Chapter 111

Basic Concepts of Probability
Theory

Context for probability theoretical concepts: a probability space (2,2, P).
Terminology: A € A event, P(A) probability of the event A € .

1 Random Variables and Distributions

Given: a probability space (£2,2, P) and a measurable space (', 2").

Definition 1. X : Q — ' random element if X is A-2'-measurable. Particular cases:
(i) X (real) random variable if (', A’) = (R,*B),

(ii) X numerical random variable if (', ') = (R, B),

(iii) X k-dimensional (real) random vector if (0, A") = (R*, B,

(iv) X k-dimensional numerical random vector if (', A") = (@k,%k).

Definition 2.

(i) Distribution (probability law) of a random element X : Q — Q' (with respect to
P)
£(X) = Px(A) = P{X1(A)}), Ae

Notation: @ Prob. measure on (2',2’), then X ~ @ iff Px = Q.
(ii) Given: probability spaces (21,21, P1), (22,25, P,) and random elements
X1291—>Q/, X2292—>Q/.

X, and Xy are identically distributed if

(P1)x, = (P2)y, -
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Remark 1.
(i) For random elements X,Y : Q2 — Q'
X =Y P-as. = PXIPy,

but the converse is not true in general. For instance, let P be the uniform
distribution on €2 = {0, 1} and define X(w) =w and Y (w) =1 — w.

(ii) For every probability measure ¢ on (£2,2l') there exists a probability space
(Q,2(, P) and a random element X : Q — € such that X ~ @Q: Choose
(Q,20,P) = (Q,2A,Q) and X = idg.

(iii) A major part of probability theory deals with properties of random elements
that can be formulated in terms of their distributions.

Example 1.

(i) Discrete distributions, specified by a countable set ) # D C Q' and a mapping
p: D — R such that

VreD:p(r)>0 A Zp(r)zl,
namely,
Py = Zp(r) o
Thus, if {r} € A for every r € D,
P((X = 1)) = pl0)

If |D| < oo then p(r) = ﬁ yields the uniform distribution on D.
For (V,') = (R,*B)

B(n,p) = k; (Z) Pl =p)" gy

is the binomial distribution with parameters n € N and p € [0, 1]. In particular,
for n = 1 we get the Bernoulli distribution

B(l,p) =(1—=p)-eo+p-er.

Further examples include the geometric distribution with parameter p €]0, 1],

G(p) = ip' (1—p" ' e,

and the Poisson distribution with parameter A > 0,

T(A) = exp(—A) - R
k=0 '
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(i) Distributions on (R* B.) that are absolutely continuous w.r.t. A\x, namely, due
to the Radon-Nikodym-Theorem

PX = f ' )‘lm

where
f € 3. (R* B,) A /fd)\k =1
Thus
P{X e A'}) = fd\g
A/

for every A’ € B,
We present some examples in the case k = 1. The normal distribution

N(,u702):f'/\17

with parameters u € R and o2, where o > 0, is obtained by

1 1(x— p)?
f(CC) - W + €XP <_§%) 5 r € R.

The exponential distribution with parameter A > 0 is obtained by

0 itz <0
fx) = .
A-exp(—Az) ifz>0.

The uniform distribution on D € B with A;(D) € ]0, oo[ is obtained by

(iii) Distributions on product spaces can be constructed by means of the results from
Section II.8.

Remark 2. Define oo™ = oo for r > 0. For 1 <p < ¢ < oo and X € 3(Q,2)

p/4q
/yX\deg(/yXPdP) ,

due to Holder’s inequality.

Notation:
¢= 2.2, P) = {X €302 /|Xydp <o)

is the class of P-integrable random variables, and analogously
£=2(Q,%,P) = {X € 3(Q,) : /|XydP < oo}

is the class of P-integrable numerical random variables. We consider Py as a distri-
bution on (R,B) if P({X € R}) = 1 for a numerical random variable X, and we
consider £ as a subspace of £.
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Definition 3. For X € £
E(X) = /XdP

is the expectation of X. For X € 3(£2,2l) such that X% € £
Var(X) = /(X —E(X))*dP

and \/Var(X) are the variance and the standard deviation of X, respectively.

Remark 3. Theorem I1.9.1 implies
/ | X|PdP < o0 & / |z|P Px(dx) < 00
Q R
for X € 3(Q, ), in which case, for p = 1

E(X) = é z Py(dz),

and for p =2
Var(X) = /R(x — E(X))? Px(dz).

Thus E(X) and Var(X) depend only on Px.

Example 2.
X ~ B(n,p) E(X)=n-p Var(X) =n-p-(1-p)
X ~ G(p) E(X) = }9 Var(X) = 1p—2p
X ~ (N E(X) = A Var(X) = A,

see Introduction to Statistics.

X is Cauchy distributed with parameter a > 0 if X ~ f - A; where
«

Since fg izdr = §log(1 4 1) neither E(X™) < oo nor E(X ™) < oo, and therefore
X¢¢
If X ~ N(u,0?) then

E(X)=u A Var(X) = o,

see Introduction to Statistics.

If X is exponentially distributed with parameter A > 0 then

1
A Var(X) = beh
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Definition 4. Let X = (Xj,..., Xx) be a random vector. Then

Fyx : RF —[0,1]

(xl,...,xk)HPX<ili]—oo, as) (ﬂ{x <az})

is called the distribution function of X.
Theorem 1. Given: probability spaces (21,21, P1), (Q2,2s, P,) and random vectors
X1:91—>Rk, X2: 0, —» R

Then
(Pl)XIZ(P2>X2 4 Fxl:Fx2.

Proof. ‘=" holds trivially. ‘<=": (P;)x: and (P)x2(A) coincide by assumption on the

N—stable class .
GZ {H]_OO,I'Z] N PR 17 3 € R} X

=1

hence by Theorem 11.4.4 they coincide on o(€&) = By (see Remark 11.1.6). O
For notational convenience, we consider the case k = 1 in the sequel.

Theorem 2.

(i) Fx is non-decreasing,

(ii) Fx is right-continuous,
(ili) lim,—, o Fix(x) =0 and lim, .o Fx(z) =1,
(iv) Fx is continuous at x iff P({X = z}) = 0.

Proof. Ubung 4.1 a). O

Theorem 3. For every function F' that satisfies (i)—(iii) from Theorem 2,

%IQ probability measure on B : V2 € R: Q(]—o0,z]) = F(z).

Proof. Analogously to the construction of the Lebesgue measure; see Ubung 4.1.b). [
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