8 Kernels and Product Measures

Given: measurable spaces $\left(\Omega_{1}, \mathfrak{A}_{1}\right)$ and $\left(\Omega_{2}, \mathfrak{A}_{2}\right)$.
Motivation: two-stage experiment. Output $\omega_{1} \in \Omega_{1}$ of the first stage determines probabilistic model for the second stage. Natural idea: Describe ,,conditional probabilities", try to build a model up from this.

Definition 1. $K: \Omega_{1} \times \mathfrak{A}_{2} \rightarrow \overline{\mathbb{R}}$ is a (Markov) kernel (from $\left(\Omega_{1}, \mathfrak{A}_{1}\right)$ to $\left(\Omega_{2}, \mathfrak{A}_{2}\right)$), iff
(i) $K\left(\omega_{1}, \cdot\right)$ is a (probability) measure on \mathfrak{A}_{2} for every $\omega_{1} \in \Omega_{1}$,
(ii) $K\left(\cdot, A_{2}\right)$ is $\mathfrak{A}_{1}-\overline{\mathfrak{B}}$-measurable for every $A_{2} \in \mathfrak{A}_{2}$.
K is called σ-finite kernel iff, additionally, there are $B_{i} \in \mathfrak{A}_{2}$ disjoint with

$$
\bigcup_{i=1}^{\infty} B_{i}=\Omega_{2} \quad \wedge \quad \forall i \in \mathbb{N}: \sup _{\omega_{1} \in \Omega_{1}} K\left(\omega_{1}, A_{2, i}\right)<\infty
$$

Example 1. (i) Choose one out of n (unbalanced) coins and throw it once. Parameters $a_{1}, \ldots, a_{n} \geq 0$ such that $\sum_{i=1}^{n} a_{i}=1$ and $b_{1}, \ldots, b_{n} \in[0,1]$.
Let

$$
\Omega_{1}=\{1, \ldots, n\}, \quad \mathfrak{A}_{1}=\mathfrak{P}\left(\Omega_{1}\right)
$$

and define

$$
\mu(\{i\})=a_{i}, \quad i \in \Omega_{1},
$$

to be the probability of choosing the i-th coin. Moreover, let

$$
\Omega_{2}=\{\mathrm{H}, \mathrm{~T}\}, \quad \mathfrak{A}_{2}=\mathfrak{P}\left(\Omega_{2}\right)
$$

and define

$$
K(i,\{\mathrm{H}\})=b_{i}, \quad K(i,\{\mathrm{~T}\})=1-b_{i}
$$

so $K(i,\{\mathrm{H}\})$ is probability obtaining H when throwing the i-th coin. Formal description:

$$
K\left(i, A_{2}\right)=b_{i} \cdot \delta_{\mathrm{H}}\left(A_{2}\right)+\left(1-b_{i}\right) \cdot \delta_{\mathrm{T}}\left(A_{2}\right), \quad A_{2} \in \mathfrak{A}_{2} .
$$

(ii) (Extremeal case 1) Model for the second stage not influenced by output of the first stage, i.e., for a (probability) measure ν on \mathfrak{A}_{2}

$$
\forall \omega_{1} \in \Omega_{1}: \quad K\left(\omega_{1}, \cdot\right)=\nu
$$

In Example 1i this holds if $b_{1}=\cdots=b_{n}$.
(iii) (Extremal case 2) Output of the first stage determines the output of the second stage, i.e., for a $\mathfrak{A}_{1}-\mathfrak{A}_{2}$-measurable mapping $f: \Omega_{1} \rightarrow \Omega_{2}$

$$
\forall \omega_{1} \in \Omega_{1}: \quad K\left(\omega_{1}, \cdot\right)=\delta_{f\left(\omega_{1}\right)}
$$

In Example 1i this holds if $b_{1}, \ldots, b_{n} \in\{0,1\}$.

Have: Model for „conditional probabilities" (kernel K), Model for the initial random experiment (probability measure μ on Ω_{1}). How to build a model for the compound experiment (i.e., probability measure on Ω_{2})?
Reasonable, and assumed in the sequel,

$$
\Omega=\Omega_{1} \times \Omega_{2}, \quad \mathfrak{A}=\mathfrak{A}_{1} \otimes \mathfrak{A}_{2} .
$$

