
6 Lp-Spaces

Given: a measure space (Ω, A, µ) and 1 ≤ p < ∞. Put Z = Z(Ω, A).

Definition 1.

Lp = Lp(Ω, A, µ) =
{

f ∈ Z :

∫
|f |p dµ < ∞

}
.

In particular, for p = 1: integrable functions and L = L1, and for p = 2: square-

integrable functions . Put

‖f‖p =

(∫
|f |p dµ

)1/p

, f ∈ Lp.

Theorem 1 (Hölder inequality). Let 1 < p, q < ∞ such that 1/p + 1/q = 1 and

let f ∈ Lp, g ∈ Lq. Then ∫
|f · g| dµ ≤ ‖f‖p · ‖g‖q.

In particular, for p = q = 2: Cauchy-Schwarz inequality.

Proof. See Analysis III or Elstrodt (1996, §VI.1) as well as Theorem 5.3.

Theorem 2. Lp is a vector space and ‖ · ‖p is a semi-norm on Lp. Furthermore,

‖f‖p = 0 ⇔ f = 0 µ-a.e.

Proof. See Analysis III or Elstrodt (1996, §VI.2).

Definition 2. Let f, fn ∈ Lp for n ∈ N. (fn)n converges to f in Lp (in mean of order

p) if

lim
n→∞

‖f − fn‖p = 0.

In particular, for p = 1: convergence in mean, and for p = 2: mean-square conver-

gence. Notation:

fn
Lp

−→ f.

Remark 1. Let f, fn ∈ Z for n ∈ N. Recall (define) that (fn)n converges to f µ-a.e.

if

µ(Ac) = 0

for

A =
{

lim
n→∞

fn = f
}

=
{
lim sup

n→∞
fn = lim inf

n→∞
fn

}
∩

{
lim sup

n→∞
fn = f

}
∈ A.

Notation:

fn
µ-a.e.−→ f.

Lemma 1. Let f, g, fn ∈ Lp for n ∈ N such that fn
Lp

−→ f . Then

fn
Lp

−→ g ⇔ f = g µ-a.e.

Analogously for convergence almost everywhere.
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Proof. For convergence in Lp: ‘⇐’ follows from Theorem 5.4.(ii). Use

‖f − g‖p ≤ ‖f − fn‖p + ‖fn − g‖p

to verify ‘⇒’.

For convergence almost everywhere: ‘⇐’ trivially holds. Use{
lim

n→∞
fn = f

}
∩

{
lim

n→∞
fn = g

}
⊂ {f = g}

to verify ‘⇒’.

30



Theorem 3 (Fischer-Riesz). Consider a sequence (fn)n in Lp. Then

(i) (fn)n Cauchy sequence ⇒ ∃ f ∈ Lp : fn
Lp

−→ f (completeness),

(ii) fn
Lp

−→ f ⇒ ∃ subsequence (fnk
)k : fnk

µ-a.e.−→ f .

Proof. Ad (i): Consider a Cauchy sequence (fn)n and a subsequence (fnk
)k such that

∀ k ∈ N ∀m ≥ nk : ‖fm − fnk
‖p ≤ 2−k.

For

gk = fnk+1
− fnk

∈ Lp

we have ∥∥∥ k∑
`=1

|g`|
∥∥∥

p
≤

k∑
`=1

‖g`‖p ≤
k∑

`=1

2−` ≤ 1.

Put g =
∑∞

`=1 |g`| ∈ Z+. By Theorem 5.1∫
gp dµ =

∫
sup

k

( k∑
`=1

|g`|
)p

dµ = sup
k

∫ ( k∑
`=1

|g`|
)p

dµ ≤ 1. (1)

Thus, in particular,
∑∞

`=1 |g`| and
∑∞

`=1 g` converge µ-a.e., see Theorem 5.4.(i). Since

fnk+1
=

k∑
`=1

g` + fn1 ,

we have

f = lim
k→∞

fnk
µ-a.e.

for some f ∈ Z. Furthermore,

|f − fnk
| ≤

∞∑
`=k

|g`| ≤ g µ-a.e.,

so that, by Theorem 5.5 and (1),

lim
k→∞

∫
|f − fnk

|p dµ = 0.

It follows that

lim
n→∞

‖f − fn‖p = 0,

too. Finally, by Theorem 2, f ∈ Lp.

Ad (ii): Assume that

fn
Lp

→ f.

According to the proof of (i) there exists f̃ ∈ Lp and a subsequence (fnk
)k such that

fnk

µ-a.e.−→ f̃ ∧ fnk

Lp

−→ f̃ .

Use Lemma 1.
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Example 1. Let (Ω, A, µ) =
(
[0, 1], B([0, 1]), λ1|B([0,1])

)
. (By Remark 1.7.(ii) we have

B([0, 1]) ⊂ B1). Define

A1 = [0, 1]

A2 = [0, 1/2], A3 = [1/2, 1]

A4 = [0, 1/3], A5 = [1/3, 2/3], A6 = [2/3, 1]

etc.

Put fn = 1An . Then

lim
n→∞

‖fn − 0‖p = lim
n→∞

‖fn‖p = 0 (2)

but

{(fn)n converges} = ∅.

Remark 2. Define

L∞ = L∞(Ω, A, P ) = {f ∈ Z : ∃ c ∈ R+ : |f | ≤ c µ-a.e.}

and

‖f‖∞ = inf{c ∈ R+ : |f | ≤ c µ-a.e.}, f ∈ L∞.

f ∈ L∞ is called essentially bounded and ‖f‖∞ is called the essential supremum of

|f |. Use Theorem 4.1.(iii) to verify that

|f | ≤ ‖f‖∞ µ-a.e.

The definitions and results of this section, except (2), extend to the case p = ∞,

where q = 1 in Theorem 1. In Theorem 3.(ii) we even have fn
L∞−→ f ⇒ fn

µ-a.e.−→ f .

Remark 3. Put

Np = {f ∈ Lp : f = 0 µ-a.e.}
Then the quotient space Lp = Lp/Np is a Banach space. In particular, for p = 2, L2

is a Hilbert space, with semi-inner product on L2 given by

〈f, g〉 =

∫
f · g dµ, f, g ∈ L2.

Theorem 4. If µ is finite and 1 ≤ p < q ≤ ∞ then

Lq ⊂ Lp

and

‖f‖p ≤ µ(Ω)1/p−1/q · ‖f‖q, f ∈ Lq.

Proof. The result trivially holds for q = ∞.In the sequel, q < ∞. Use |f |p ≤ 1 + |f |q
and Theorem 5.4.(iii) to obtain Lq ⊂ Lp. Put r = q/p and define s by 1/r + 1/s = 1.

Theorem 1 yields ∫
|f |p dµ ≤

(∫
|f |p·r dµ

)1/r

·
(
µ(Ω)

)1/s
.

Example 2. Let1 ≤ p < q ≤ ∞. With respect to the counting measure on P(N),

Lp ⊂ Lq. With respect to the Lebesgue measure on Bk neither Lq ⊂ Lp nor Lp ⊂ Lq.
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