6 LP-Spaces

Given: a measure space (2,2, 1) and 1 < p < oo. Put 3 = 3(02,2).
Definition 1.
ooy ={res: /|f|pdu < oo},

In particular, for p = 1: integrable functions and £ = £', and for p = 2: square-

integrable functions. Put
1/p
= flsran) " rew

Theorem 1 (Holder inequality). Let 1 < p,q < oo such that 1/p+1/¢ = 1 and
let fe£P ge £ Then

[17-gldu <1171, gl
In particular, for p = ¢ = 2: Cauchy-Schwarz inequality.
Proof. See Analysis III or Elstrodt (1996, §VI.1) as well as Theorem 5.3. O
Theorem 2. £? is a vector space and || - ||, is a semi-norm on £°. Furthermore,
Ifl,=0 & f=0pac
Proof. See Analysis III or Elstrodt (1996, §VI1.2). O

Definition 2. Let f, f,, € £° for n € N. (f,,)n converges to f in £F (in mean of order
p) if

Jim [|f — full, = 0.
In particular, for p = 1: convergence in mean, and for p = 2: mean-square conver-
gence. Notation:

Ju = f.
Remark 1. Let f, f, € 3 for n € N. Recall (define) that (f,), converges to f u-a.e.
if
(A% =0
for
A= { lim f, = f} = {limsupfn = liminffn} N {limsupfn = f} e 2.
Notation:
oy

Lemma 1. Let f, g, f, € £° for n € N such that f, =, f. Then

2P
fn—9 < [f=gpupae

Analogously for convergence almost everywhere.
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Proof. For convergence in £°: ‘<=’ follows from Theorem 5.4.(ii). Use

1f = glly < Nf = fallp + [1fn = gll

to verify ‘=".

For convergence almost everywhere: ‘<=’ trivially holds. Use
{lim f, = f}n{lim f =g} C{f =g}

to verify ‘=".
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Theorem 3 (Fischer-Riesz). Consider a sequence (f,), in £°. Then

(i) (fn)n Cauchy sequence = 3 f € £°: f, 2y (completeness),
(ii) fn i f = Jsubsequence (fy, )k : fu, s
Proof. Ad (i): Consider a Cauchy sequence (f,), and a subsequence ( f,,, )x such that
VEENYm >ng: || fm— Fall, <27

For
gk = fnk+1 - fnk € £°

we have

k k k
IS 10d] <D lael, <> 2 <1
=1 L =1

Put g =372, |g¢| € 3.. By Theorem 5.1

/gpdu = /s%p(gm!)pdu = Sl;p/(g\gd)pdu <1 (1)

Thus, in particular, > ,°, |g¢| and )" ,°, g¢ converge p-a.e., see Theorem 5.4.(i). Since

k
fnk+1 - Zgﬁ+fn17
(=1

we have
= klim [, p-ae.
for some f € 3. Furthermore,
\f = fue] < Z lge| < g p-ace.,
=k

so that, by Theorem 5.5 and (1),
i [1f = =0,

It follows that

Tim [1f = full, = 0.
too. Finally, by Theorem 2, f € £P.
Ad (ii): Assume that

op

According to the proof of (i) there exists f € £¢ and a subsequence ( fn, )k such that
-a.e. £ 7

Use Lemma 1. [
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Example 1. Let (Q, 2, 1) = ([0, 1], B([0, 1]), M]2(o,1)))- (By Remark 1.7.(ii) we have
B(]0,1]) C B). Define
Ay =10,1]
Ay =10,1/2], Az=][1/2,1]
Ac=10,1/3), As=11/3,2/3], As=[2/3,1]
etc.

Put f, =14,. Then

T [[f, — 0, = lim [[f]l, =0 )
but

{(fn)n converges} = 0.

Remark 2. Define

£ =22 A P)={fe3:FceR;:|f] <cp-ae}

and
Iflloo = inf{c € Ry : |f| < ¢ pra.e.}, fe L=

f € £ is called essentially bounded and || f|| is called the essential supremum of
|f|- Use Theorem 4.1.(iii) to verify that

I < 1 lleo p-ace.

The definitions and results of this section, except (2), extend to the case p = oo,

where ¢ = 1 in Theorem 1. In Theorem 3.(ii) we even have f, i f=f,=

Remark 3. Put
N ={fell: f=0paec}

Then the quotient space LP = £P /9P is a Banach space. In particular, for p = 2, L?
is a Hilbert space, with semi-inner product on £2 given by

Theorem 4. If p is finite and 1 < p < g < oo then
gicger

and

1£1lp < s (@)MPH | £y, feLt

Proof. The result trivially holds for ¢ = oo.In the sequel, ¢ < oo. Use |f|P < 1+ |f]?
and Theorem 5.4.(iii) to obtain £¢ C £F. Put r = ¢/p and define s by 1/r +1/s = 1.

Theorem 1 yields
1/r
Juvaes (firrean) ey

Example 2. Letl < p < ¢ < co. With respect to the counting measure on PB(N),
£P C £4. With respect to the Lebesgue measure on 98, neither £¢ C £P nor £P C £9.

[]
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