Question: How to define P?
Example 2. In Example 1i, a reasonable requirement for P is

$$
P\left(\{i\} \times \Omega_{2}\right)=a_{i}=K\left(a_{i}, \Omega_{2}\right), \quad P(\{i\} \times\{\mathrm{H}\})=a_{i} \cdot b_{i}=K(i,\{A\}) a_{i}
$$

for every $i \in \Omega_{1}$. Consequently, for $A_{2} \subset \Omega_{2}$

$$
P\left(\{i\} \times A_{2}\right)=K\left(i, A_{2}\right) \cdot a_{i}
$$

and for $A \subset \Omega$

$$
\begin{aligned}
P(A) & =\sum_{i=1}^{n} P\left(\left\{\left(\omega_{1}, \omega_{2}\right) \in A: \omega_{1}=i\right\}\right)=\sum_{i=1}^{n} P\left(\{i\} \times\left\{\omega_{2} \in \Omega_{2}:\left(i, \omega_{2}\right) \in A\right\}\right) \\
& =\sum_{i=1}^{n} K\left(i,\left\{\left(i, \omega_{2}\right) \in A\right\}\right) \cdot a_{i}=\int_{\Omega_{1}} K\left(i,\left\{\left(i, \omega_{2}\right) \in A\right\}\right) \mu(d i)
\end{aligned}
$$

May we generally use the right-hand side integral for the definition of P ?
Lemma 1. Let $f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$. Then, for $\omega_{1} \in \Omega_{1}$, the ω_{1}-section

$$
f\left(\omega_{1}, \cdot\right): \Omega_{2} \rightarrow \overline{\mathbb{R}}
$$

of f is $\mathfrak{A}_{2}-\overline{\mathfrak{B}}$-measurable, and for $\omega_{2} \in \Omega_{2}$ the ω_{2}-section

$$
f\left(\cdot, \omega_{2}\right): \Omega_{1} \rightarrow \overline{\mathbb{R}}
$$

of f is $\mathfrak{A}_{1}-\overline{\mathfrak{B}}$-measurable.
Proof. In the case of an ω_{1}-section. Fix $\omega_{1} \in \Omega_{1}$. Then $\iota_{\omega_{1}} \Omega_{2} \rightarrow \Omega_{1} \times \Omega_{2}: \omega_{2} \mapsto$ $\left(\omega_{1}, \omega_{2}\right)$ is \mathfrak{A}_{2} - \mathfrak{A}-measurable due to Corollary 3.1.(i); by Theorem 2.1, $f\left(\omega_{1}, \cdot\right)=f \circ \iota_{\omega_{1}}$ is as well.

Remark 1. In particular, for $A \in \mathfrak{A}$ and $f=1_{A}$

$$
f\left(\omega_{1}, \cdot\right)=1_{A}\left(\omega_{1}, \cdot\right)=1_{A_{\omega_{1}}}
$$

where

$$
A_{\omega_{1}}=\left\{\omega_{2} \in \Omega_{2}:\left(\omega_{1}, \omega_{2}\right) \in A\right\}
$$

poor notation is the ω_{1}-section of A. By Lemma 1

$$
\forall \omega_{1} \in \Omega_{1}: \quad A_{\omega_{1}} \in \mathfrak{A}_{2} .
$$

Analogously for the ω_{2}-section

$$
A_{\omega_{2}}=\left\{\omega_{1} \in \Omega_{1}:\left(\omega_{1}, \omega_{2}\right) \in A\right\}
$$

of A.

Given:

- a σ-finite kernel K from $\left(\Omega_{1}, \mathfrak{A}_{1}\right)$ to $\left(\Omega_{2}, \mathfrak{A}_{2}\right)$,
- a σ-finite measure μ on \mathfrak{A}_{1}.

Lemma 2. Let $f \in \overline{\mathfrak{Z}}_{+}$. Then

$$
\begin{aligned}
g: \Omega_{1} & \rightarrow \mathbb{R}_{+} \cup\{\infty\} \\
\omega_{1} & \mapsto \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right)
\end{aligned}
$$

is $\mathfrak{A}_{1}-\mathfrak{B}([0, \infty])$-measurable.
Proof. Case 1:

$$
\begin{equation*}
\forall \omega_{1} \in \Omega_{1}: K\left(\omega_{1}, \Omega_{2}\right)<\infty \tag{1}
\end{equation*}
$$

Put $\mathfrak{F}=\left\{f \in \overline{\mathfrak{Z}}_{+}:\right.$statement holds for $\left.f\right\}$
Step 1:

$$
\forall A_{1} \in \mathfrak{A}_{1}, A_{2} \in \mathfrak{A}_{2}: 1_{A_{1} \times A_{2}} \in \mathfrak{F}
$$

Indeed,

$$
\begin{equation*}
\int_{\Omega_{2}} \underbrace{1_{A_{1} \times A_{2}}\left(\omega_{1}, \omega_{2}\right)}_{=1_{A_{1}}\left(\omega_{1}\right) 1_{A_{2}}\left(\omega_{2}\right)} K\left(\omega_{1}, d \omega_{2}\right)=\underbrace{1_{A_{1}}\left(\omega_{1}\right)}_{\mathfrak{A}_{1}-\mathfrak{B}-\mathrm{mb}} K\left(\omega_{1}, A_{2}\right) \tag{2}
\end{equation*}
$$

