{2} P_{X}(d x)
$$

Thus $\mathrm{E}(X)$ and $\operatorname{Var}(X)$ depend only on P_{X}.

Example 2.

$$
\begin{array}{lll}
X \sim B(n, p) & \mathrm{E}(X)=n \cdot p & \operatorname{Var}(X)=n \cdot p \cdot(1-p) \\
X \sim G(p) & \mathrm{E}(X)=\frac{1}{p} & \operatorname{Var}(X)=\frac{1-p}{p^{2}} \\
X \sim \pi(\lambda) & \mathrm{E}(X)=\lambda & \operatorname{Var}(X)=\lambda,
\end{array}
$$

see Introduction to Statistics.
X is Cauchy distributed with parameter $\alpha>0$ if $X \sim f \cdot \lambda_{1}$ where

$$
f(x)=\frac{\alpha}{\pi\left(\alpha^{2}+x^{2}\right)}, \quad x \in \mathbb{R}
$$

Since $\int_{0}^{t} \frac{x}{1+x^{2}} d x=\frac{1}{2} \log \left(1+t^{2}\right)$ neither $\mathrm{E}\left(X^{+}\right)<\infty$ nor $\mathrm{E}\left(X^{-}\right)<\infty$, and therefore $X \notin \mathfrak{L}$.
If $X \sim N\left(\mu, \sigma^{2}\right)$ then

$$
\mathrm{E}(X)=\mu \quad \wedge \quad \operatorname{Var}(X)=\sigma^{2}
$$

see Introduction to Statistics.
If X is exponentially distributed with parameter $\lambda>0$ then

$$
\mathrm{E}(X)=\frac{1}{\lambda} \quad \wedge \quad \operatorname{Var}(X)=\frac{1}{\lambda^{2}}
$$

Definition 4. Let $X=\left(X_{1}, \ldots, X_{k}\right)$ be a random vector. Then

$$
\begin{aligned}
& F_{X}: \mathbb{R}^{k} \rightarrow[0,1] \\
& \left.\left.\qquad\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{X}\left(\prod_{i=1}^{k}\right]-\infty, x_{i}\right]\right)=P\left(\bigcap_{i=1}^{k}\left\{X_{i} \leq x_{i}\right\}\right)
\end{aligned}
$$

is called the distribution function of X.
Theorem 1. Given: probability spaces $\left(\Omega_{1}, \mathfrak{A}_{1}, P_{1}\right),\left(\Omega_{2}, \mathfrak{A}_{2}, P_{2}\right)$ and random vectors

$$
X^{1}: \Omega_{1} \rightarrow \mathbb{R}^{k}, \quad X^{2}: \Omega_{2} \rightarrow \mathbb{R}^{k}
$$

Then

$$
\left(P_{1}\right)_{X^{1}}=\left(P_{2}\right)_{X^{2}} \quad \Leftrightarrow \quad F_{X^{1}}=F_{X^{2}} .
$$

Proof. ' \Rightarrow ' holds trivially. ' \Leftarrow ': $\left(P_{1}\right)_{X^{1}}$ and $\left(P_{2}\right)_{X^{2}}(A)$ coincide by assumption on the \cap-stable class

$$
\left.\left.\mathfrak{E}=\left\{\prod_{i=1}^{k}\right]-\infty, x_{i}\right]: x_{1}, \ldots, x_{k} \in \mathbb{R}\right\} ;
$$

hence by Theorem II.4.4 they coincide on $\sigma(\mathfrak{E})=\mathfrak{B}_{k}$ (see Remark II.1.6).
For notational convenience, we consider the case $k=1$ in the sequel.

Theorem 2.

(i) F_{X} is non-decreasing,
(ii) F_{X} is right-continuous,
(iii) $\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $\lim _{x \rightarrow \infty} F_{X}(x)=1$,
(iv) F_{X} is continuous at x iff $P(\{X=x\})=0$.

Proof. Übung 4.1 a).
Theorem 3. For every function F that satisfies (i)-(iii) from Theorem 2, $\underset{1}{\exists} Q$ probability measure on $\mathfrak{B}: \forall x \in \mathbb{R}: Q(]-\infty, x])=F(x)$.

Proof. Analogously to the construction of the Lebesgue measure; see Übung 4.1.b).

