7 The Radon-Nikodym-Theorem

Given: a measure space $(\Omega, \mathfrak{A}, \mu)$. Put $\overline{\mathfrak{Z}}_{+}=\overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$.
Definition 1. For f (quasi-) μ-integrable and $A \in \mathfrak{A}$, the integral of f over A is

$$
\int_{A} f d \mu=\int 1_{A} \cdot f d \mu
$$

(Note: $\left|1_{A} \cdot f\right| \leq|f|$.)
Theorem 1. Let $f \in \overline{\mathfrak{Z}}_{+}$and put

$$
\nu(A)=\int_{A} f d \mu, \quad A \in \mathfrak{A}
$$

Then ν is a measure on \mathfrak{A}.
Proof. Clearly $\nu(\emptyset)=0$ and $\nu \geq 0$. For $A_{1}, A_{2}, \ldots \in \mathfrak{A}$ pairwise disjoint

$$
\begin{aligned}
\nu\left(\bigcup_{i=1}^{\infty} A_{i}\right) & =\int \sum_{i=1}^{\infty} 1_{A_{i}} \cdot f d \mu=\int \lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} 1_{A_{i}} \cdot f\right) d \mu \\
& =\lim _{n \rightarrow \infty} \int \sum_{i=1}^{n} 1_{A_{i}} \cdot f d \mu=\sum_{i=1}^{\infty} \int 1_{A_{i}} \cdot f d \mu \\
& =\sum_{i=1}^{\infty} \nu\left(A_{i}\right)
\end{aligned}
$$

follows from Theorem 5.1.
Definition 2. The mapping ν in Theorem 1 is called measure with μ-density f, or distribution with density f. Notation: $\nu=f \cdot \mu$ (bad, but common notation: $\mathrm{d} \nu=d \cdot \mathrm{~d} \mu)$. If $\int f d \mu=1$ then f is called probability density.

Example 1. The introductory examples of probability spaces were defined by means of probability densities.
(i) Let $(\Omega, \mathfrak{A}, \mu)=\left(\mathbb{R}^{k}, \mathfrak{B}_{k}, \lambda_{k}\right)$. For

$$
f(x)=(2 \pi)^{-k / 2} \cdot \exp \left(-\frac{1}{2} \sum_{i=1}^{k} x_{i}^{2}\right)
$$

we get the k-dimensional standard normal distribution ν.
For $B \in \mathfrak{B}_{k}$ such that $0<\lambda_{k}(B)<\infty$ and

$$
f=\frac{1}{\lambda_{k}(B)} \cdot 1_{B}
$$

we get the uniform distribution on B.
(ii) $\Omega=\mathbb{N}, \mathfrak{A}=\mathfrak{P}(\mathbb{N}), \mu$ the counting measure. A mapping $f: \Omega \rightarrow \mathfrak{R}_{+}$(i.e., a sequence) is in \mathfrak{L}^{1} iff it is an absolutely summable sequence (see Übung4.3a)), and for each such f and $A \subseteq \Omega$,

$$
\begin{equation*}
\forall A \in \mathfrak{A}: \nu(A)=\int_{A} f d \mu=\sum_{n \in A} f(n) . \tag{1}
\end{equation*}
$$

Conversely, any measure ν on \mathfrak{A} is a measure with density with respect to μ : Put $f(\omega):=\nu(\{\omega\})$, then ((1)) holds.

Theorem 2. Let $\nu=f \cdot \mu$ with $f \in \overline{\mathfrak{Z}}_{+}$and $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$. Then

$$
g \text { (quasi) }-\nu \text {-integrable } \Leftrightarrow g \cdot f \text { (quasi)- } \mu \text {-integrable, }
$$

in which case

$$
\int g d \nu=\int g \cdot f d \mu
$$

Proof. First, assume that $g=1_{A}$ with $A \in \mathfrak{A}$. Then the statements hold by definition. For $g \in \Sigma_{+}(\Omega, \mathfrak{A})$ we now use linearity of the integral. For $g \in \overline{\mathfrak{Z}}_{+}$we take a sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ in $\Sigma_{+}(\Omega, \mathfrak{A})$ such that such that $g_{n} \uparrow g$. Then $g_{n} \cdot f \in \overline{\mathfrak{Z}}_{+}$and $g_{n} \cdot f \uparrow g \cdot f$. Hence, by Theorem 5.1 and the previous part of the proof

$$
\int g d \nu=\lim _{n \rightarrow \infty} \int g_{n} d \nu=\lim _{n \rightarrow \infty} \int g_{n} \cdot f d \mu=\int g \cdot f d \mu
$$

Finally, for $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ we already know that

$$
\int g^{ \pm} d \nu=\int g^{ \pm} \cdot f d \mu=\int(g \cdot f)^{ \pm} d \mu
$$

Use linearity of the integral.

