8 Kernels and Product Measures

Given: measurable spaces (€21,20) and (£22,%As).

Motivation: two-stage experiment. Output w; € €2; of the first stage determines
probabilistic model for the second stage. Natural idea: Describe ,,conditional proba-
bilities”, try to build a model up from this.

Definition 1. K : Q) x 2, — R is a (Markov) kernel (from (Q1,2) to (Q,25) ), iff
(i) K(wy,-) is a (probability) measure on 2, for every w; € (),
(ii) K (-, Ay) is A;-B-measurable for every A, € As.

K is called o-finite kernel iff, additionally, there are B; € 2y disjoint with
UBZZQQ AN VieN: sup K(u)l,Agﬂ') < 0.

i—1 w1 €0

Example 1. (i) Choose one out of n (unbalanced) coins and throw it once. Pa-
rameters aq,...,a, > 0 such that Z?:l a; =1 and by,...,b, €0,1].

Let
O ={1,...,n}, 20 = P()
and define
p({i}) = a,, i€ Q,

to be the probability of choosing the i-th coin. Moreover, let
QQ = {Ha T}7 Q[2 = g’B(QQ)

and define
K@i, {H})=b;, K@, {T})=1-b

so K(i,{H}) is probability obtaining H when throwing the i-th coin. Formal
description:

K(i,As) = b; - 0u(Az) + (1 — b;) - d1(As), Ar €Uy .

(ii) (Extremeal case 1) Model for the second stage not influenced by output of the
first stage, i.e., for a (probability) measure v on 2,

Vw € Q1 K(wy,:) =
In Example 1i this holds if by = --- = b,.

(iii) (Extremal case 2) Output of the first stage determines the output of the second
stage, i.e., for a 2A;-As-measurable mapping f : 2y — Qo

le S Ql : K(wl, ) = (5f(w1)~

In Example 1i this holds if by, ..., b, € {0,1}.
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Have: Model for ,,conditional probabilities” (kernel K), Model for the initial random
experiment (probability measure p on €2;). How to build a model for the compound

experiment (i.e., probability measure on €5)7

Reasonable, and assumed in the sequel,
Q= Q) x Qo A =2 @As.
Question: How to define P?
Example 2. In Example 1i, a reasonable requirement for P is
P({i} x Qy) = a; = K(a;, ), P{i} x {H}) = a; - b; = K(i,{A})a;
for every i € €. Consequently, for Ay C €y
P({i} x Ag) = K(i, A2) - a4
and for A C Q2

P(A) =) P({(wi,wa) € Awy=i}) =Y P({i} x {ws € Uy : (i,ws) € A})
i=1 i=1
= S Kl € AY) 0= | K {(i.w2) € A}) p(di).
i=1 Ul
May we generally use the right-hand side integral for the definition of P?
Lemma 1. Let f € 3(€,2). Then, for w; € Qy, the w;-section
f(wl, ) : QQ — E
of fis ﬂQ—g—measurable, and for wy € Q5 the wy-section
f(',b«)g) : Ql — E

of f is A;-B-measurable.

Proof. In the case of an wj-section. Fix w; € Q4. Then ¢, Qs — O X Qo 1 wy —
(w1, ws) is AUp-A-measurable due to Corollary 3.1.(i); by Theorem 2.1, f(wq,-) = foury,

is as well.
Remark 1. In particular, for A€ A and f =14
flwr, ) =1a(wr, ) = 1a,

where

Ay, ={w2 € Qo (wy,wq) € A}

poor notation | is the wy-section of A. By Lemma 1

le € Ql . Awl < 2[2.

Analogously for the ws-section
Aw2 = {w1 € Ql : (wl,wg) € A}
of A.
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Given:

e a o-finite kernel K from (21,2;) to (2, As),
e a o-finite measure p on 2.

Lemma 2. Let f € 3, .Then
g: Q1 —RU{oco}

w1 — f(wl,wg) K(wl,dwg)
Qo

is 21-B([0, oo )-measurable.

