$6 \quad \mathfrak{L}^{p}$-Spaces

Given: a measure space $(\Omega, \mathfrak{A}, \mu)$ and $1 \leq p<\infty$. Put $\mathfrak{Z}=\mathfrak{Z}(\Omega, \mathfrak{A})$.

Definition 1.

$$
\mathfrak{L}^{p}=\mathfrak{L}^{p}(\Omega, \mathfrak{A}, \mu)=\left\{f \in \mathfrak{Z}: \int|f|^{p} d \mu<\infty\right\} .
$$

In particular, for $p=1$: integrable functions and $\mathfrak{L}=\mathfrak{L}^{1}$, and for $p=2$: squareintegrable functions. Put

$$
\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}, \quad f \in \mathfrak{L}^{p}
$$

Theorem 1 (Hölder inequality). Let $1<p, q<\infty$ such that $1 / p+1 / q=1$ and let $f \in \mathfrak{L}^{p}, g \in \mathfrak{L}^{q}$. Then

$$
\int|f \cdot g| d \mu \leq\|f\|_{p} \cdot\|g\|_{q}
$$

In particular, for $p=q=2$: Cauchy-Schwarz inequality.
Proof. See Analysis III or Elstrodt (1996, §VI.1) as well as Theorem 5.3.
Theorem 2. \mathfrak{L}^{p} is a vector space and $\|\cdot\|_{p}$ is a semi-norm on \mathfrak{L}^{p}. Furthermore,

$$
\|f\|_{p}=0 \quad \Leftrightarrow \quad f=0 \mu \text {-a.e. }
$$

Proof. See Analysis III or Elstrodt (1996, §VI.2).
Definition 2. Let $f, f_{n} \in \mathfrak{L}^{p}$ for $n \in \mathbb{N}$. $\left(f_{n}\right)_{n}$ converges to f in \mathfrak{L}^{p} (in mean of order p) if

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{p}=0
$$

In particular, for $p=1$: convergence in mean, and for $p=2$: mean-square convergence. Notation:

$$
f_{n} \xrightarrow{\mathfrak{L}^{p}} f .
$$

Remark 1. Let $f, f_{n} \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$. Recall (define) that $\left(f_{n}\right)_{n}$ converges to $f \mu$-a.e. if

$$
\mu\left(A^{c}\right)=0
$$

for

$$
A=\left\{\lim _{n \rightarrow \infty} f_{n}=f\right\}=\left\{\limsup _{n \rightarrow \infty} f_{n}=\liminf _{n \rightarrow \infty} f_{n}\right\} \cap\left\{\limsup _{n \rightarrow \infty} f_{n}=f\right\} \in \mathfrak{A}
$$

Notation:

$$
f_{n} \xrightarrow{\mu \text {-a.e. }} f .
$$

Lemma 1. Let $f, g, f_{n} \in \mathfrak{L}^{p}$ for $n \in \mathbb{N}$ such that $f_{n} \xrightarrow{\mathfrak{P}^{p}} f$. Then

$$
f_{n} \xrightarrow{\mathcal{L}^{p}} g \quad \Leftrightarrow \quad f=g \mu \text {-a.e. }
$$

Analogously for convergence almost everywhere.

Proof. For convergence in \mathfrak{L}^{p} : ' \Leftarrow ' follows from Theorem 5.4.(ii). Use

$$
\|f-g\|_{p} \leq\left\|f-f_{n}\right\|_{p}+\left\|f_{n}-g\right\|_{p}
$$

to verify ' \Rightarrow '.
For convergence almost everywhere: ' \Leftarrow ' trivially holds. Use

$$
\left\{\lim _{n \rightarrow \infty} f_{n}=f\right\} \cap\left\{\lim _{n \rightarrow \infty} f_{n}=g\right\} \subset\{f=g\}
$$

to verify ' \Rightarrow '

Theorem 3 (Fischer-Riesz). Consider a sequence $\left(f_{n}\right)_{n}$ in \mathfrak{L}^{p}. Then
(i) $\left(f_{n}\right)_{n}$ Cauchy sequence $\Rightarrow \exists f \in \mathfrak{L}^{p}: f_{n} \xrightarrow{\mathfrak{L}^{p}} f$ (completeness),
(ii) $f_{n} \xrightarrow{\mathfrak{R}^{p}} f \Rightarrow \exists$ subsequence $\left(f_{n_{k}}\right)_{k}: f_{n_{k}} \xrightarrow{\mu \text {-a.e. }} f$.

Proof. Ad (i): Consider a Cauchy sequence $\left(f_{n}\right)_{n}$ and a subsequence $\left(f_{n_{k}}\right)_{k}$ such that

$$
\forall k \in \mathbb{N} \forall m \geq n_{k}:\left\|f_{m}-f_{n_{k}}\right\|_{p} \leq 2^{-k}
$$

For

$$
g_{k}=f_{n_{k+1}}-f_{n_{k}} \in \mathfrak{L}^{p}
$$

we have

$$
\left\|\sum_{\ell=1}^{k}\left|g_{\ell}\right|\right\|_{p} \leq \sum_{\ell=1}^{k}\left\|g_{\ell}\right\|_{p} \leq \sum_{\ell=1}^{k} 2^{-\ell} \leq 1 .
$$

Put $g=\sum_{\ell=1}^{\infty}\left|g_{\ell}\right| \in \overline{\mathfrak{Z}}_{+}$. By Theorem 5.1

$$
\begin{equation*}
\int g^{p} d \mu=\int \sup _{k}\left(\sum_{\ell=1}^{k}\left|g_{\ell}\right|\right)^{p} d \mu=\sup _{k} \int\left(\sum_{\ell=1}^{k}\left|g_{\ell}\right|\right)^{p} d \mu \leq 1 . \tag{1}
\end{equation*}
$$