Remark 1.

$$
f, g \in \overline{\mathfrak{Z}}_{+} \wedge f=g \mu \text {-a.e. } \quad \Rightarrow \quad f \cdot \mu=g \cdot \mu .
$$

Theorem 3 (Uniqueness of densities). Let $f, g \in \overline{\mathfrak{Z}}_{+}$such that $f \cdot \mu=g \cdot \mu$. Then
(i) $f \mu$-integrable $\Rightarrow f=g \mu$-a.e.,
(ii) $\mu \sigma$-finite $\Rightarrow f=g \mu$-a.e.

Proof. Ad (i): It suffices to verify the claim: If $f, g \mu$-integrable and

$$
\forall A \in \mathfrak{A}: \int_{A} f d \mu \leq \int_{A} g d \mu \Rightarrow f \leq g \mu \text {-a.e. }
$$

To this end, take $A=\{f>g\}$. By assumption,

$$
-\infty<\int_{A} f d \mu \leq \int_{A} g d \mu<\infty
$$

and therefore $\int_{A}(f-g) d \mu \leq 0$. However,

$$
1_{A} \cdot(f-g) \geq 0,
$$

hence $\int_{A}(f-g) d \mu \geq 0$. Thus

$$
\int 1_{A} \cdot(f-g) d \mu=0
$$

Theorem 5.3 implies $1_{A} \cdot(f-g)=0 \mu$-a.e., and by definition of A we get $\mu(A)=0$. Ad (ii): Assume first that μ is finite. Since for all $k \in \mathbb{N}$,

$$
\infty \cdot \mu(\{f=\infty\} \backslash\{g \geq k\})=\int_{\{f=\infty\} \backslash\{g \geq k\}} f \mathrm{~d} \mu=\int_{\{f=\infty\} \backslash\{g \geq k\}} g \mathrm{~d} \mu \leq k \mu(\Omega)
$$

we have that $\mu(\{f=\infty\} \backslash\{g \geq k\})=0$, and by σ-continuity from below, $\mu(\{f=$ $\infty \backslash\{g=\infty\}\})=0$. By symmetry, we conclude

$$
\mu(\{f=\infty\} \Delta\{g=\infty\})=0
$$

Set $A_{0}=\{f=\infty\} \cup\{g=\infty\}, A_{1}=A_{0}^{c}$; then $\mathbf{1}_{A_{0}} f=\mathbf{1}_{A_{0}} g \mu-$ a.e., and we claim that

$$
\begin{equation*}
\mathbf{1}_{A_{1}} f=\mathbf{1}_{A_{1}} g \quad \mu \text {-a.e. . } \tag{2}
\end{equation*}
$$

Since

$$
A_{1} \cap\{f>g\}=\bigcap_{n \in \mathbb{N}} \underbrace{\{n>f>g+1 / n\}}_{=: C_{n}},
$$

we just have to show $\mu\left(C_{n}\right)=0$. But

$$
\int \mathbf{1}_{C_{n}} g \mathrm{~d} \mu=\int \mathbf{1}_{C_{n}} f \mathrm{~d} \mu \geq \int \mathbf{1}_{C_{n}}(g+1 / n)=\int \mathbf{1}_{C_{n}} g \mathrm{~d} \mu+\mu\left(B_{n}\right) / n
$$

Since further

$$
\int \mathbf{1}_{C_{n}} g \mathrm{~d} \mu=\int \mathbf{1}_{C_{n}} f \mathrm{~d} \mu \leq n \cdot \mu(\Omega)<\infty
$$

this entails $\mu\left(C_{n}\right)=0$, and hence $\mu\left(A_{1} \cap\{f>g\}\right)=0$; by symmetry, also $\mu\left(A_{1} \cap\{g>\right.$ $f\})=0$, i.e., (2) follows.
Let now μ be just σ-finite, and let $B_{n} \in \mathfrak{A}$ be disjoint such that $\mu\left(B_{n}\right)<\infty, \bigcup_{n} B_{n}=$ Ω. Set $\mu_{n}(A):=\mu\left(A \cap B_{n}\right)$. Then μ_{n} are measures, and for all $A \in \mathfrak{A}$,

