
8 Kernels and Product Measures

Given: measurable spaces (Ω1, A1) and (Ω2, A2).

Motivation: two-stage experiment. Output ω1 ∈ Ω1 of the first stage determines

probabilistic model for the second stage. Natural idea: Describe ,,conditional proba-

bilities”, try to build a model up from this.

Definition 1. K : Ω1 × A2 → R is a (Markov) kernel (from (Ω1, A1) to (Ω2, A2)), iff

(i) K(ω1, ·) is a (probability) measure on A2 for every ω1 ∈ Ω1,

(ii) K(·, A2) is A1-B-measurable for every A2 ∈ A2.

K is called σ-finite kernel iff, additionally, there are Bi ∈ A2 disjoint with

∞⋃
i=1

Bi = Ω2 ∧ ∀ i ∈ N : sup
ω1∈Ω1

K(ω1, A2,i) < ∞.

Example 1. (i) Choose one out of n (unbalanced) coins and throw it once. Pa-

rameters a1, . . . , an ≥ 0 such that
∑n

i=1 ai = 1 and b1, . . . , bn ∈ [0, 1].

Let

Ω1 = {1, . . . , n}, A1 = P(Ω1)

and define

µ({i}) = ai, i ∈ Ω1,

to be the probability of choosing the i-th coin. Moreover, let

Ω2 = {H, T}, A2 = P(Ω2)

and define

K(i, {H}) = bi, K(i, {T}) = 1− bi

so K(i, {H}) is probability obtaining H when throwing the i-th coin. Formal

description:

K(i, A2) = bi · δH(A2) + (1− bi) · δT(A2), A2 ∈ A2 .

(ii) (Extremeal case 1) Model for the second stage not influenced by output of the

first stage, i.e., for a (probability) measure ν on A2

∀ω1 ∈ Ω1 : K(ω1, ·) = ν.

In Example 1i this holds if b1 = · · · = bn.

(iii) (Extremal case 2) Output of the first stage determines the output of the second

stage, i.e., for a A1-A2-measurable mapping f : Ω1 → Ω2

∀ω1 ∈ Ω1 : K(ω1, ·) = δf(ω1).

In Example 1i this holds if b1, . . . , bn ∈ {0, 1}.
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Have: Model for ,,conditional probabilities” (kernel K), Model for the initial random

experiment (probability measure µ on Ω1). How to build a model for the compound

experiment (i.e., probability measure on Ω2)?

Reasonable, and assumed in the sequel,

Ω = Ω1 × Ω2, A = A1 ⊗ A2.

Question: How to define P?

Example 2. In Example 1i, a reasonable requirement for P is

P ({i} × Ω2) = ai = K(ai, Ω2), P ({i} × {H}) = ai · bi = K(i, {A})ai

for every i ∈ Ω1. Consequently, for A2 ⊂ Ω2

P ({i} × A2) = K(i, A2) · ai

and for A ⊂ Ω

P (A) =
n∑

i=1

P ({(ω1, ω2) ∈ A : ω1 = i}) =
n∑

i=1

P ({i} × {ω2 ∈ Ω2 : (i, ω2) ∈ A})

=
n∑

i=1

K(i, {(i, ω2) ∈ A}) · ai =

∫
Ω1

K(i, {(i, ω2) ∈ A}) µ(di).

May we generally use the right-hand side integral for the definition of P?

Lemma 1. Let f ∈ Z(Ω, A). Then, for ω1 ∈ Ω1, the ω1-section

f(ω1, ·) : Ω2 → R

of f is A2-B-measurable, and for ω2 ∈ Ω2 the ω2-section

f(·, ω2) : Ω1 → R

of f is A1-B-measurable.

Proof. In the case of an ω1-section. Fix ω1 ∈ Ω1. Then ιω1Ω2 → Ω1 × Ω2 : ω2 7→
(ω1, ω2) is A2-A-measurable due to Corollary 3.1.(i); by Theorem 2.1, f(ω1, ·) = f ◦ιω1

is as well.