Proof. Case 1:
Yw, € Ql : K(wl,Qg) < 0

Put § = {f € 3. : statement holds for f}

Step1:
VAl € Qll, A2 c 912 . 1A1><A2 < S
Indeed,
/ Lnsseta (@1, 02) K (@1, din) = La, (1) K (w1, As)
Qp ———— ~—
=14, (w1)1a,(w2) 2;-B-mb
Step 2:
VAed: 1,€F
Proof: Set

D = {AecUA:1,€ F}

¢ = {Al X A2 : A1 EQll,Ag EQ[Q}
Then € C ® by Claim 1, € closed w.r.t. intersections and o (&) =
Easy to verify, using (1): ® is a Dynkin class
Theorem 1.2.(i) yields: A =0(€)=4§(¢) C © C A, ie. D=2

Step 3:
Jifo€F NaeR, = afi+fied

Proof: Apply Lemma 5.2, Theorem 2.6

Step 4:
€S AN WTf = [feF

Proof: Monotone convergence, Theorem 2.5.(iii).

Step 5: Theorem 2.7 implies § = 3.
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Case 2: General Case.
Choose By, By, ... € 2y pairwise disjoint, such that

UBZ:QQ AN VYieN: sup K(wl,A27i)<oo

i=1 w1 €N

Define Kz (wl, ) = K(wl, : ﬂBz> = 1Bi -K(wl, )
Then

/ f(wl, CL)Q) K(wl, (.UQ Mon. Conv E / 1B w2 (.4.)1, CUQ) K(wl, dWQ)
Qo Qo
T T2 E f w1, w2 (wh dwz)

Since Yw; € Q1 @ Ki(wy, ) < 00,
we have fQQ - we) KG(+, dws) is A1-B([0, oo])-measurable.
Apply Theorem 2.6, 2.5

O
Theorem 1. In the above situation,
%I measure v on A such that VA; € Ay VA, € Ay :
v(A; x Ag) = fA (w1, Ag) p(dwy). (3)
Moreover, v is o-finite, and
VAeA: v(A)= [ K(w,As,)pu(dw). (4)

971

If 11 is a probability measure and K is a Markov kernel then v is a probability measure,
too.
Notation: v = u x K.

Proof. Uniqueness: 2y = {A; x Ay : A; € A} is a N—closed generator of 2; apply
Theorem 4.3.
Existence: Let A € 2, w; € ;. Then

wo = K(wy, A,,) = / La,, (wo) K (w1, dwy)
Qy N——r
=14(w1,w2)

is measurable by Lemma 8.2; hence (4) is well-defined. Moreover, v defined by (2) is
additive, and if A® T A, A™ A € A, then AL T A1 for every wy, thus K(wy, A1) 1
(w1, Au, ), and by monotone convergence, v(A,) T v(A). Thus, v is o—continuous from
below, hence a measure.
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By virtue of (2), v satisfies (3). By assumption there are A, A, ...

disjoint, such that
Udi=2 A VieN: p4)<oo
i=1

and By, By, ... € 2, pairwise disjoint, such that

UBj:QQ AN VjieN: sup K(w,Bj) < oo

j=1 w1 €0

Thus A; x Bj, i,j € N, pairwise disjoint and (J A; x B; =Q,

1,J€EN

(x K)Ax By) = [ (e, By utden)

< sup K(wi, 4j) u(By) < oo,

w1 €0

i.e.,, pux K ist o-finite.
Example 3. In Example 2 we have P = u x K.
Remark 2. Particular case of Theorem 1 with
= fi1, Vw, € Q1 K(wy, ) = po
for o-finite measures p; on (€;,2;):

%Imeasure (g X p2) on A VA €Ay VA €y
(1 X p2) (A1 x Az) = pa (A1) - p2(Az).

Moreover, p; X ps is o-finite and satisfies

VAEN: (mn x ua)(A) = / pa(Auy) pi(deon).

€ 2, pairwise

(6)

We add that o-finiteness is used for the definition (6) and the uniqueness in (5). In
general, we only have existence of a measure p; X po with (5). See Elstrodt (1996,

§V.1).

Definition 2. 1 = pq X ps is called the product measure corresponding to p; and puo,
and (Q,2(, u) is called the product measure space corresponding to (€2,%2, 1) and

(92,912>M2)-

Example 4.

(i) In Example 2 with b = by = -+ = b, and v = b- g + (1 — b) - d¢ we have

P=puxuv.
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(ii) For countable spaces ); and o-algebras ; = PB(£2;) we get

X pa(A) = > pa(Aw) - pn({wr}), AcCqQ.

w1€Q1

In particular, for uniform distributions u; on finite spaces, p; X p2 is the uniform
distribution on €2. Cf. Example 3.1 in the case n = 2.

(iii) The multi-dimensional Lebesgue measure is a product measure. Namely, for
k,¢ € N and A; € Ji, A2 € J; we have

>\k+g(A1 X AQ) = )\k(Al) . )\g(Ag) = ()\k X )\g)(Al X A2)7
see Example 4.1.(i). Corollary 4.1 yields
/\k—i-f = >\k X )\g.