Step 2:

$$
\forall A \in \mathfrak{A}: \quad 1_{A} \in \mathfrak{F}
$$

Proof: Set

$$
\begin{aligned}
\mathfrak{D} & =\left\{A \in \mathfrak{A}: 1_{A} \in \mathfrak{F}\right\} \\
\mathfrak{E} & =\left\{A_{1} \times A_{2}: A_{1} \in \mathfrak{A}_{1}, A_{2} \in \mathfrak{A}_{2}\right\}
\end{aligned}
$$

Then $\mathfrak{E} \subset \mathfrak{D}$ by Claim 1, \mathfrak{E} closed w.r.t. intersections and $\sigma(\mathfrak{E})=\mathfrak{A}$ Easy to verify, using (1): \mathfrak{D} is a Dynkin class
Theorem 1.2.(i) yields: $\mathfrak{A}=\sigma(\mathfrak{E})=\delta(\mathfrak{E}) \subset \mathfrak{D} \subset \mathfrak{A}$, i.e. $\mathfrak{D}=\mathfrak{A}$
Step 3:

$$
f_{1}, f_{2} \in \mathfrak{F} \wedge \alpha \in \mathbb{R}_{+} \quad \Rightarrow \quad \alpha f_{1}+f_{2} \in \mathfrak{F}
$$

Proof: Apply Lemma 5.2, Theorem 2.6
Step 4:

$$
f_{n} \in \mathfrak{F} \wedge f_{n} \uparrow f \Rightarrow f \in \mathfrak{F}
$$

Proof: Monotone convergence, Theorem 2.5.(iii).
Step 5: Theorem 2.7 implies $\mathfrak{F}=\overline{\mathfrak{Z}}_{+}$.

Case 2: General Case.

Choose $B_{1}, B_{2}, \ldots \in \mathfrak{A}_{2}$ pairwise disjoint, such that

$$
\bigcup_{i=1}^{\infty} B_{i}=\Omega_{2} \quad \wedge \quad \forall i \in \mathbb{N}: \sup _{\omega_{1} \in \Omega_{1}} K\left(\omega_{1}, A_{2, i}\right)<\infty
$$

Define

$$
K_{i}\left(\omega_{1}, \cdot\right)=K\left(\omega_{1}, \cdot \cap B_{i}\right)=1_{B_{i}} \cdot K\left(\omega_{1}, \cdot\right) .
$$

Then

$$
\begin{array}{rll}
\int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, \omega_{2}\right) & \stackrel{\text { Mon. Conv. }}{=} & \sum_{i=1}^{\infty} \int_{\Omega_{2}} 1_{B_{i}}\left(\omega_{2}\right) f\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) \\
& \stackrel{\text { Thrm } 7.2}{=} & \sum_{i=1}^{\infty} \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) K_{i}\left(\omega_{1}, d \omega_{2}\right)
\end{array}
$$

Since $\forall \omega_{1} \in \Omega_{1}: K_{i}\left(\omega_{1}, \Omega_{2}\right)<\infty$,
we have $\int_{\Omega_{2}} f\left(\cdot, \omega_{2}\right) K_{i}\left(\cdot, d \omega_{2}\right)$ is $\mathfrak{A}_{1}-\mathfrak{B}([0, \infty])$-measurable.
Apply Theorem 2.6, 2.5

Theorem 1. In the above situation,

$$
\begin{align*}
& \exists \text { measure } \nu \text { on } \mathfrak{A} \text { such that } \forall A_{1} \in \mathfrak{A}_{1} \forall A_{2} \in \mathfrak{A}_{2} \text { : } \\
& \qquad \nu\left(A_{1} \times A_{2}\right)=\int_{A_{1}} K\left(\omega_{1}, A_{2}\right) \mu\left(d \omega_{1}\right) . \tag{3}
\end{align*}
$$

Moreover, ν is σ-finite, and

$$
\begin{equation*}
\forall A \in \mathfrak{A}: \quad \nu(A)=\int_{\Omega_{1}} K\left(\omega_{1}, A_{\omega_{1}}\right) \mu\left(d \omega_{1}\right) . \tag{4}
\end{equation*}
$$

If μ is a probability measure and K is a Markov kernel then ν is a probability measure, too.
Notation: $\nu=\mu \times K$.
Proof. Uniqueness: $\mathfrak{A}_{0}=\left\{A_{1} \times A_{2}: A_{i} \in \mathfrak{A}_{i}\right\}$ is a \cap-closed generator of \mathfrak{A}; apply Theorem 4.3.
Existence: Let $A \in \mathfrak{A}, \omega_{1} \in \Omega_{1}$. Then

$$
\omega_{2} \mapsto K\left(\omega_{1}, A_{\omega_{1}}\right)=\int_{\Omega_{2}} \underbrace{1_{A_{1}}\left(\omega_{2}\right)}_{=1_{A}\left(\omega_{1}, \omega_{2}\right)} K\left(\omega_{1}, d \omega_{2}\right)
$$

is measurable by Lemma 8.2; hence (4) is well-defined. Moreover, ν defined by (2) is additive, and if $A^{(n)} \uparrow A, A^{(n)}, A \in \mathfrak{A}$, then $A_{\omega_{1}}^{(n)} \uparrow A^{\omega_{1}}$ for every ω_{1}, thus $K\left(\omega_{1}, A_{n}^{\omega_{1}}\right) \uparrow$ ($\omega_{1}, A_{\omega_{1}}$), and by monotone convergence, $\nu\left(A_{n}\right) \uparrow \nu(A)$. Thus, ν is σ-continuous from below, hence a measure.