Remark 1. In particular, for A ∈ A and f = 1A

f(ω1, ·) = 1A(ω1, ·) = 1Aω1

where

Aω1 = {ω2 ∈ Ω2 : (ω1, ω2) ∈ A}
poor notation is the ω1-section of A. By Lemma 1

∀ω1 ∈ Ω1 : Aω1 ∈ A2.

Analogously for the ω2-section

Aω2 = {ω1 ∈ Ω1 : (ω1, ω2) ∈ A}

of A.
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Given:

• a σ-finite kernel K from (Ω1, A1) to (Ω2, A2),

• a σ-finite measure µ on A1.

Lemma 2. Let f ∈ Z+.Then

g : Ω1 → R+ ∪ {∞}

ω1 7→
∫

Ω2

f(ω1, ω2) K(ω1, dω2)

is A1-B([0,∞])-measurable.

Proof. Case 1:

∀ω1 ∈ Ω1 : K(ω1, Ω2) < ∞ (1)

Put F = {f ∈ Z+ : statement holds for f}

Step1:

∀A1 ∈ A1, A2 ∈ A2 : 1A1×A2 ∈ F

Indeed, ∫
Ω2

1A1×A2(ω1, ω2)︸ ︷︷ ︸
=1A1

(ω1) 1A2
(ω2)

K(ω1, dω2) = 1A1(ω1)︸ ︷︷ ︸
A1-B-mb

K(ω1, A2) (2)

Step 2:

∀A ∈ A : 1A ∈ F

Proof: Set

D = {A ∈ A : 1A ∈ F}
E = {A1 × A2 : A1 ∈ A1, A2 ∈ A2}

Then E ⊂ D by Claim 1, E closed w.r.t. intersections and σ(E) = A

Easy to verify, using (1): D is a Dynkin class

Theorem 1.2.(i) yields: A = σ(E) = δ(E) ⊂ D ⊂ A , i.e. D = A

Step 3:

f1, f2 ∈ F ∧ α ∈ R+ ⇒ αf1 + f2 ∈ F

Proof: Apply Lemma 5.2, Theorem 2.6

Step 4:

fn ∈ F ∧ fn ↑ f ⇒ f ∈ F

Proof: Monotone convergence, Theorem 2.5.(iii).

Step 5: Theorem 2.7 implies F = Z+.
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Case 2: General Case.

Choose B1, B2, . . . ∈ A2 pairwise disjoint, such that

∞⋃
i=1

Bi = Ω2 ∧ ∀ i ∈ N : sup
ω1∈Ω1

K(ω1, A2,i) < ∞

Define Ki (ω1, · ) = K (ω1, · ∩Bi) = 1Bi
·K (ω1, · ) .

Then ∫
Ω2

f(ω1, ω2) K(ω1, ω2)
Mon. Conv.

=
∞∑
i=1

∫
Ω2

1Bi
(ω2) f(ω1, ω2) K(ω1, dω2)

Thrm 7.2
=

∞∑
i=1

∫
Ω2

f(ω1, ω2) Ki(ω1, dω2)

Since ∀ω1 ∈ Ω1 : Ki(ω1, Ω2) < ∞ ,

we have
∫

Ω2
f( · , ω2) Ki( · , dω2) is A1-B([0,∞])-measurable.

Apply Theorem 2.6, 2.5

Theorem 1. In the above situation,

∃
1

measure ν on A such that ∀A1 ∈ A1 ∀A2 ∈ A2 :

ν(A1 × A2) =
∫

A1
K(ω1, A2) µ(dω1). (3)

Moreover, ν is σ-finite, and

∀A ∈ A : ν(A) =

∫
Ω1

K(ω1, Aω1) µ(dω1). (4)

If µ is a probability measure and K is a Markov kernel then ν is a probability measure,

too.

