
7 The Radon-Nikodym-Theorem

Given: a measure space (Ω, A, µ). Put Z+ = Z+(Ω, A).

Definition 1. For f (quasi-)µ-integrable and A ∈ A, the integral of f over A is∫
A

f dµ =

∫
1A · f dµ.

(Note: |1A · f | ≤ |f |.)

Theorem 1. Let f ∈ Z+ and put

ν(A) =

∫
A

f dµ, A ∈ A.

Then ν is a measure on A.

Proof. Clearly ν(∅) = 0 and ν ≥ 0. For A1, A2, . . . ∈ A pairwise disjoint

ν
( ∞⋃

i=1

Ai

)
=

∫ ∞∑
i=1

1Ai
· f dµ =

∫
lim

n→∞

( n∑
i=1

1Ai
· f

)
dµ

= lim
n→∞

∫ n∑
i=1

1Ai
· f dµ =

∞∑
i=1

∫
1Ai

· f dµ

=
∞∑
i=1

ν(Ai)

follows from Theorem 5.1.

Definition 2. The mapping ν in Theorem 1 is called measure with µ-density f ,

or distribution with density f . Notation: ν = f · µ (bad, but common notation:

dν = d · dµ). If
∫

f dµ = 1 then f is called probability density .

Example 1. The introductory examples of probability spaces were defined by means

of probability densities.

(i) Let (Ω, A, µ) = (Rk, Bk, λk). For

f(x) = (2π)−k/2 · exp
(
−1

2

∑k
i=1 x2

i

)
we get the k-dimensional standard normal distribution ν.

For B ∈ Bk such that 0 < λk(B) < ∞ and

f =
1

λk(B)
· 1B

we get the uniform distribution on B.
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(ii) Ω = N, A = P(N), µ the counting measure. A mapping f : Ω → R+ (i.e., a

sequence) is in L1 iff it is an absolutely summable sequence (see Übung4.3a)),

and for each such f and A ⊆ Ω,

∀A ∈ A : ν(A) =

∫
A

f dµ =
∑
n∈A

f(n). (1)

Conversely, any measure ν on A is a measure with density with respect to µ:

Put f(ω) := ν({ω}), then ((1)) holds.

Theorem 2. Let ν = f · µ with f ∈ Z+ and g ∈ Z(Ω, A). Then

g (quasi)-ν-integrable ⇔ g · f (quasi)-µ-integrable,

in which case ∫
g dν =

∫
g · f dµ

Proof. First, assume that g = 1A with A ∈ A. Then the statements hold by definition.

For g ∈ Σ+(Ω, A) we now use linearity of the integral. For g ∈ Z+ we take a sequence

(gn)n∈N in Σ+(Ω, A) such that such that gn ↑ g. Then gn · f ∈ Z+ and gn · f ↑ g · f .

Hence, by Theorem 5.1 and the previous part of the proof∫
g dν = lim

n→∞

∫
gn dν = lim

n→∞

∫
gn · f dµ =

∫
g · f dµ.

Finally, for g ∈ Z(Ω, A) we already know that∫
g±dν =

∫
g± · f dµ =

∫
(g · f)± dµ.

Use linearity of the integral.

Remark 1.

f, g ∈ Z+ ∧ f = g µ-a.e. ⇒ f · µ = g · µ.

Theorem 3 (Uniqueness of densities). Let f, g ∈ Z+ such that f ·µ = g ·µ. Then

(i) f µ-integrable ⇒ f = g µ-a.e.,

(ii) µ σ-finite ⇒ f = g µ-a.e.

Proof. Ad (i): It suffices to verify the claim: If f, g µ-integrable and

∀A ∈ A :

∫
A

f dµ ≤
∫

A

g dµ ⇒ f ≤ g µ-a.e.

To this end, take A = {f > g}. By assumption,

−∞ <

∫
A

f dµ ≤
∫

A

g dµ < ∞

34



and therefore
∫

A
(f − g) dµ ≤ 0. However,

1A · (f − g) ≥ 0,

hence
∫

A
(f − g) dµ ≥ 0. Thus ∫

1A · (f − g) dµ = 0.

Theorem 5.3 implies 1A · (f − g) = 0 µ-a.e., and by definition of A we get µ(A) = 0.

Ad (ii): Assume first that µ is finite. Since for all k ∈ N,

∞ · µ({f = ∞} \ {g ≥ k}) =

∫
{f=∞}\{g≥k}

fdµ =

∫
{f=∞}\{g≥k}

gdµ ≤ kµ(Ω) ,

we have that µ({f = ∞} \ {g ≥ k}) = 0, and by σ–continuity from below, µ({f =

∞\ {g = ∞}}) = 0. By symmetry, we conclude

µ({f = ∞}∆{g = ∞}) = 0 .

Set A0 = {f = ∞}∪{g = ∞}, A1 = Ac
0; then 1A0f = 1A0g µ–a.e., and we claim that

1A1f = 1A1g µ–a.e. . (2)

Since

A1 ∩ {f > g} =
⋂
n∈N

{n > f > g + 1/n}︸ ︷︷ ︸
=:Cn

,

we just have to show µ(Cn) = 0. But∫
1Cngdµ =

∫
1Cnfdµ ≥

∫
1Cn(g + 1/n) =

∫
1Cngdµ + µ(Bn)/n .

Since further ∫
1Cngdµ =

∫
1Cnfdµ ≤ n · µ(Ω) < ∞ ,

this entails µ(Cn) = 0, and hence µ(A1∩{f > g}) = 0; by symmetry, also µ(A1∩{g >

f}) = 0, i.e., (2) follows.

