7 The Radon-Nikodym-Theorem

Given: a measure space (€, 2, u). Put 3, = 3,.(Q,2).

Definition 1. For f (quasi-)u-integrable and A € 2, the integral of f over A is

/Afduz/lA-fdu-
(Note: 14~ f] < |f].)

Theorem 1. Let f € 3, and put

V(A):/fd,u, A e
A
Then v is a measure on 2.

Proof. Clearly v() =0 and v > 0. For Aj, As, ... € 2 pairwise disjoint
y(UAZ) = /ZlAi -fdp:/ lim (ZlAi f) dp
i=1 i=1 i=1
—tim [t fau= Y [ s
i=1 i=1

oo

v(A;)

=1

follows from Theorem 5.1. OJ

Definition 2. The mapping v in Theorem 1 is called measure with p-density f,
or distribution with density f. Notation: v = f - pu (bad, but common notation:

dv=d-dp). If [ fdp =1 then f is called probability density.

Example 1. The introductory examples of probability spaces were defined by means
of probability densities.

(i) Let (Q,2, p) = (R, By, \y). For
f(@) = (2m) 2 exp (—4 0L, a2)

we get the k-dimensional standard normal distribution v.

For B € B such that 0 < A\x(B) < oo and

we get the uniform distribution on B.
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(ii)) 2 = N, A = P(N), u the counting measure. A mapping f : Q — R, (ie, a
sequence) is in £! iff it is an absolutely summable sequence (see Ubung4.3a)),
and for each such f and A C (),

VAEQL:V(A):/Afd,u:Zf(n). (1)

neA

Conversely, any measure v on 2 is a measure with density with respect to pu:
Put f(w) :=v({w}), then ((1)) holds.

Theorem 2. Let v = f -y with f € 3, and g € 3(Q,2). Then

g (quasi)-v-integrable < ¢ - f (quasi)-p-integrable,

Joav=[g-sdn

Proof. First, assume that g = 14 with A € . Then the statements hold by definition.
For g € ¥, (Q, ) we now use linearity of the integral. For g € 3, we take a sequence
(gn)nen in X4 (€, 2A) such that such that g, T ¢g. Then g, - f €3, and g, f T g- f.
Hence, by Theorem 5.1 and the previous part of the proof

/gdyzlim gndz/:lim/gn'fd,u:/g-fd,u.

Finally, for g € 3(2,2) we already know that

/gidvz/gi-fdﬂz/(g-f)idu-

Use linearity of the integral. O

in which case

Remark 1.
f.g€3 Nf=guae = f-u=g-p.

Theorem 3 (Uniqueness of densities). Let f,g € 3, such that f-u = g-pu. Then

(i) f p-integrable = f = g p-a.e.,
(ii) p o-finite = f = g p-a.e.

Proof. Ad (i): It suffices to verify the claim: If f, g u-integrable and

VAEQ[:/fduS/gdu = f<gpae.
A A

To this end, take A = {f > g}. By assumption,

—oo</fd,u§/gd,u<oo
A A
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and therefore [,(f — g)du < 0. However,

hence [,(f —g)du > 0. Thus

/1A-(f—g)du=0-

Theorem 5.3 implies 14 - (f — g) = 0 p-a.e., and by definition of A we get u(A) = 0.
Ad (ii): Assume first that u is finite. Since for all k € N,

oo-u({f=00}\{92k})=/

Fdyu = / gdpt < k()
{f=c0}\{g>k} {f=0c0}\{g>k}

we have that p({f = oo} \ {g > k}) = 0, and by o—continuity from below, u({f =
o0 \ {g = o0}}) = 0. By symmetry, we conclude

p{f = 00jAfg = 00}) = 0.
Set Ag ={f = o0} U{g = o0}, A = A§; then 1,,f = 14,9 p—a.e., and we claim that
14, f =149 pae.. (2)

Since

An{f>gb=({n>F>g+1/n}.

neN =C,

we just have to show u(C,) =0. But

/1cngdu=/lcnfdu2 /lcn(ngl/n) - /1cngdu+u(Bn)/n-

Since further
/1cngdu = /1cnfdu <n-u(Q2) <oo,

this entails u(C,,) = 0, and hence p(A;N{f > g}) = 0; by symmetry, also u(A;N{g >
f1) =0, ie., (2) follows.