By virtue of (2), ν satisfies (3). By assumption there are $A_{1}, A_{2}, \ldots \in \mathfrak{A}_{1}$ pairwise disjoint, such that

$$
\bigcup_{i=1}^{\infty} A_{i}=\Omega_{1} \quad \wedge \quad \forall i \in \mathbb{N}: \mu\left(A_{i}\right)<\infty
$$

and $B_{1}, B_{2}, \ldots \in \mathfrak{A}_{2}$ pairwise disjoint, such that

$$
\bigcup_{j=1}^{\infty} B_{j}=\Omega_{2} \quad \wedge \quad \forall j \in \mathbb{N}: \sup _{\omega_{1} \in \Omega_{1}} K\left(\omega_{1}, B_{j}\right)<\infty
$$

Thus $A_{i} \times B_{j}, i, j \in \mathbb{N}$, pairwise disjoint and $\bigcup_{i, j \in \mathbb{N}} A_{i} \times B_{j}=\Omega$,

$$
\begin{aligned}
(\mu \times K)\left(A_{i} \times B_{j}\right) & =\int_{A_{i}} K\left(\omega_{1}, B_{j}\right) \mu\left(d \omega_{1}\right) \\
& \leq \sup _{\omega_{1} \in \Omega_{1}} K\left(\omega_{1}, A_{j}\right) \mu\left(B_{i}\right)<\infty
\end{aligned}
$$

i.e., $\mu \times K$ ist σ-finite.

Example 3. In Example 2 we have $P=\mu \times K$.
Remark 2. Particular case of Theorem 1 with

$$
\mu=\mu_{1}, \quad \forall \omega_{1} \in \Omega_{1}: K\left(\omega_{1}, \cdot\right)=\mu_{2}
$$

for σ-finite measures μ_{i} on $\left(\Omega_{i}, \mathfrak{A}_{i}\right)$:

$$
\begin{align*}
& \exists \text { measure }\left(\mu_{1} \times \mu_{2}\right) \text { on } \mathfrak{A} \forall A_{1} \in \mathfrak{A}_{1} \forall A_{2} \in \mathfrak{A}_{2}: \\
& \quad\left(\mu_{1} \times \mu_{2}\right)\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \cdot \mu_{2}\left(A_{2}\right) . \tag{5}
\end{align*}
$$

Moreover, $\mu_{1} \times \mu_{2}$ is σ-finite and satisfies

$$
\begin{equation*}
\forall A \in \mathfrak{A}: \quad\left(\mu_{1} \times \mu_{2}\right)(A)=\int_{\Omega_{1}} \mu_{2}\left(A_{\omega_{1}}\right) \mu\left(d \omega_{1}\right) . \tag{6}
\end{equation*}
$$

We add that σ-finiteness is used for the definition (6) and the uniqueness in (5). In general, we only have existence of a measure $\mu_{1} \times \mu_{2}$ with (5). See Elstrodt (1996, §V.1).

Definition 2. $\mu=\mu_{1} \times \mu_{2}$ is called the product measure corresponding to μ_{1} and μ_{2}, and $(\Omega, \mathfrak{A}, \mu)$ is called the product measure space corresponding to $\left(\Omega_{1}, \mathfrak{A}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathfrak{A}_{2}, \mu_{2}\right)$.

Example 4.

(i) In Example 2 with $b=b_{1}=\cdots=b_{n}$ and $\nu=b \cdot \delta_{\mathrm{H}}+(1-b) \cdot \delta_{\mathrm{T}}$ we have $P=\mu \times \nu$ 。
(ii) For countable spaces Ω_{i} and σ-algebras $\mathfrak{A}_{i}=\mathfrak{P}\left(\Omega_{i}\right)$ we get

$$
\mu_{1} \times \mu_{2}(A)=\sum_{\omega_{1} \in \Omega_{1}} \mu_{2}\left(A_{\omega_{1}}\right) \cdot \mu_{1}\left(\left\{\omega_{1}\right\}\right), \quad A \subset \Omega
$$