$$
\mu(A)=\sum_{n} \mu_{n}(A) .
$$

Moreover, $f \cdot \mu_{n}=g \cdot \mu_{n}$, and by the first part we know that

$$
f=g \quad \mu_{n}-\text {-a.e., } \quad \forall n \in \mathbb{N} .
$$

But then

$$
\mu(\{f \text { not }=g\})=\sum_{n} \mu_{n}(\{f \neq g\})=0 .
$$

Remark 2. Let $(\Omega, \mathfrak{A}, \mu)=\left(\mathbb{R}^{k}, \mathfrak{B}_{k}, \lambda_{k}\right)$ and $x \in \mathbb{R}^{k}$. There is no density $f \in \overline{\mathfrak{Z}}_{+}$ w.r.t. λ_{k} such that $\delta_{x}=f \cdot \lambda_{k}$ (recall δ_{x} the Dirac point measure). This follows from $\varepsilon_{x}(\{x\})=1$ and

$$
\left(f \cdot \lambda_{k}\right)(\{x\})=\int_{\{x\}} f d \lambda_{k}=0
$$

Definition 3. A measure ν on \mathfrak{A} is absolutely continuous w.r.t. μ if

$$
\forall A \in \mathfrak{A}: \mu(A)=0 \Rightarrow \nu(A)=0 .
$$

Notation: $\nu \ll \mu$.

Remark 3.

(i) $\nu=f \cdot \mu \Rightarrow \nu \ll \mu$.
(ii) In Remark 2 neither $\varepsilon_{x} \ll \lambda_{1}$ nor $\lambda_{1} \ll \varepsilon_{x}$.
(iii) Let μ denote the counting measure on \mathfrak{A}. Then $\nu \ll \mu$ for every measure ν on \mathfrak{A}.
(iv) Let μ denote the counting measure on \mathfrak{B}_{1}. Then there is no density $f \in \overline{\mathfrak{Z}}_{+}$such that $\lambda_{1}=f \cdot \mu$.

Lemma 1. Let $f_{n} \xrightarrow{\mathfrak{L}^{p}} f$ and $A \in \mathfrak{A}$. If $p=1$ or $\mu(A)<\infty$ then

$$
\int_{A} f_{n} d \mu \rightarrow \int_{A} f d \mu
$$

Proof. For $p=1$, this follows from

$$
\left|\int_{A} f_{n} d \mu-\int_{A} f d \mu\right| \leq \int_{A}\left|f_{n}-f\right| \mathrm{d} \mu \rightarrow 0
$$

if $\mu(A)<\infty$ and $p>1$ set $1 / q=1-1 / p$; then by Theorem 6.1,

$$
\int \mathbf{1}_{A} \cdot\left|f_{n}-f\right| \mathrm{d} \mu \leq \underbrace{\left(\int \mathbf{1}_{A}^{q}\right)^{1 / q}}_{=\mu(A)^{1 / q}<\infty} \cdot \underbrace{\left(\int\left|f-f_{n}\right|^{p}\right)^{1 / p}}_{\rightarrow 0}
$$

Theorem 4 (Radon, Nikodym). For every σ-finite measure μ and every measure ν on \mathfrak{A} we have

$$
\nu \ll \mu \quad \Rightarrow \quad \exists f \in \overline{\mathfrak{Z}}_{+}: \nu=f \cdot \mu .
$$

Proof. We will prove this only for finite measures (since we need it only for finite measures).
Step 1: We assume the stronger condition

$$
\forall A \in \mathfrak{A}: \nu(A) \leq \mu(A) \wedge \mu(\Omega)<\infty
$$

A class $\mathfrak{U}=\left\{A_{1}, \ldots, A_{n}\right\}$ is called a (finite measurable) partition of Ω iff $A_{1}, \ldots, A_{n} \in$ \mathfrak{A} are pairwise disjoint and $\bigcup_{i=1}^{n} A_{i}=\Omega$. The set of all partitions is partially ordered by

$$
\mathfrak{U} \sqsubset \mathfrak{V} \quad \text { iff } \quad \forall A \in \mathfrak{U} \exists B \in \mathfrak{V}: A \subset B .
$$

The infimum of two partitions is given by

$$
\mathfrak{U} \wedge \mathfrak{V}=\{A \cap B: A \in \mathfrak{U}, B \in \mathfrak{V}\} .
$$