Notation: ν = µ×K.

Proof. Uniqueness: A0 = {A1 × A2 : Ai ∈ Ai} is a ∩–closed generator of A; apply

Theorem 4.3.

Existence: Let A ∈ A, ω1 ∈ Ω1. Then

ω2 7→ K(ω1, Aω1) =

∫
Ω2

1Aω1
(ω2)︸ ︷︷ ︸

=1A(ω1,ω2)

K(ω1, dω2)

is measurable by Lemma 8.2; hence (4) is well-defined. Moreover, ν defined by (2) is

additive, and if A(n) ↑ A, A(n), A ∈ A, then A
(n)
ω1 ↑ Aω1 for every ω1, thus K(ω1, A

ω1
n ) ↑

(ω1, Aω1), and by monotone convergence, ν(An) ↑ ν(A). Thus, ν is σ–continuous from

below, hence a measure.
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By virtue of (2), ν satisfies (3). By assumption there are A1, A2, . . . ∈ A1 pairwise

disjoint, such that

∞⋃
i=1

Ai = Ω1 ∧ ∀ i ∈ N : µ(Ai) < ∞

and B1, B2, . . . ∈ A2 pairwise disjoint, such that

∞⋃
j=1

Bj = Ω2 ∧ ∀ j ∈ N : sup
ω1∈Ω1

K(ω1, Bj) < ∞

Thus Ai ×Bj, i, j ∈ N , pairwise disjoint and
⋃

i,j∈N Ai ×Bj = Ω ,

(µ×K)(Ai ×Bj) =

∫
Ai

K(ω1, Bj) µ(dω1)

≤ sup
ω1∈Ω1

K(ω1, Aj) µ(Bi) < ∞ ,

i.e., µ×K ist σ-finite.

Example 3. In Example 2 we have P = µ×K.

Remark 2. Particular case of Theorem 1 with

µ = µ1, ∀ω1 ∈ Ω1 : K(ω1, ·) = µ2

for σ-finite measures µi on (Ωi, Ai):

∃
1
measure (µ1 × µ2) on A ∀A1 ∈ A1 ∀A2 ∈ A2 :

(µ1 × µ2)(A1 × A2) = µ1(A1) · µ2(A2). (5)

Moreover, µ1 × µ2 is σ-finite and satisfies

∀A ∈ A : (µ1 × µ2)(A) =

∫
Ω1

µ2(Aω1) µ(dω1). (6)

We add that σ-finiteness is used for the definition (6) and the uniqueness in (5). In

general, we only have existence of a measure µ1 × µ2 with (5). See Elstrodt (1996,

§V.1).

Definition 2. µ = µ1×µ2 is called the product measure corresponding to µ1 and µ2,

and (Ω, A, µ) is called the product measure space corresponding to (Ω1, A1, µ1) and

(Ω2, A2, µ2).

Example 4.

(i) In Example 2 with b = b1 = · · · = bn and ν = b · δH + (1 − b) · δT we have

P = µ× ν.
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(ii) For countable spaces Ωi and σ-algebras Ai = P(Ωi) we get

µ1 × µ2(A) =
∑

ω1∈Ω1

µ2(Aω1) · µ1({ω1}), A ⊂ Ω.

In particular, for uniform distributions µi on finite spaces, µ1×µ2 is the uniform

distribution on Ω. Cf. Example 3.1 in the case n = 2.

(iii) The multi-dimensional Lebesgue measure is a product measure. Namely, for

k, ` ∈ N and A1 ∈ Jk, A2 ∈ J` we have

λk+`(A1 × A2) = λk(A1) · λ`(A2) = (λk × λ`)(A1 × A2),

see Example 4.1.(i). Corollary 4.1 yields

λk+` = λk × λ`.

From (6) we get

λk+`(A) =

∫
Rk

λ`(Aω1) λk(dω1), A ∈ Bk+`,

cf. Cavalieri’s Principle.

