
Chapter III

Basic Concepts of Probability

Theory

Context for probability theoretical concepts: a probability space (Ω, A, P ).

Terminology: A ∈ A event , P (A) probability of the event A ∈ A.

1 Random Variables and Distributions

Given: a probability space (Ω, A, P ) and a measurable space (Ω′, A′).

Definition 1. X : Ω → Ω′ random element if X is A-A′-measurable. Particular cases:

(i) X (real) random variable if (Ω′, A′) = (R, B),

(ii) X numerical random variable if (Ω′, A′) = (R, B),

(iii) X k-dimensional (real) random vector if (Ω′, A′) = (Rk, Bk),

(iv) X k-dimensional numerical random vector if (Ω′, A′) = (Rk
, Bk).

Definition 2.

(i) Distribution (probability law) of a random element X : Ω → Ω′ (with respect to

P )

L(X) := PX(A′) := P ({X−1(A′)}), A′ ∈ A′

Notation: Q Prob. measure on (Ω′, A′), then X ∼ Q iff PX = Q.

(ii) Given: probability spaces (Ω1, A1, P1), (Ω2, A2, P2) and random elements

X1 : Ω1 → Ω′, X2 : Ω2 → Ω′.

X1 and X2 are identically distributed if

(P1)X1
= (P2)X2

.
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Remark 1.

(i) For random elements X,Y : Ω → Ω′

X = Y P -a.s. ⇒ PX = PY ,

but the converse is not true in general. For instance, let P be the uniform

distribution on Ω = {0, 1} and define X(ω) = ω and Y (ω) = 1− ω.

(ii) For every probability measure Q on (Ω′, A′) there exists a probability space

(Ω, A, P ) and a random element X : Ω → Ω′ such that X ∼ Q: Choose

(Ω, A, P ) = (Ω′, A′, Q) and X = idΩ.

(iii) A major part of probability theory deals with properties of random elements

that can be formulated in terms of their distributions.

Example 1.

(i) Discrete distributions , specified by a countable set ∅ 6= D ⊂ Ω′ and a mapping

p : D → R such that

∀ r ∈ D : p(r) ≥ 0 ∧
∑
r∈D

p(r) = 1,

namely,

PX =
∑
r∈D

p(r) · εr.

Thus, if {r} ∈ A′ for every r ∈ D,

P ({X = r}) = p(r).

If |D| < ∞ then p(r) = 1
|D| yields the uniform distribution on D.

For (Ω′, A′) = (R, B)

B(n, p) =
n∑

k=0

(
n

k

)
· pk(1− p)n−k · εk

is the binomial distribution with parameters n ∈ N and p ∈ [0, 1]. In particular,

for n = 1 we get the Bernoulli distribution

B(1, p) = (1− p) · ε0 + p · ε1.

Further examples include the geometric distribution with parameter p ∈]0, 1],

G(p) =
∞∑

k=1

p · (1− p)k−1 · εk,

and the Poisson distribution with parameter λ > 0,

π(λ) =
∞∑

k=0

exp(−λ) · λk

k!
· εk.
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(ii) Distributions on (Rk, Bk) that are absolutely continuous w.r.t. λk, namely, due

to the Radon-Nikodym-Theorem

PX = f · λk,

where

f ∈ Z+(Rk, Bk) ∧
∫

f dλk = 1.

Thus

P ({X ∈ A′}) =

∫
A′

f dλk

for every A′ ∈ Bk.

We present some examples in the case k = 1. The normal distribution

N(µ, σ2) = f · λ1 ,

with parameters µ ∈ R and σ2, where σ > 0, is obtained by

f(x) =
1√

2πσ2
· exp

(
−1

2

(x− µ)2

σ2

)
, x ∈ R.

The exponential distribution with parameter λ > 0 is obtained by

f(x) =

{
0 if x < 0

λ · exp(−λ x) if x ≥ 0.