In particular, for uniform distributions μ_{i} on finite spaces, $\mu_{1} \times \mu_{2}$ is the uniform distribution on Ω. Cf. Example 3.1 in the case $n=2$.
(iii) The multi-dimensional Lebesgue measure is a product measure. Namely, for $k, \ell \in \mathbb{N}$ and $A_{1} \in \mathfrak{J}_{k}, A_{2} \in \mathfrak{J}_{\ell}$ we have

$$
\lambda_{k+\ell}\left(A_{1} \times A_{2}\right)=\lambda_{k}\left(A_{1}\right) \cdot \lambda_{\ell}\left(A_{2}\right)=\left(\lambda_{k} \times \lambda_{\ell}\right)\left(A_{1} \times A_{2}\right),
$$

see Example 4.1.(i). Corollary 4.1 yields

$$
\lambda_{k+\ell}=\lambda_{k} \times \lambda_{\ell}
$$

From (6) we get

$$
\lambda_{k+\ell}(A)=\int_{\mathbb{R}^{k}} \lambda_{\ell}\left(A_{\omega_{1}}\right) \lambda_{k}\left(d \omega_{1}\right), \quad A \in \mathfrak{B}_{k+\ell},
$$

cf. Cavalieri's Principle.

Theorem 2 (Fubini's Theorem).

(i) For $f \in \overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$

$$
\int_{\Omega} f d(\mu \times K)=\int_{\Omega_{1}} \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) \mu\left(d \omega_{1}\right) .
$$

(ii) For $f(\mu \times K)$-integrable and

$$
A_{1}=\left\{\omega_{1} \in \Omega_{1}: f\left(\omega_{1}, \cdot\right) K\left(\omega_{1}, \cdot\right) \text {-integrable }\right\}
$$

we have
(a) $A_{1} \in \mathfrak{A}_{1}$ and $\mu\left(A_{1}^{c}\right)=0$,
(b) $\omega_{1} \mapsto \mathbf{1}_{A_{1}} \cdot \int_{\Omega_{2}} f\left(\omega_{1}, \cdot\right) d K\left(\omega_{1}, \cdot\right)$ is integrable w.r.t. μ,

$$
\begin{equation*}
\int_{\Omega} f d(\mu \times K)=\int_{A_{1}} \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) \mu\left(d \omega_{1}\right) . \tag{c}
\end{equation*}
$$

Proof. Ad (i): Algebraic induction: For $f=\mathbf{1}_{A}$, this is true by definition; both sides are linear in f, hence the claim is true for $f \in \Sigma_{+}$, and if $f \in \overline{\mathfrak{Z}}_{+}$, there are $f_{n} \in \Sigma_{+}$ with $f_{n} \uparrow f$. Now for each fixed $\omega_{1}, f_{n}\left(\omega_{1}, \cdot\right) \uparrow f$, hence by monoton convergence,

$$
\int_{\Omega_{2}} f_{n}\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) \uparrow \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right)
$$

and again by monotone convergence

$$
\int_{\Omega_{1}} \int_{\Omega_{2}} f_{n}\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) \uparrow \int_{\Omega_{1}} \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) .
$$

Ad (ii): By (i), we have, for $f_{ \pm}=\max 0, \pm f$,

$$
\int_{\Omega} f_{ \pm} d(\mu \times K)=\int_{\Omega_{1}} \int_{\Omega_{2}} f_{ \pm}\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) \mu\left(d \omega_{1}\right) .
$$

Then

$$
A_{1}^{ \pm}:=\left\{\omega_{1}: \int_{\Omega_{2}} f_{ \pm}\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right)<\infty\right\}
$$

is in \mathfrak{A}_{1} by Lemma 8.2, and $A_{1}=A^{+} \cap A^{-}$. Moreover, $\mu\left(\left(A^{ \pm}\right)^{c}\right)<\infty$ by Theorem 5.4 and part (i). Part (b) and (c) follow immediately, since they are true for $f_{ \pm}$.

Remark 3. For brevity, we write

$$
\int_{\Omega_{1}} \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) \mu\left(d \omega_{1}\right)=\int_{A_{1}} \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) \mu\left(d \omega_{1}\right)
$$

if f is $(\mu \times K)$-integrable. For $f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$

$$
f \text { is }(\mu \times K) \text {-integrable } \quad \Leftrightarrow \quad \int_{\Omega_{1}} \int_{\Omega_{2}}|f|\left(\omega_{1}, \omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) \mu\left(d \omega_{1}\right)<\infty \text {. }
$$

Corollary 1 (Fubini's Theorem). For σ-finite measures μ_{i} on \mathfrak{A}_{i} and a $\left(\mu_{1} \times \mu_{2}\right)$ integrable function f

$$
\begin{aligned}
\int_{\Omega} f d\left(\mu_{1} \times \mu_{2}\right) & =\int_{\Omega_{1}} \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) \mu_{2}\left(d \omega_{2}\right) \mu_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{2}} \int_{\Omega_{1}} f\left(\omega_{1}, \omega_{2}\right) \mu_{1}\left(d \omega_{1}\right) \mu_{2}\left(d \omega_{2}\right)
\end{aligned}
$$

Proof. Theorem 2 yields the first equality. For the second equality, put $\widetilde{f}\left(\omega_{2}, \omega_{1}\right)=$ $f\left(\omega_{1}, \omega_{2}\right)$ and note that $\int_{\Omega} f d\left(\mu_{1} \times \mu_{2}\right)=\int_{\Omega} \widetilde{f} d\left(\mu_{2} \times \mu_{1}\right)$.