Theorem 2 (Fubini’s Theorem).

(i) For f ∈ Z+(Ω, A)∫
Ω

f d(µ×K) =

∫
Ω1

∫
Ω2

f(ω1, ω2) K(ω1, dω2) µ(dω1).

(ii) For f (µ×K)-integrable and

A1 = {ω1 ∈ Ω1 : f(ω1, ·) K(ω1, ·)-integrable}

we have

(a) A1 ∈ A1 and µ(Ac
1) = 0,

(b) ω1 7→ 1A1 ·
∫

Ω2
f(ω1, ·) dK(ω1, ·) is integrable w.r.t. µ,

(c) ∫
Ω

f d(µ×K) =

∫
A1

∫
Ω2

f(ω1, ω2) K(ω1, dω2) µ(dω1).

Proof. Ad (i): Algebraic induction: For f = 1A, this is true by definition; both sides

are linear in f , hence the claim is true for f ∈ Σ+, and if f ∈ Z+, there are fn ∈ Σ+

with fn ↑ f . Now for each fixed ω1, fn(ω1, ·) ↑ f , hence by monoton convergence,∫
Ω2

fn(ω1, ω2)K(ω1, dω2) ↑
∫

Ω2

f(ω1, ω2)K(ω1, dω2) ,
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and again by monotone convergence∫
Ω1

∫
Ω2

fn(ω1, ω2)K(ω1, dω2) ↑
∫

Ω1

∫
Ω2

f(ω1, ω2)K(ω1, dω2) .

Ad (ii): By (i), we have, for f± = max 0,±f ,∫
Ω

f± d(µ×K) =

∫
Ω1

∫
Ω2

f±(ω1, ω2) K(ω1, dω2) µ(dω1).

Then

A±
1 :=

{
ω1 :

∫
Ω2

f±(ω1, ω2) K(ω1, dω2) < ∞
}

is in A1 by Lemma 8.2, and A1 = A+ ∩ A−. Moreover, µ((A±)c) < ∞ by Theorem

5.4 and part (i). Part (b) and (c) follow immediately, since they are true for f±.

Remark 3. For brevity, we write∫
Ω1

∫
Ω2

f(ω1, ω2) K(ω1, dω2) µ(dω1) =

∫
A1

∫
Ω2

f(ω1, ω2) K(ω1, dω2) µ(dω1),

if f is (µ×K)-integrable. For f ∈ Z(Ω, A)

f is (µ×K)-integrable ⇔
∫

Ω1

∫
Ω2

|f |(ω1, ω2) K(ω1, dω2) µ(dω1) < ∞.

Corollary 1 (Fubini’s Theorem). For σ-finite measures µi on Ai and a (µ1 × µ2)-

integrable function f∫
Ω

f d(µ1 × µ2) =

∫
Ω1

∫
Ω2

f(ω1, ω2) µ2(dω2) µ1(dω1)

=

∫
Ω2

∫
Ω1

f(ω1, ω2) µ1(dω1) µ2(dω2).

Proof. Theorem 2 yields the first equality. For the second equality, put f̃(ω2, ω1) =

f(ω1, ω2) and note that
∫

Ω
f d(µ1 × µ2) =

∫
Ω

f̃ d(µ2 × µ1).

Corollary 2. For every measurable space (Ω, A), every σ-finite measure µ on A, and

every f ∈ Z+(Ω, A) ∫
Ω

f dµ =

∫
]0,∞[

µ({f > x}) λ1(dx).

Proof. Übung 6.2.

Now we construct a stochastic model for a series of experiments, where the outputs

of the first i− 1 stages determine the model for the ith stage. We simply iterate our

two–step procedure.

