6 \mathfrak{L}^p -Spaces

Given: a measure space $(\Omega, \mathfrak{A}, \mu)$ and $1 \leq p < \infty$. Put $\mathfrak{Z} = \mathfrak{Z}(\Omega, \mathfrak{A})$.

Definition 1.

$$\mathfrak{L}^{p} = \mathfrak{L}^{p}(\Omega, \mathfrak{A}, \mu) = \Big\{ f \in \mathfrak{Z} : \int |f|^{p} \, d\mu < \infty \Big\}.$$

In particular, for p = 1: integrable functions and $\mathfrak{L} = \mathfrak{L}^1$, and for p = 2: square-integrable functions. Put

$$||f||_p = \left(\int |f|^p \, d\mu\right)^{1/p}, \qquad f \in \mathfrak{L}^p.$$

Theorem 1 (Hölder inequality). Let $1 < p, q < \infty$ such that 1/p + 1/q = 1 and let $f \in \mathfrak{L}^p$, $g \in \mathfrak{L}^q$. Then

$$\int |f \cdot g| \, d\mu \le \|f\|_p \cdot \|g\|_q.$$

In particular, for p = q = 2: Cauchy-Schwarz inequality.

Proof. See Analysis III or Elstrodt (1996, \S VI.1) as well as Theorem 5.3.

Theorem 2. \mathfrak{L}^p is a vector space and $\|\cdot\|_p$ is a semi-norm on \mathfrak{L}^p . Furthermore,

$$||f||_p = 0 \quad \Leftrightarrow \quad f = 0 \ \mu$$
-a.e.

Proof. See Analysis III or Elstrodt (1996, §VI.2).

Definition 2. Let $f, f_n \in \mathfrak{L}^p$ for $n \in \mathbb{N}$. $(f_n)_n$ converges to f in \mathfrak{L}^p (in mean of order p) if

$$\lim_{n \to \infty} \|f - f_n\|_p = 0$$

In particular, for p = 1: convergence in mean, and for p = 2: mean-square convergence. Notation:

$$f_n \xrightarrow{\mathfrak{L}^p} f.$$

Remark 1. Let $f, f_n \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$. Recall (define) that $(f_n)_n$ converges to $f \mu$ -a.e. if

$$\mu(A^c) = 0$$

for

$$A = \left\{ \lim_{n \to \infty} f_n = f \right\} = \left\{ \limsup_{n \to \infty} f_n = \liminf_{n \to \infty} f_n \right\} \cap \left\{ \limsup_{n \to \infty} f_n = f \right\} \in \mathfrak{A}$$

Notation:

$$f_n \stackrel{\mu\text{-a.e.}}{\longrightarrow} f_{\cdot}$$

Lemma 1. Let $f, g, f_n \in \mathfrak{L}^p$ for $n \in \mathbb{N}$ such that $f_n \xrightarrow{\mathfrak{L}^p} f$. Then

$$f_n \xrightarrow{\mathfrak{L}^p} g \quad \Leftrightarrow \quad f = g \ \mu\text{-a.e.}$$

Analogously for convergence almost everywhere.

Proof. For convergence in \mathfrak{L}^p : ' \Leftarrow ' follows from Theorem 5.4.(ii). Use

$$||f - g||_p \le ||f - f_n||_p + ||f_n - g||_p$$

to verify ' \Rightarrow '.

For convergence almost everywhere: ' \Leftarrow ' trivially holds. Use

$$\left\{\lim_{n \to \infty} f_n = f\right\} \cap \left\{\lim_{n \to \infty} f_n = g\right\} \subset \{f = g\}$$

to verify ' \Rightarrow '.

Theorem 3 (Fischer-Riesz). Consider a sequence $(f_n)_n$ in \mathfrak{L}^p . Then

- (i) $(f_n)_n$ Cauchy sequence $\Rightarrow \exists f \in \mathfrak{L}^p : f_n \xrightarrow{\mathfrak{L}^p} f$ (completeness),
- (ii) $f_n \xrightarrow{\mathfrak{L}^p} f \Rightarrow \exists$ subsequence $(f_{n_k})_k : f_{n_k} \xrightarrow{\mu \text{-a.e.}} f$.

Proof. Ad (i): Consider a Cauchy sequence $(f_n)_n$ and a subsequence $(f_{n_k})_k$ such that

$$\forall k \in \mathbb{N} \ \forall m \ge n_k : \|f_m - f_{n_k}\|_p \le 2^{-k}$$

For

$$g_k = f_{n_{k+1}} - f_{n_k} \in \mathfrak{L}^p$$

we have

$$\left|\sum_{\ell=1}^{k} |g_{\ell}|\right\|_{p} \le \sum_{\ell=1}^{k} ||g_{\ell}||_{p} \le \sum_{\ell=1}^{k} 2^{-\ell} \le 1.$$

Put $g = \sum_{\ell=1}^{\infty} |g_{\ell}| \in \overline{\mathfrak{Z}}_+$. By Theorem 5.1

$$\int g^{p} d\mu = \int \sup_{k} \left(\sum_{\ell=1}^{k} |g_{\ell}| \right)^{p} d\mu = \sup_{k} \int \left(\sum_{\ell=1}^{k} |g_{\ell}| \right)^{p} d\mu \le 1.$$
(1)