For any partition \mathfrak{U} we define

$$
f_{\mathfrak{U}}=\sum_{A \in \mathfrak{U}} \alpha_{A} \cdot 1_{A}
$$

with

$$
\alpha_{A}= \begin{cases}\nu(A) / \mu(A) & \text { if } \mu(A)>0 \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $f_{\mathfrak{U}} \in \Sigma_{+}(\Omega, \sigma(\mathfrak{U})) \subset \Sigma_{+}(\Omega, \mathfrak{A}), \sigma(\mathfrak{U})=\mathfrak{U}^{+} \cup\{\emptyset\}$, and

$$
\forall A \in \sigma(\mathfrak{U}): \nu(A)=\int_{A} f_{\mathfrak{U}} d \mu .
$$

(Thus we have $\left.\nu\right|_{\sigma(\mathfrak{U l})}=\left.f_{\mathfrak{U}} \cdot \mu\right|_{\sigma(\mathfrak{l l}}$.) Let $\mathfrak{U} \sqsubset \mathfrak{V}$ and $A \in \mathfrak{V}$. Then

$$
\nu(A)=\int_{A} f_{\mathfrak{V}} d \mu=\int_{A} f_{\mathfrak{U}} d \mu,
$$

since $A \in \sigma(\mathfrak{U})$. Hence

$$
\int_{A} f_{\mathfrak{V}}^{2} d \mu=\int_{A} f_{\mathfrak{V}} \cdot f_{\mathfrak{U}} d \mu
$$

since $\left.f_{\mathfrak{V}}\right|_{A}$ is constant, and therefore

$$
\begin{equation*}
0 \leq \int\left(f_{\mathfrak{U}}-f_{\mathfrak{V}}\right)^{2} d \mu=\int f_{\mathfrak{U}}^{2} d \mu-\int f_{\mathfrak{V}}^{2} d \mu . \tag{3}
\end{equation*}
$$

Put

$$
\beta=\sup \left\{\int f_{\mathfrak{U}}^{2} d \mu: \mathfrak{U} \text { partition }\right\}
$$

and note that $0 \leq \beta \leq \mu(\Omega)<\infty$, since $f_{\mathfrak{U}} \leq 1$. Consider a sequence of functions $f_{n}=f_{\mathfrak{U}_{n}}$ such that

$$
\lim _{n \rightarrow \infty} \int f_{n}^{2} d \mu=\beta
$$

Due to (3) we may assume that $\mathfrak{U}_{n+1} \sqsubset \mathfrak{U}_{n}$. Then, by (3), $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathfrak{L}^{2}, so that there exists $f \in \mathfrak{L}^{2}$ with

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{2}=0 \quad \wedge \quad 0 \leq f \leq 1 \mu \text {-a.e. }
$$

see Theorem 6.3.
We claim that $\nu=f \cdot \mu$. Let $A \in \mathfrak{A}$. Put

$$
\widetilde{\mathfrak{U}}_{n}=\mathfrak{U}_{n} \wedge\left\{A, A^{c}\right\}
$$

and

$$
\widetilde{f}_{n}=f_{\tilde{\mathfrak{U}}_{n}}
$$

Then

$$
\nu(A)=\int_{A} \widetilde{f}_{n} d \mu=\int_{A} f_{n} d \mu+\int_{A}\left(\tilde{f}_{n}-f_{n}\right) d \mu
$$

and (3) yields $\lim _{n \rightarrow \infty}\left\|\widetilde{f}_{n}-f_{n}\right\|_{2}=0$. It remains to apply Lemma 1.
Step 2: We assume only that μ, ν are finite, and $\nu \ll \nu$. Then $\mu, \nu \leq \mu+\nu=: \tau$; by Step 1, we have densities $g, h: \Omega \rightarrow[0,1]$ with $\mu=g \cdot \tau, \nu=h \cdot \tau$. Since

$$
\mu(\{g=0\})=\int_{\{g=0\}} \mathrm{d} \mu=\int_{\{g=0\}} g \mathrm{~d} \tau=0
$$

and $\nu \ll \mu, \nu(\{g=0\})=0$. The function

$$
f(x):= \begin{cases}h(x) / g(x), & g(x) \neq 0 \\ 0, & g(x)=0\end{cases}
$$

is now a density for ν :

$$
\nu(A)=\int_{A \cap\{g \neq 0\}} \underbrace{h}_{=f g} \mathrm{~d} \tau=\int_{A \cap\{g \neq 0\}} f \mathrm{~d} \mu=\int_{A} f \mathrm{~d} \mu .
$$