Given: measurable spaces (Ωi, Ai) for i ∈ I, where I = {1, . . . , n} or I = N. Put

(
Ω′

i, A
′
i

)
=

( i∏
j=1

Ωj,
i⊗

j=1

Aj

)
,
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and note that

i∏
j=1

Ωj = Ω′
i−1 × Ωi ∧

i⊗
j=1

Aj = A′
i−1 ⊗ Ai

for i ∈ I \ {1}. Furthermore, let

Ω =
∏
i∈I

Ωi, A =
⊗
i∈I

Ai. (7)

Given:

• σ-finite kernels Ki from
(
Ω′

i−1, A
′
i−1

)
to (Ωi, Ai) for i ∈ I \ {1},

• a σ-finite measure µ on A1.

Theorem 3. For I = {1, . . . , n}

∃
1
measure ν on A ∀A1 ∈ A1 . . . ∀An ∈ An :

ν(A1 × · · · × An)

=

∫
A1

. . .

∫
An−1

Kn((ω1, . . . , ωn−1), An) Kn−1((ω1, . . . , ωn−2), dωn−1) · · ·µ(dω1).

Moreover, ν is σ-finite and for f ν-integrable (the short version)∫
Ω

f dν =

∫
Ω1

. . .

∫
Ωn

f(ω1, . . . , ωn)Kn((ω1, . . . , ωn−1), dωn) · · ·µ(dω1). (8)

Notation: ν = µ×K2 × · · · ×Kn.

Proof. Induction on n, using Theorems 1 and 2.

Remark 4. Particular case of Theorem 3 with

µ = µ1, ∀ i ∈ I \ {1} ∀ω′i−1 ∈ Ω′
i−1 : Ki(ω

′
i−1, ·) = µi (9)

for σ-finite measures µi on Ai:

∃
1
measure µ1 × · · · × µn on A ∀A1 ∈ A1 . . . ∀An ∈ An :

µ1 × · · · × µn(A1 × · · · × An) = µ1(A1) · · · · · µn(An).

Moreover, µ1 × · · · × µn is σ-finite and for every µ1 × · · · × µn-integrable function f∫
Ω

f d(µ1 × · · · × µn) =

∫
Ω1

. . .

∫
Ωn

f(ω1, . . . , ωn) µn(dωn) · · · dµ1(ω1).

Definition 3. µ = µ1 × · · · × µn is called the product measure corresponding to µi

for i = 1, . . . , n, and (Ω, A, µ) is called the product measure space corresponding to

(Ωi, Ai, µi) for i = 1, . . . , n.
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Example 5.

(i) For uniform distributions µi on finite spaces Ωi, µ1 × · · · × µn is the uniform

distribution on Ω. Cf. Example 3.1 in the case n ∈ N.

(ii)

λn = λ1 × · · · × λ1.

Theorem 4 (Ionescu-Tulcea). Assume that µ is a probability measure and that

Ki are Markov kernels for i ∈ N \ {1}. Then, for I = N,

∃
1
probability measure P on A ∀n ∈ N ∀A1 ∈ A1 . . . ∀An ∈ An :

P
(
A1 × · · · × An ×

∞∏
i=n+1

Ωi

)
= (µ×K2 × · · · ×Kn)(A1 × · · · × An). (10)

Proof. Uniqueness: By (10), P is uniquely determined on the class of measurable

rectangles. Apply Theorem 4.4.

Existence: On the semi–algebra of measurable rectangles we define P by (10). By

(8), one easily checks that this is well–defined and, by definition, additive. By Theorem

4.2, P is extended uniquely to a content on the algebra of cylinder sets, still denoted

by P . Obviously,

P (A×
∏
j>n

Ωj) = (µ×K2 · · · ×Kn)(A) , A ∈
⊗
j≤n

Aj .