Let now p be just o—finite, and let B,, € 2 be disjoint such that u(B,) < oo, |, B, =
Q. Set p,(A) ;== p(AN B,). Then p, are measures, and for all A € 2,

u(A4) = 3 pa(A)
Moreover, f - j, = g - jin, and by the first part we know that

f=g fy — —a.e., VneN.

But then

p{f ot = g}) = m({f #9}) =0

35



Remark 2. Let (2,2, 1) = (R*, By, \x) and x € R¥. There is no density f € 3,
w.r.t. Ay such that 0, = f - A\ (recall §, the Dirac point measure). This follows from
e:({z}) =1 and

(f - M) ({z}) = { }fd/\k: =0.

Definition 3. A measure v on % is absolutely continuous w.r.t. p if
VAeA: u(Ad)=0=rv(A4) =0.
Notation: v < p.

Remark 3.

D v=f-pu=rv<pu.

)
(ii) In Remark 2 neither £, < A1 nor \; < &,.
(iii) Let p denote the counting measure on 2. Then v < p for every measure v on 2.
)

(iv) Let p denote the counting measure on 9%5;. Then there is no density f € 3, such
that \y = f - pu.

Lemma 1. Let f, =, fand Ae A If p=1or u(A) < co then

/Afndu—>/Afdu-

Proof. For p =1, this follows from

[ [ b= 1

if u(A) < oo and p > 1set 1/¢ =1— 1/p; then by Theorem 6.1,

Jractsnans (fa)" (fi-00)"
~~ 7N :r() d

=p(A)t/1<oc0

[]

Theorem 4 (Radon, Nikodym). For every o-finite measure p and every measure
v on 2 we have
vy = 3Ifediv=f[f-p

Proof. We will prove this only for finite measures (since we need it only for finite
measures).

Step 1: We assume the stronger condition

VAeA:v(A) < pu(A) Ap(f) < co.
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Aclass U = {A;,..., A} is called a (finite measurable) partition of Q iff A;,... A, €
2 are pairwise disjoint and | J;_, A; = Q. The set of all partitions is partially ordered
by

UCYy iff VAcUIBeYV:ACB.

The infimum of two partitions is given by
UND={ANB:Acu BecU}.

For any partition 4 we define

fu=) aa-la

with
. {V(A)/M(A) if u(4) > 0

0 otherwise.

Clearly fy € X,(Q,0(4)) C X, (Q,2A), o(th) = Ut U {0}, and
Aco cv(A) = :
VA€o v(A) = [ fud

(Thus we have v|,gy = fu - tt|o.) Let U T U and A € B. Then

V(A):/AfmdMZ/Afud#,

/Af%dli:/Afsn'fudM?

since fog|a is constant, and therefore

since A € (). Hence

0< [(fu= fofdu= [ fidu~ [ Fhdn 3)

£ = sup {/ fﬁ du = U partition} ,

and note that 0 < 8 < u(Q) < oo, since fy < 1. Consider a sequence of functions
fn = fu, such that

lim [ f2du= 3.

n—oo

Due to (3) we may assume that $,,q7 T 4,. Then, by (3), (fn)nen is a Cauchy
sequence in £2, so that there exists f € £2 with

lim ||f, — fla=0 A 0<f<1p-ae,

see Theorem 6.3.
We claim that v = f - p. Let A € 2. Put

U, = U, A {A, A}
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and

Jo = fq -
Then
o) = [ Fodu= [ o [ (= f)an

(
A
and (3) yields lim, o || fn — full2 = 0. It remains to apply Lemma 1.
Step 2: We assume only that p, v are finite, and v < v. Then p,v < p+v =:7; by
Step 1, we have densities g, h : Q — [0,1] with p =g -7, v =h - 7. Since

u({gzo})Z/{gO} duz/{go}ngZO

and v < p, v({g = 0}) = 0. The function

_ [h@)/g(), g(z) £0,
o {O, g(z) =0

is now a density for v:

V(A):/ h dT:/ fd,u:/fdu.
Anfg#0} 25, An{g£0} A
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