Thus, in particular, $\sum_{\ell=1}^{\infty}\left|g_{\ell}\right|$ and $\sum_{\ell=1}^{\infty} g_{\ell}$ converge μ-a.e., see Theorem 5.4.(i). Since

$$
f_{n_{k+1}}=\sum_{\ell=1}^{k} g_{\ell}+f_{n_{1}}
$$

we have

$$
f=\lim _{k \rightarrow \infty} f_{n_{k}} \mu \text {-a.e. }
$$

for some $f \in \mathfrak{Z}$. Furthermore,

$$
\left|f-f_{n_{k}}\right| \leq \sum_{\ell=k}^{\infty}\left|g_{\ell}\right| \leq g \mu \text {-a.e. }
$$

so that, by Theorem 5.5 and (1),

$$
\lim _{k \rightarrow \infty} \int\left|f-f_{n_{k}}\right|^{p} d \mu=0 .
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{p}=0
$$

too. Finally, by Theorem $2, f \in \mathfrak{L}^{p}$.
Ad (ii): Assume that

$$
f_{n} \xrightarrow{\mathfrak{S}^{p}} f .
$$

According to the proof of (i) there exists $\tilde{f} \in \mathfrak{L}^{p}$ and a subsequence $\left(f_{n_{k}}\right)_{k}$ such that

$$
f_{n_{k}} \xrightarrow{\mu \text {-a.e. }} \tilde{f} \wedge f_{n_{k}} \xrightarrow{\mathfrak{L}^{p}} \tilde{f} .
$$

Use Lemma 1.

Example 1. Let $(\Omega, \mathfrak{A}, \mu)=\left([0,1], \mathfrak{B}([0,1]),\left.\lambda_{1}\right|_{\mathfrak{B}([0,1])}\right)$. (By Remark 1.7.(ii) we have $\left.\mathfrak{B}([0,1]) \subset \mathfrak{B}_{1}\right)$. Define

$$
\begin{gathered}
A_{1}=[0,1] \\
A_{2}=[0,1 / 2], \quad A_{3}=[1 / 2,1] \\
A_{4}=[0,1 / 3], \quad A_{5}=[1 / 3,2 / 3], \quad A_{6}=[2 / 3,1] \\
\text { etc. }
\end{gathered}
$$

Put $f_{n}=1_{A_{n}}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{n}-0\right\|_{p}=\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=0 \tag{2}
\end{equation*}
$$

but

$$
\left\{\left(f_{n}\right)_{n} \text { converges }\right\}=\emptyset
$$

Remark 2. Define

$$
\mathfrak{L}^{\infty}=\mathfrak{L}^{\infty}(\Omega, \mathfrak{A}, P)=\left\{f \in \mathfrak{Z}: \exists c \in \mathbb{R}_{+}:|f| \leq c \mu \text {-a.e. }\right\}
$$

and

$$
\|f\|_{\infty}=\inf \left\{c \in \mathbb{R}_{+}:|f| \leq c \mu \text {-a.e. }\right\}, \quad f \in \mathfrak{L}^{\infty}
$$

$f \in \mathfrak{L}^{\infty}$ is called essentially bounded and $\|f\|_{\infty}$ is called the essential supremum of $|f|$. Use Theorem 4.1.(iii) to verify that

$$
|f| \leq\|f\|_{\infty} \mu \text {-a.e. }
$$

The definitions and results of this section, except (2), extend to the case $p=\infty$, where $q=1$ in Theorem 1. In Theorem 3.(ii) we even have $f_{n} \xrightarrow{\mathfrak{L}^{\infty}} f \Rightarrow f_{n} \xrightarrow{\mu \text {-a.e. }} f$.
Remark 3. Put

$$
\mathfrak{N}^{p}=\left\{f \in \mathfrak{L}^{p}: f=0 \mu \text {-a.e. }\right\}
$$

Then the quotient space $L^{p}=\mathfrak{L}^{p} / \mathfrak{N}^{p}$ is a Banach space. In particular, for $p=2, L^{2}$ is a Hilbert space, with semi-inner product on \mathfrak{L}^{2} given by

$$
\langle f, g\rangle=\int f \cdot g d \mu, \quad f, g \in \mathfrak{L}^{2}
$$

Theorem 4. If μ is finite and $1 \leq p<q \leq \infty$ then

$$
\mathfrak{L}^{q} \subset \mathfrak{L}^{p}
$$

and

$$
\|f\|_{p} \leq \mu(\Omega)^{1 / p-1 / q} \cdot\|f\|_{q}, \quad f \in \mathfrak{L}^{q}
$$

Proof. The result trivially holds for $q=\infty$.In the sequel, $q<\infty$. Use $|f|^{p} \leq 1+|f|^{q}$ and Theorem 5.4.(iii) to obtain $\mathfrak{L}^{q} \subset \mathfrak{L}^{p}$. Put $r=q / p$ and define s by $1 / r+1 / s=1$. Theorem 1 yields

$$
\int|f|^{p} d \mu \leq\left(\int|f|^{p \cdot r} d \mu\right)^{1 / r} \cdot(\mu(\Omega))^{1 / s}
$$

Example 2. Let $1 \leq p<q \leq \infty$. With respect to the counting measure on $\mathfrak{P}(\mathbb{N})$, $\mathfrak{L}^{p} \subset \mathfrak{L}^{q}$. With respect to the Lebesgue measure on \mathfrak{B}_{k} neither $\mathfrak{L}^{q} \subset \mathfrak{L}^{p}$ nor $\mathfrak{L}^{p} \subset \mathfrak{L}^{q}$.