We claim that this content is σ–additive; then, by Corollary 4.1, there is a unique

extension to A. By Theorem 4.1, it suffices to show that P is σ–continuous at ∅. So let

An be cylinder sets, An ↓ ∅, and assume limn P (An) > 0. Without loss of generality,

we may assume

An =
{
(ωi)i∈N : (ω1, . . . , ωn) ∈ Bn

}
for some Bn. Set ωi = (ω1, . . . , ωi). By (8) and Theorem 2,

P (An) =

∫
Ω1

∫
Ω2

· · ·
∫

Ωn

1Bn(ωn)Kn(ωn−1, dωn) . . . K1(ω1, dω2)︸ ︷︷ ︸
=:f

(1)
n (ω1)

dµ(ω1) =

∫
Ω1

f (1)
n (ω1)dµ(ω1) .

Since An+1 ⊆ An, Bn+1 ⊆ Bn × Ω, and hence

1Bn+1(ω
n+1) ≤ 1Bn(ωn) ,

thus, the monotonicity of integrals show that f
(1)
n is monotonically decreasing; set

f (1) = limn f
(1)
n . By Lebesgue’s theorem (1 is a majorant),

0 < lim
n

P (An) =

∫
Ω1

f(ω1)dµ(ω1) .

In particular, there is ω̂1 with f (1)(ω̂1) > 0. In particular, ω1 ∈ B1.

Next, K2(ω̂1, ·) is a probability measure on Ω2, and for n > 2 we define

f (2)
n (ω2) :=

∫
Ω3

· · ·
∫

Ωn

1Bn(ω̂1, ω2, . . . , ωn)Kn((ω̂1, . . . , ωn−1, dωn), . . . K3(ω̂1, ω2, dω3)) .
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Then

f (1)
n (ω̂1) =

∫
Ω2

f (2)
n (ω2)K2(ω̂1, dω2) ;

again f
(2)
n is monotonely decreasing against some f (2), and by Lebesgue

0 < f (1)(ω̂1) =

∫
Ω2

f (2)(ω2)K(ω̂1, dω2) .

Thus there is ω̂2 with f (2)(ω̂2) > 0, i.e., (ω̂1, ω̂2) ∈ B2. Iterating this procedure,

one finds a sequence ω̂ with (ω̂1, . . . , ω̂n) ∈ Bn for all n, i.e., ω̂ ∈
⋂

An = ∅, a

contradiction.

Example 6. The queueing model, see Übung6.3. Here Ki(ω1, . . . , ωi−1), ·) only de-

pends on ωi−1. Outlook: Markov processes.

Given: a non-empty arbitrary index set I and probability spaces (Ωi, Ai, µi) for i ∈ I.

Recall the definition (7).

Theorem 5.

∃
1
probability measure P on A ∀S ∈ P0(I) ∀Ai ∈ Ai, i ∈ S :

P
(∏

i∈S

Ai ×
∏

i∈I\S

Ωi

)
=

∏
i∈S

µi(Ai). (11)

Notation: P =
∏

i∈I µi.

Proof. See Remark 4 in the case of a finite set I.

If |I| = |N|, assume I = N without loss of generality. The particular case of Theorem 4

with (9) for probability measures µi on Ai shows

∃
1
probability measure P on A ∀n ∈ N ∀A1 ∈ A1 . . . ∀An ∈ An :

P
(
A1 × · · · × An ×

∞∏
i=n+1

Ωi

)
= µ1(A1) · · · · · µn(An).

If I is uncountable, we use Theorem 3.2. For S ⊂ I non-empty and countable and for

B ∈
⊗

i∈S Ai we put

P
((

πI
S

)−1
B) =

∏
i∈S

µi(B).

Hereby we get a well-defined mapping P : A → R, which clearly is a probability

measure and satisfies (11). Use Theorem 4.4 to obtain the uniqueness result.

Definition 4. P =
∏

i∈I µi is called the product measure corresponding to µi for

i ∈ I, and (Ω, A, P ) is called the product measure space corresponding to (Ωi, Ai, µi)

for i ∈ I.

Remark 5. Theorem 5 answers the question that is posed in Example 3.1 in full

generality. Moreover, it is the basis for a positive answer to the question from the

introductory Example I.2, see Theorem III.5.2.
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