Corollary 2. For every measurable space (Ω, \mathfrak{A}), every σ-finite measure μ on \mathfrak{A}, and every $f \in \overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$

$$
\int_{\Omega} f d \mu=\int_{] 0, \infty[} \mu(\{f>x\}) \lambda_{1}(d x) .
$$

Proof. Übung 6.2.
Now we construct a stochastic model for a series of experiments, where the outputs of the first $i-1$ stages determine the model for the i th stage. We simply iterate our two-step procedure.
Given: measurable spaces $\left(\Omega_{i}, \mathfrak{A}_{i}\right)$ for $i \in I$, where $I=\{1, \ldots, n\}$ or $I=\mathbb{N}$. Put

$$
\left(\Omega_{i}^{\prime}, \mathfrak{A}_{i}^{\prime}\right)=\left(\prod_{j=1}^{i} \Omega_{j}, \bigotimes_{j=1}^{i} \mathfrak{A}_{j}\right)
$$

and note that

$$
\prod_{j=1}^{i} \Omega_{j}=\Omega_{i-1}^{\prime} \times \Omega_{i} \quad \wedge \quad \bigotimes_{j=1}^{i} \mathfrak{A}_{j}=\mathfrak{A}_{i-1}^{\prime} \otimes \mathfrak{A}_{i}
$$

for $i \in I \backslash\{1\}$. Furthermore, let

$$
\begin{equation*}
\Omega=\prod_{i \in I} \Omega_{i}, \quad \mathfrak{A}=\bigotimes_{i \in I} \mathfrak{A}_{i} . \tag{7}
\end{equation*}
$$

Given:

- σ-finite kernels K_{i} from $\left(\Omega_{i-1}^{\prime}, \mathfrak{A}_{i-1}^{\prime}\right)$ to $\left(\Omega_{i}, \mathfrak{A}_{i}\right)$ for $i \in I \backslash\{1\}$,
- a σ-finite measure μ on \mathfrak{A}_{1}.

Theorem 3. For $I=\{1, \ldots, n\}$

$$
\begin{aligned}
& \exists \text { measure } \nu \text { on } \mathfrak{A} \forall A_{1} \in \mathfrak{A}_{1} \ldots \forall A_{n} \in \mathfrak{A}_{n}: \\
& \quad \nu\left(A_{1} \times \cdots \times A_{n}\right) \\
& =\int_{A_{1}} \cdots \int_{A_{n-1}} K_{n}\left(\left(\omega_{1}, \ldots, \omega_{n-1}\right), A_{n}\right) K_{n-1}\left(\left(\omega_{1}, \ldots, \omega_{n-2}\right), d \omega_{n-1}\right) \cdots \mu\left(d \omega_{1}\right) .
\end{aligned}
$$

Moreover, ν is σ-finite and for $f \nu$-integrable (the short version)

$$
\begin{equation*}
\int_{\Omega} f d \nu=\int_{\Omega_{1}} \ldots \int_{\Omega_{n}} f\left(\omega_{1}, \ldots, \omega_{n}\right) K_{n}\left(\left(\omega_{1}, \ldots, \omega_{n-1}\right), d \omega_{n}\right) \cdots \mu\left(d \omega_{1}\right) . \tag{8}
\end{equation*}
$$

Notation: $\nu=\mu \times K_{2} \times \cdots \times K_{n}$.
Proof. Induction on n, using Theorems 1 and 2.
Remark 4. Particular case of Theorem 3 with

$$
\begin{equation*}
\mu=\mu_{1}, \quad \forall i \in I \backslash\{1\} \forall \omega_{i-1}^{\prime} \in \Omega_{i-1}^{\prime}: \quad K_{i}\left(\omega_{i-1}^{\prime}, \cdot\right)=\mu_{i} \tag{9}
\end{equation*}
$$

for σ-finite measures μ_{i} on \mathfrak{A}_{i} :

$$
\begin{aligned}
& \underset{1}{\exists} \text { measure } \mu_{1} \times \cdots \times \mu_{n} \text { on } \mathfrak{A} \forall A_{1} \in \mathfrak{A}_{1} \ldots \forall A_{n} \in \mathfrak{A}_{n}: \\
& \quad \mu_{1} \times \cdots \times \mu_{n}\left(A_{1} \times \cdots \times A_{n}\right)=\mu_{1}\left(A_{1}\right) \cdots \cdots \mu_{n}\left(A_{n}\right) .
\end{aligned}
$$