From (6) we get

Mool ) = [ M) Nlder), A€ B
R
cf. Cavalieri’s Principle.
Theorem 2 (Fubini’s Theorem).

(i) For f € 3,(Q,2)
/Q f(px K) = / [ Fern) K, don) (o)

(ii)) For f (u x K)-integrable and
Ay =A{w € Q¢ f(wr, ) K(wy,-)-integrable}

we have

(a) A; € Uy and pu(AS) =0,
(b) wy — 14, -fQ2 f(wy,+) dK(wy, ) is integrable w.r.t. p,
()
/ Fd(px K) = / Flwn, wn) K (w1, dws) p(dy).
Q 4170,
Proof. Ad (i): Algebraic induction: For f = 14, this is true by definition; both sides

are linear in f, hence the claim is true for f € ¥, and if f € 3., there are f,, € ¥,
with f, T f. Now for each fixed wy, f,(w1,-) T f, hence by monoton convergence,

fo(wi, wa) K (wy, dws) 1 flwr, we) K (wr, dws)
Qo Q2
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and again by monotone convergence

/Q [ oK, dn) 1 Flor,w) K (wr, ds)

Q1 J Qo
Ad (ii): By (i), we have, for fi = max0, £f,
/ frd(px K) = / Ji(wi, wa) K(wr, dws) pu(dwr).
Q Q1JQ9

Then

AT = {wl : fi(wr, we) K(wy, dwsy) < oo}
Q2

is in 2, by Lemma 8.2, and 4, = AT N A~. Moreover, u((A*)¢) < co by Theorem
5.4 and part (i). Part (b) and (c) follow immediately, since they are true for fy. [

Remark 3. For brevity, we write

| [ s Ko don) don) = [ [ floren) K, don) o),
Q100 A1J Qo
if fis (u x K)-integrable. For f € 3(Q,2A)

fis (u x K)-integrable & / / |f (w1, we) K (wy, dws) p(dwy) <
01/,

Corollary 1 (Fubini’s Theorem). For o-finite measures p; on ; and a (p; X ps)-
integrable function f

/Qfd(/h X pp) = /Q1 . fwi, wa) pa(dws) pir (dwr)

= / flwr, wa) pa (dwy) pra(dws).
2/
Proof. Theorem 2 yields the first equality. For the second equality, put f(w%wl) =

f(wi,wn) and note that [, f d(p1 x p12) = [, f d(pra x ). O

Corollary 2. For every measurable space (€2, 21), every o-finite measure p on 2, and

every f € 3, (€, )
[rau= [ utts > ap)ntan).
Q 10,00[
Proof. Ubung 6.2. [l

Now we construct a stochastic model for a series of experiments, where the outputs
of the first + — 1 stages determine the model for the ith stage. We simply iterate our
two—step procedure.

Given: measurable spaces (€;,2;) for i € I, where I = {1,...,n} or I =N. Put

(<, 21) <HQ],®m)
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and note that
[To=2%.x2 A QU=
j=1 j=1

for i € I'\ {1}. Furthermore, let

=] A=A (7)

il iel
Given:
e o-finite kernels K; from (Q_,, ;) to (€;,2;) for i € I\ {1},
e a o-finite measure p on 2.

Theorem 3. For [ = {1,...,n}

Elmeasureuoan VA, e2,... VA, e, :
v(A; X - X Ay)

/ / K wl,.. s Wh— 1) A )Kn_l((wl,...,wn_Q),dwn_l) M(dCUl)
Ay An—1

Moreover, v is o-finite and for f v-integrable (the short version)

/de—/Ql [l ) i) o). ()

Notation: v = pu X Ky X -+ X K,,.
Proof. Induction on n, using Theorems 1 and 2. O
Remark 4. Particular case of Theorem 3 with

K= Hi, Vie IN{1} Vwi, € Q1 Ki(wiy, ) = p (9)
for o-finite measures pu; on 2U;:

?measurep,lx---xpnonm VA €e,.. VA, e, :
,ulxx,un<A1XXAn):,U/1(A1)Mn(An)

Moreover, 1 X - -+ X p, is o-finite and for every py X - -+ X p,-integrable function f

/fd(ulx---xpn):/ R wn) p(diwn) - dp ().
Q Q1 Qn

Definition 3. p = py X --- X p, is called the product measure corresponding to p;
fori =1,...,n, and (2,2, u) is called the product measure space corresponding to
(Q, A5, ;) fori=1,...,n
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Example 5.