Thus, in particular, $\sum_{\ell=1}^{\infty} |g_{\ell}|$ and $\sum_{\ell=1}^{\infty} g_{\ell}$ converge μ -a.e., see Theorem 5.4.(i). Since

$$f_{n_{k+1}} = \sum_{\ell=1}^{k} g_{\ell} + f_{n_1},$$

we have

$$f = \lim_{k \to \infty} f_{n_k} \ \mu\text{-a.e.}$$

for some $f \in \mathfrak{Z}$. Furthermore,

$$|f - f_{n_k}| \le \sum_{\ell=k}^{\infty} |g_\ell| \le g \ \mu$$
-a.e.,

so that, by Theorem 5.5 and (1),

$$\lim_{k \to \infty} \int |f - f_{n_k}|^p \, d\mu = 0.$$

It follows that

$$\lim_{n \to \infty} \|f - f_n\|_p = 0,$$

too. Finally, by Theorem 2, $f \in \mathfrak{L}^p$. Ad (ii): Assume that

$$f_n \xrightarrow{\mathfrak{L}^p} f.$$

According to the proof of (i) there exists $\widetilde{f} \in \mathfrak{L}^p$ and a subsequence $(f_{n_k})_k$ such that

$$f_{n_k} \xrightarrow{\mu\text{-a.e.}} \widetilde{f} \wedge f_{n_k} \xrightarrow{\mathfrak{L}^p} \widetilde{f}.$$

Use Lemma 1.

Example 1. Let $(\Omega, \mathfrak{A}, \mu) = ([0, 1], \mathfrak{B}([0, 1]), \lambda_1|_{\mathfrak{B}([0, 1])})$. (By Remark 1.7.(ii) we have $\mathfrak{B}([0, 1]) \subset \mathfrak{B}_1$). Define

$$A_{1} = [0, 1]$$

$$A_{2} = [0, 1/2], \quad A_{3} = [1/2, 1]$$

$$A_{4} = [0, 1/3], \quad A_{5} = [1/3, 2/3], \quad A_{6} = [2/3, 1]$$
etc.

Put $f_n = 1_{A_n}$. Then

$$\lim_{n \to \infty} \|f_n - 0\|_p = \lim_{n \to \infty} \|f_n\|_p = 0$$
(2)

but

 $\{(f_n)_n \text{ converges}\} = \emptyset.$

Remark 2. Define

$$\mathfrak{L}^{\infty} = \mathfrak{L}^{\infty}(\Omega, \mathfrak{A}, P) = \{ f \in \mathfrak{Z} : \exists \, c \in \mathbb{R}_{+} : |f| \leq c \ \mu\text{-a.e.} \}$$

and

$$||f||_{\infty} = \inf\{c \in \mathbb{R}_+ : |f| \le c \ \mu\text{-a.e.}\}, \qquad f \in \mathfrak{L}^{\infty}.$$

 $f \in \mathfrak{L}^{\infty}$ is called *essentially bounded* and $||f||_{\infty}$ is called the *essential supremum of* |f|. Use Theorem 4.1.(iii) to verify that

$$|f| \le ||f||_{\infty} \mu$$
-a.e.

The definitions and results of this section, except (2), extend to the case $p = \infty$, where q = 1 in Theorem 1. In Theorem 3.(ii) we even have $f_n \xrightarrow{\mathfrak{L}^{\infty}} f \Rightarrow f_n \xrightarrow{\mu\text{-a.e.}} f$. **Remark 3.** Put

$$\mathfrak{N}^p = \{ f \in \mathfrak{L}^p : f = 0 \ \mu\text{-a.e.} \}$$

Then the quotient space $L^p = \mathfrak{L}^p/\mathfrak{N}^p$ is a Banach space. In particular, for p = 2, L^2 is a Hilbert space, with semi-inner product on \mathfrak{L}^2 given by

$$\langle f,g\rangle = \int f \cdot g \, d\mu, \qquad f,g \in \mathfrak{L}^2.$$

Theorem 4. If μ is finite and $1 \le p < q \le \infty$ then

$$\mathfrak{L}^q \subset \mathfrak{L}^p$$

and

$$\|f\|_p \le \mu(\Omega)^{1/p-1/q} \cdot \|f\|_q, \qquad f \in \mathfrak{L}^q.$$

Proof. The result trivially holds for $q = \infty$. In the sequel, $q < \infty$. Use $|f|^p \le 1 + |f|^q$ and Theorem 5.4.(iii) to obtain $\mathfrak{L}^q \subset \mathfrak{L}^p$. Put r = q/p and define s by 1/r + 1/s = 1. Theorem 1 yields

$$\int |f|^p d\mu \le \left(\int |f|^{p \cdot r} d\mu\right)^{1/r} \cdot \left(\mu(\Omega)\right)^{1/s}.$$

Example 2. Let $1 \leq p < q \leq \infty$. With respect to the counting measure on $\mathfrak{P}(\mathbb{N})$, $\mathfrak{L}^p \subset \mathfrak{L}^q$. With respect to the Lebesgue measure on \mathfrak{B}_k neither $\mathfrak{L}^q \subset \mathfrak{L}^p$ nor $\mathfrak{L}^p \subset \mathfrak{L}^q$.