Moreover, $\mu_{1} \times \cdots \times \mu_{n}$ is σ-finite and for every $\mu_{1} \times \cdots \times \mu_{n}$-integrable function f

$$
\int_{\Omega} f d\left(\mu_{1} \times \cdots \times \mu_{n}\right)=\int_{\Omega_{1}} \cdots \int_{\Omega_{n}} f\left(\omega_{1}, \ldots, \omega_{n}\right) \mu_{n}\left(d \omega_{n}\right) \cdots d \mu_{1}\left(\omega_{1}\right) .
$$

Definition 3. $\mu=\mu_{1} \times \cdots \times \mu_{n}$ is called the product measure corresponding to μ_{i} for $i=1, \ldots, n$, and $(\Omega, \mathfrak{A}, \mu)$ is called the product measure space corresponding to $\left(\Omega_{i}, \mathfrak{A}_{i}, \mu_{i}\right)$ for $i=1, \ldots, n$.

Example 5.

(i) For uniform distributions μ_{i} on finite spaces $\Omega_{i}, \mu_{1} \times \cdots \times \mu_{n}$ is the uniform distribution on Ω. Cf. Example 3.1 in the case $n \in \mathbb{N}$.
(ii)

$$
\lambda_{n}=\lambda_{1} \times \cdots \times \lambda_{1} .
$$

Theorem 4 (Ionescu-Tulcea). Assume that μ is a probability measure and that K_{i} are Markov kernels for $i \in \mathbb{N} \backslash\{1\}$. Then, for $I=\mathbb{N}$,
${ }_{1}^{\exists}$ probability measure P on $\mathfrak{A} \quad \forall n \in N \quad \forall A_{1} \in \mathfrak{A}_{1} \ldots \forall A_{n} \in \mathfrak{A}_{n}$:

$$
\begin{equation*}
P\left(A_{1} \times \cdots \times A_{n} \times \prod_{i=n+1}^{\infty} \Omega_{i}\right)=\left(\mu \times K_{2} \times \cdots \times K_{n}\right)\left(A_{1} \times \cdots \times A_{n}\right) \tag{10}
\end{equation*}
$$

Proof. Uniqueness: By (10), P is uniquely determined on the class of measurable rectangles. Apply Theorem 4.4.
Existence: On the semi-algebra of measurable rectangles we define P by (10). By (8), one easily checks that this is well-defined and, by definition, additive. By Theorem $4.2, P$ is extended uniquely to a content on the algebra of cylinder sets, still denoted by P. Obviously,

$$
P\left(A \times \prod_{j>n} \Omega_{j}\right)=\left(\mu \times K_{2} \cdots \times K_{n}\right)(A), \quad A \in \bigotimes_{j \leq n} \mathfrak{A}_{j} .
$$

We claim that this content is σ-additive; then, by Corollary 4.1, there is a unique extension to \mathfrak{A}. By Theorem 4.1, it suffices to show that P is σ-continuous at \emptyset. So let A_{n} be cylinder sets, $A_{n} \downarrow \emptyset$, and assume $\lim _{n} P\left(A_{n}\right)>0$. Without loss of generality, we may assume

$$
A_{n}=\left\{\left(\omega_{i}\right)_{i \in \mathbb{N}}:\left(\omega_{1}, \ldots, \omega_{n}\right) \in B_{n}\right\}
$$

for some B_{n}. Set $\omega^{i}=\left(\omega_{1}, \ldots, \omega_{i}\right)$. By (8) and Theorem 2,

$$
P\left(A_{n}\right)=\int_{\Omega_{1}} \underbrace{\int_{\Omega_{2}} \ldots \int_{\Omega_{n}} \mathbf{1}_{B_{n}}\left(\omega^{n}\right) K_{n}\left(\omega^{n-1}, d \omega_{n}\right) \ldots K_{1}\left(\omega_{1}, d \omega_{2}\right)}_{=: f_{n}^{(1)}\left(\omega_{1}\right)} d \mu\left(\omega_{1}\right)=\int_{\Omega_{1}} f_{n}^{(1)}\left(\omega_{1}\right) d \mu\left(\omega_{1}\right) .
$$

Since $A_{n+1} \subseteq A_{n}, B_{n+1} \subseteq B_{n} \times \Omega$, and hence

$$
\mathbf{1}_{B_{n+1}}\left(\omega^{n+1}\right) \leq \mathbf{1}_{B_{n}}\left(\omega^{n}\right),
$$

thus, the monotonicity of integrals show that $f_{n}^{(1)}$ is monotonically decreasing; set $f^{(1)}=\lim _{n} f_{n}^{(1)}$. By Lebesgue's theorem (1 is a majorant),

$$
0<\lim _{n} P\left(A_{n}\right)=\int_{\Omega_{1}} f\left(\omega_{1}\right) d \mu\left(\omega_{1}\right) .
$$