(i) For uniform distributions p; on finite spaces €;, g X -+ X p, is the uniform
distribution on 2. Cf. Example 3.1 in the case n € N.

(i)
Ao = A1 X o X AL

Theorem 4 (Ionescu-Tulcea). Assume that p is a probability measure and that
K; are Markov kernels for i € N\ {1}. Then, for I = N,

%Iprobabﬂity measure Pon A Vne N VA, eA,.. VA, e, :

P<A1><- - X Ay X H Q) (X Ko x-oo X Kp)(Ap x --- x A,).  (10)

i=n+1

Proof. Uniqueness: By (10), P is uniquely determined on the class of measurable
rectangles. Apply Theorem 4.4.

Existence: On the semi-algebra of measurable rectangles we define P by (10). By
(8), one easily checks that this is well-defined and, by definition, additive. By Theorem
4.2, P is extended uniquely to a content on the algebra of cylinder sets, still denoted
by P. Obviously,

PAx [ =(ux Ky x K)(A),  Ae@Y; .

i>n Jj<n

We claim that this content is o—additive; then, by Corollary 4.1, there is a unique
extension to 2. By Theorem 4.1, it suffices to show that P is o—continuous at (). So let
A, be cylinder sets, A, | (), and assume lim,, P(A,,) > 0. Without loss of generality,
we may assume

A :{wz ieN - (w177wn>€Bn}

for some B,,. Set w’ = (wy,...,w;). By (8) and Theorem 2,
/ / / 1, (W) Ko (W™ dw,) .. Ky (wy, dws) dp(wr) = | 9 (wy)dp(wr)
Ql QQ Ql

(1)
=:fn " (w1)
Since A,11 C A,, Byi1 C B, x €2, and hence
1Bn+1( n+1) < 1 ( ) )

thus, the monotonicity of integrals show that fr(ll) is monotonically decreasing; set
fO = lim, f,(ll). By Lebesgue’s theorem (1 is a majorant),

0< ligbn P(A,) = : fwr)dp(w) .

In particular, there is &; with f()(&1) > 0. In particular, w; € B;.
Next, Ks(@y,-) is a probability measure on €5, and for n > 2 we define

2) wg . / / ]—B wl,uJQ,...,w )Kn((c&l,...,wn_l,dwn),...Kg((ful,wg,dwg)) .
QS n
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Then

fél)@l) = féQ)(w2)K2(@1,dw2) ;
Qo

again f,SZ) is monotonely decreasing against some f, and by Lebesgue
0< f(l) (@1) = f(Q) (WQ)K(C:}l, da)g) .
Qo

Thus there is b, with f®(Dy) > 0, ie., (&1,W05) € By. Iterating this procedure,
one finds a sequence @ with (@1,...,&,) € B, for all n, ie., ©® € A, = 0, a
contradiction. O

Example 6. The queueing model, see Ubung6.3. Here K;(wy,...,w; 1),-) only de-
pends on w;_;. Outlook: Markov processes.

Given: a non-empty arbitrary index set I and probability spaces (£2;,21;, ;) for i € I.
Recall the definition (7).

Theorem 5.

%Iprobability measure P on A VS € Py(l) VA, €, i €S

P(HAi < I1 Q) = T m(A). (11)

€S 1€I\S €S
Notation: P =[], -

Proof. See Remark 4 in the case of a finite set I.

If |I| = |N|, assume I = N without loss of generality. The particular case of Theorem 4
with (9) for probability measures yu; on 2(; shows

%Iprobability measure Pon A VneN VA €,... VA, e, :

P<A1 X x Ay X ﬁ Q> — (AL - (A

i=n-+1

If I is uncountable, we use Theorem 3.2. For S C I non-empty and countable and for
B e Qs we put
7\ —1
P((x§)” B) = [ m(B).
i€s
Hereby we get a well-defined mapping P : 2 — R, which clearly is a probability
measure and satisfies (11). Use Theorem 4.4 to obtain the uniqueness result. O]

Definition 4. P = [[,.; u; is called the product measure corresponding to i, for
i €1, and (Q,%, P) is called the product measure space corresponding to (€2;, A, 14;)
fori e 1.

Remark 5. Theorem 5 answers the question that is posed in Example 3.1 in full
generality. Moreover, it is the basis for a positive answer to the question from the
introductory Example 1.2, see Theorem III.5.2.
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