5 Integration

For the proofs, see Analysis IV or Elstrodt (1996, Kap. VI). Fixed in this section: A measure space $(\Omega, \mathfrak{A}, \mu)$. Notation:

- $\Sigma_{+} = \Sigma_{+}(\Omega, \mathfrak{A})$ (nonnegative simple functions),
- $\overline{\mathfrak{Z}}_+ = \overline{\mathfrak{Z}}_+(\Omega, \mathfrak{A})$ (nonnegative $\mathfrak{A}\text{-}\overline{\mathfrak{B}}\text{-measurable functions}),$

Definition 1. Integral Let $f \in \Sigma_+$,

$$f = \sum_{i=1}^{n} \alpha_i \cdot 1_{A_i}, \qquad \alpha_i \in \mathfrak{R}, A_i \in \mathfrak{A}.$$

Then define its Integral w.r.t. μ as

$$\int f \, d\mu = \sum_{i=1}^{n} \alpha_i \cdot \mu(A_i) \; .$$

Lemma 1. The mapping $\int d\mu : \Sigma_+ \to \Re_+$ is

- (i) positive–linear: $\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu$, $f, g \in \Sigma_+$, $\alpha, \beta \in \Re_+$,
- (ii) monotone: $f \leq g \Rightarrow \int f \, d\mu \leq \int g \, d\mu$ (monotonicity).

Definition 2. Integral of $f \in \overline{\mathfrak{Z}}_+$ w.r.t. μ

$$\int f \, d\mu = \sup \Big\{ \int g \, d\mu : g \in \Sigma_+ \land g \le f \Big\}.$$

Theorem 1 (Monotone convergence, Beppo Levi). (e.g., Thm.6.4, Analysis IV, SS06) Let $f_n \in \overline{\mathfrak{Z}}_+$ such that

$$\forall n \in \mathbb{N} : f_n \le f_{n+1}.$$

Then

$$\int \sup_{n} f_n \, d\mu = \sup_{n} \int f_n \, d\mu.$$

Remark 1. For every $f \in \overline{\mathfrak{Z}}_+$ there exists a sequence of functions $f_n \in \Sigma_+$ such that $f_n \uparrow f$, see Theorem 2.7.

Example 1. Consider

$$f_n = \frac{1}{n} \cdot 1_{[0,n]}$$

on $(\mathbb{R}, \mathfrak{B}, \lambda_1)$. Then

$$\int f_n d\lambda_1 = 1, \qquad \lim_{n \to \infty} f_n = 0.$$

Lemma 2. The mapping $\int \cdot d\mu : \mathfrak{F}_+ \to \overline{\mathfrak{R}}_+$ is still positive–linear and monotone.

Theorem 2 (Fatou's Lemma). (See, e.g., Lemma 6.6, Ananlysis IV, SS06) For every sequence $(f_n)_n$ in $\overline{\mathfrak{Z}}_+$

$$\int \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int f_n \, d\mu.$$

Proof. For $g_n = \inf_{k \ge n} f_k$ we have $g_n \in \overline{\mathfrak{Z}}_+$ and $g_n \uparrow \liminf_n f_n$. By Theorem 1 and Lemma 1.(iii)

$$\int \liminf_{n} f_n \, d\mu = \lim_{n \to \infty} \int g_n \, d\mu \le \liminf_{n \to \infty} \int f_n \, d\mu.$$

Theorem 3. Let $f \in \overline{\mathfrak{Z}}_+$. Then

$$\int f \, d\mu = 0 \Leftrightarrow \mu(\{f > 0\}) = 0.$$

Definition 3. A property Π holds μ -almost everywhere (μ -a.e., a.e.), if

$$\exists A \in \mathfrak{A} : \{\omega \in \Omega : \Pi \text{ does not hold for } \omega\} \subset A \wedge \mu(A) = 0.$$

In case of a probability measure we say: μ -almost surely, μ -a.s., with probability one.

Notation: $\overline{\mathfrak{Z}} = \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ is the class of $\mathfrak{A}\text{-}\overline{\mathfrak{B}}$ -measurable functions.

Definition 4. $f \in \overline{\mathfrak{Z}}$ quasi- μ -integrable if

$$\int f_+ d\mu < \infty \quad \vee \quad \int f_- d\mu < \infty.$$

In this case: integral of f (w.r.t. μ)

$$\int f \, d\mu = \int f_+ \, d\mu - \int f_- \, d\mu.$$

 $f \in \overline{\mathfrak{Z}} \ \mu$ -integrable if

$$\int f_+ d\mu < \infty \quad \land \quad \int f_- d\mu < \infty.$$

Theorem 4.

- (i) $f \mu$ -integrable $\Rightarrow \mu(\{|f| = \infty\}) = 0$,
- (ii) f μ -integrable $\land g \in \overline{\mathfrak{Z}} \land f = g$ μ -a.e. $\Rightarrow g$ μ -integrable $\land \int f \, d\mu = \int g \, d\mu$.
- (iii) equivalent properties for $f \in \overline{\mathfrak{Z}}$:
 - (a) $f \mu$ -integrable,
 - (b) $|f| \mu$ -integrable,
 - (c) $\exists g : g \text{ μ-integrable} \land |f| \leq g \text{ μ-a.e.},$

(iv) for f and g μ -integrable and $c \in \mathbb{R}$

- (a) f+g well-defined μ -a.e. and μ -integrable with $\int (f+g) d\mu = \int f d\mu + \int g d\mu$,
- (b) $c \cdot f$ μ -integrable with $\int (cf) d\mu = c \cdot \int f d\mu$,
- (c) $f \leq g \ \mu$ -a.e. $\Rightarrow \int f \ d\mu \leq \int g \ d\mu$.

Theorem 5 (Dominated convergence, Lebesgue). Assume that

- (i) $f_n \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$,
- (ii) $\exists g \ \mu$ -integrable $\forall n \in \mathbb{N} : |f_n| \leq g \ \mu$ -a.e.,
- (iii) $f \in \overline{\mathfrak{Z}}$ such that $\lim_{n \to \infty} f_n = f$ μ -a.e.

Then f is μ -integrable and

$$\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu.$$

Example 2. Consider

$$f_n = n \cdot 1_{]0,1/n[}$$

on $(\mathbb{R}, \mathfrak{B}, \lambda_1)$. Then

$$\int f_n \, d\lambda_1 = 1, \qquad \lim_{n \to \infty} f_n = 0.$$