The uniform distribution on D ∈ B with λ1(D) ∈ ]0,∞[ is obtained by

f =
1

λ1(D)
· 1D.

(iii) Distributions on product spaces can be constructed by means of the results from

Section II.8.

Remark 2. Define ∞r = ∞ for r > 0. For 1 ≤ p < q < ∞ and X ∈ Z(Ω, A)∫
|X|p dP ≤

(∫
|X|q dP

)p/q

,

due to Hölder’s inequality.

Notation:

L = L(Ω, A, P ) =
{

X ∈ Z(Ω, A) :

∫
|X| dP < ∞

}
is the class of P -integrable random variables, and analogously

L = L(Ω, A, P ) =
{

X ∈ Z(Ω, A) :

∫
|X| dP < ∞

}
is the class of P -integrable numerical random variables. We consider PX as a distri-

bution on (R, B) if P ({X ∈ R}) = 1 for a numerical random variable X, and we

consider L as a subspace of L.
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Definition 3. For X ∈ L

E(X) =

∫
X dP

is the expectation of X. For X ∈ Z(Ω, A) such that X2 ∈ L

Var(X) =

∫
(X − E(X))2 dP

and
√

Var(X) are the variance and the standard deviation of X, respectively.

Remark 3. Theorem II.9.1 implies∫
Ω

|X|p dP < ∞ ⇔
∫

R
|x|p PX(dx) < ∞

for X ∈ Z(Ω, A), in which case, for p = 1

E(X) =

∫
R

x PX(dx),

and for p = 2

Var(X) =

∫
R
(x− E(X))2 PX(dx).

Thus E(X) and Var(X) depend only on PX .

Example 2.

X ∼ B(n, p) E(X) = n · p Var(X) = n · p · (1− p)

X ∼ G(p) E(X) =
1

p
Var(X) =

1− p

p2

X ∼ π(λ) E(X) = λ Var(X) = λ,

see Introduction to Statistics.

X is Cauchy distributed with parameter α > 0 if X ∼ f · λ1 where

f(x) =
α

π(α2 + x2)
, x ∈ R.

Since
∫ t

0
x

1+x2 dx = 1
2
log(1 + t2) neither E(X+) < ∞ nor E(X−) < ∞, and therefore

X 6∈ L.

If X ∼ N(µ, σ2) then

E(X) = µ ∧ Var(X) = σ2,

see Introduction to Statistics.

If X is exponentially distributed with parameter λ > 0 then

E(X) =
1

λ
∧ Var(X) =

1

λ2
.
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Definition 4. Let X = (X1, . . . , Xk) be a random vector. Then

FX : Rk → [0, 1]

(x1, . . . , xk) 7→ PX

( k∏
i=1

]−∞ , xi]

)
= P

( k⋂
i=1

{Xi ≤ xi}
)

is called the distribution function of X.

Theorem 1. Given: probability spaces (Ω1, A1, P1), (Ω2, A2, P2) and random vectors

X1 : Ω1 → Rk, X2 : Ω2 → Rk.

Then

(P1)X1 = (P2)X2 ⇔ FX1 = FX2 .

Proof. ‘⇒’ holds trivially. ‘⇐’: (P1)X1 and (P2)X2(A) coincide by assumption on the

∩–stable class

E =
{ k∏

i=1

]−∞, xi] : x1, . . . , xk ∈ R
}

;

hence by Theorem II.4.4 they coincide on σ(E) = Bk (see Remark II.1.6).

For notational convenience, we consider the case k = 1 in the sequel.

Theorem 2.

(i) FX is non-decreasing,

(ii) FX is right-continuous,

(iii) limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1,

(iv) FX is continuous at x iff P ({X = x}) = 0.

Proof. Übung 4.1 a).

Theorem 3. For every function F that satisfies (i)–(iii) from Theorem 2,

∃
1
Q probability measure on B : ∀x ∈ R : Q(]−∞, x]) = F (x).

Proof. Analogously to the construction of the Lebesgue measure; see Übung 4.1.b).
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