In particular, there is $\hat{\omega}_{1}$ with $f^{(1)}\left(\hat{\omega}_{1}\right)>0$. In particular, $\omega_{1} \in B_{1}$.
Next, $K_{2}\left(\hat{\omega}_{1}, \cdot\right)$ is a probability measure on Ω_{2}, and for $n>2$ we define
$f_{n}^{(2)}\left(\omega_{2}\right):=\int_{\Omega_{3}} \cdots \int_{\Omega_{n}} \mathbf{1}_{B_{n}}\left(\hat{\omega}_{1}, \omega_{2}, \ldots, \omega_{n}\right) K_{n}\left(\left(\hat{\omega}_{1}, \ldots, \omega_{n-1}, d \omega_{n}\right), \ldots K_{3}\left(\hat{\omega}_{1}, \omega_{2}, d \omega_{3}\right)\right)$.

Then

$$
f_{n}^{(1)}\left(\hat{\omega}_{1}\right)=\int_{\Omega_{2}} f_{n}^{(2)}\left(\omega_{2}\right) K_{2}\left(\hat{\omega}_{1}, d \omega_{2}\right) ;
$$

again $f_{n}^{(2)}$ is monotonely decreasing against some $f^{(2)}$, and by Lebesgue

$$
0<f^{(1)}\left(\hat{\omega}_{1}\right)=\int_{\Omega_{2}} f^{(2)}\left(\omega_{2}\right) K\left(\hat{\omega}_{1}, d \omega_{2}\right)
$$

Thus there is $\hat{\omega}_{2}$ with $f^{(2)}\left(\hat{\omega}_{2}\right)>0$, i.e., $\left(\hat{\omega}_{1}, \hat{\omega}_{2}\right) \in B_{2}$. Iterating this procedure, one finds a sequence $\hat{\omega}$ with $\left(\hat{\omega}_{1}, \ldots, \hat{\omega}_{n}\right) \in B_{n}$ for all n, i.e., $\hat{\omega} \in \bigcap A_{n}=\emptyset$, a contradiction.

Example 6. The queueing model, see Übung6.3. Here $\left.K_{i}\left(\omega_{1}, \ldots, \omega_{i-1}\right), \cdot\right)$ only depends on ω_{i-1}. Outlook: Markov processes.

Given: a non-empty arbitrary index set I and probability spaces $\left(\Omega_{i}, \mathfrak{A}_{i}, \mu_{i}\right)$ for $i \in I$. Recall the definition (7).

Theorem 5.

${ }_{1}^{\exists}$ probability measure P on $\mathfrak{A} \quad \forall S \in \mathfrak{P}_{0}(I) \quad \forall A_{i} \in \mathfrak{A}_{i}, i \in S:$

$$
\begin{equation*}
P\left(\prod_{i \in S} A_{i} \times \prod_{i \in I \backslash S} \Omega_{i}\right)=\prod_{i \in S} \mu_{i}\left(A_{i}\right) . \tag{11}
\end{equation*}
$$

Notation: $P=\prod_{i \in I} \mu_{i}$.
Proof. See Remark 4 in the case of a finite set I.
If $|I|=|\mathbb{N}|$, assume $I=\mathbb{N}$ without loss of generality. The particular case of Theorem 4 with (9) for probability measures μ_{i} on \mathfrak{A}_{i} shows

$$
\underset{1}{\exists} \text { probability measure } P \text { on } \mathfrak{A} \forall n \in \mathbb{N} \forall A_{1} \in \mathfrak{A}_{1} \ldots \forall A_{n} \in \mathfrak{A}_{n} \text { : }
$$

$$
P\left(A_{1} \times \cdots \times A_{n} \times \prod_{i=n+1}^{\infty} \Omega_{i}\right)=\mu_{1}\left(A_{1}\right) \cdots \mu_{n}\left(A_{n}\right)
$$

If I is uncountable, we use Theorem 3.2. For $S \subset I$ non-empty and countable and for $B \in \bigotimes_{i \in S} \mathfrak{A}_{i}$ we put

$$
P\left(\left(\pi_{S}^{I}\right)^{-1} B\right)=\prod_{i \in S} \mu_{i}(B)
$$

Hereby we get a well-defined mapping $P: \mathfrak{A} \rightarrow \mathbb{R}$, which clearly is a probability measure and satisfies (11). Use Theorem 4.4 to obtain the uniqueness result.

Definition 4. $P=\prod_{i \in I} \mu_{i}$ is called the product measure corresponding to μ_{i} for $i \in I$, and $(\Omega, \mathfrak{A}, P)$ is called the product measure space corresponding to $\left(\Omega_{i}, \mathfrak{A}_{i}, \mu_{i}\right)$ for $i \in I$.

Remark 5. Theorem 5 answers the question that is posed in Example 3.1 in full generality. Moreover, it is the basis for a positive answer to the question from the introductory Example I.2, see Theorem III.5.2.