Let now µ be just σ–finite, and let Bn ∈ A be disjoint such that µ(Bn) < ∞,
⋃

n Bn =

Ω. Set µn(A) := µ(A ∩Bn). Then µn are measures, and for all A ∈ A,

µ(A) =
∑

n

µn(A) .

Moreover, f · µn = g · µn, and by the first part we know that

f = g µn −−a.e., ∀n ∈ N .

But then

µ({f not = g}) =
∑

n

µn({f 6= g}) = 0 .
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Remark 2. Let (Ω, A, µ) = (Rk, Bk, λk) and x ∈ Rk. There is no density f ∈ Z+

w.r.t. λk such that δx = f · λk (recall δx the Dirac point measure). This follows from

εx({x}) = 1 and

(f · λk)({x}) =

∫
{x}

f dλk = 0.

Definition 3. A measure ν on A is absolutely continuous w.r.t. µ if

∀A ∈ A : µ(A) = 0 ⇒ ν(A) = 0.

Notation: ν � µ.

Remark 3.

(i) ν = f · µ ⇒ ν � µ.

(ii) In Remark 2 neither εx � λ1 nor λ1 � εx.

(iii) Let µ denote the counting measure on A. Then ν � µ for every measure ν on A.

(iv) Let µ denote the counting measure on B1. Then there is no density f ∈ Z+ such

that λ1 = f · µ.

Lemma 1. Let fn
Lp

−→ f and A ∈ A. If p = 1 or µ(A) < ∞ then∫
A

fn dµ →
∫

A

f dµ.

Proof. For p = 1, this follows from∣∣∣∫
A

fn dµ−
∫

A

f dµ
∣∣∣ ≤ ∫

A

|fn − f | dµ → 0 ;

if µ(A) < ∞ and p > 1 set 1/q = 1− 1/p; then by Theorem 6.1,∫
1A · |fn − f | dµ ≤

(∫
1q

A

)1/q

︸ ︷︷ ︸
=µ(A)1/q<∞

·
(∫

|f − fn|p
)1/p

︸ ︷︷ ︸
→0

.

Theorem 4 (Radon, Nikodym). For every σ-finite measure µ and every measure

ν on A we have

ν � µ ⇒ ∃ f ∈ Z+ : ν = f · µ.

Proof. We will prove this only for finite measures (since we need it only for finite

measures).

Step 1: We assume the stronger condition

∀A ∈ A : ν(A) ≤ µ(A) ∧ µ(Ω) < ∞.
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A class U = {A1, . . . , An} is called a (finite measurable) partition of Ω iff A1, . . . , An ∈
A are pairwise disjoint and

⋃n
i=1 Ai = Ω. The set of all partitions is partially ordered

by

U @ V iff ∀A ∈ U ∃B ∈ V : A ⊂ B.

The infimum of two partitions is given by

U ∧V = {A ∩B : A ∈ U, B ∈ V} .

For any partition U we define

fU =
∑
A∈U

αA · 1A

with

αA =

{
ν(A)/µ(A) if µ(A) > 0

0 otherwise.

Clearly fU ∈ Σ+(Ω, σ(U)) ⊂ Σ+(Ω, A), σ(U) = U+ ∪ {∅}, and

∀A ∈ σ(U) : ν(A) =

∫
A

fU dµ.

(Thus we have ν|σ(U) = fU · µ|σ(U).) Let U @ V and A ∈ V. Then

ν(A) =

∫
A

fV dµ =

∫
A

fU dµ,

since A ∈ σ(U). Hence ∫
A

f 2
V dµ =

∫
A

fV · fU dµ,

since fV|A is constant, and therefore

0 ≤
∫

(fU − fV)2 dµ =

∫
f 2

U dµ−
∫

f 2
V dµ. (3)

Put

β = sup

{∫
f 2

U dµ : U partition

}
,

and note that 0 ≤ β ≤ µ(Ω) < ∞, since fU ≤ 1. Consider a sequence of functions

fn = fUn such that

lim
n→∞

∫
f 2

n dµ = β.

Due to (3) we may assume that Un+1 @ Un. Then, by (3), (fn)n∈N is a Cauchy

sequence in L2, so that there exists f ∈ L2 with

lim
n→∞

‖fn − f‖2 = 0 ∧ 0 ≤ f ≤ 1 µ-a.e.,

see Theorem 6.3.

We claim that ν = f · µ. Let A ∈ A. Put

Ũn = Un ∧ {A, Ac}
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and

f̃n = fŨn
.

Then

ν(A) =

∫
A

f̃n dµ =

∫
A

fn dµ +

∫
A

(f̃n − fn) dµ,

and (3) yields limn→∞ ‖f̃n − fn‖2 = 0. It remains to apply Lemma 1.

Step 2: We assume only that µ, ν are finite, and ν � ν. Then µ, ν ≤ µ + ν =: τ ; by

Step 1, we have densities g, h : Ω → [0, 1] with µ = g · τ , ν = h · τ . Since

µ({g = 0}) =

∫
{g=0}

dµ =

∫
{g=0}

g dτ = 0

and ν � µ, ν({g = 0}) = 0. The function

f(x) :=

{
h(x)/g(x), g(x) 6= 0,

0, g(x) = 0,

is now a density for ν:

ν(A) =

∫
A∩{g 6=0}

h︸︷︷︸
=fg

dτ =

∫
A∩{g 6=0}

f dµ =

∫
A

f dµ .
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