4 Construction of (Probability) Measures

Given: Q # () and () # 2 C P(Q).
Definition 1. p: 2 — R, U {oo} is called

(i) additive if:

ABeANANB=0NAUBeAd = u(AUB)=pu(A) + u(B),
(ii) o-additive if
Ay, Ay, ... € 2 pairwise disjoint A U Aed = u(U Ai> = ZM(AZ-),
i=1 i=1 i=1
(ili) content (on A) if
2A algebra A g additive A u(0) =0,
(iv) pre-measure (on ) if

2 semi-algebra A p o-additive A p(0) =0,

(v) measure (on ) if
20 o-algebra A pu pre-measure,

(vi) probability measure (on ) if
pu measure A p(Q2) = 1.

Definition 2. (Q,2(, 1) is called a

(i) measure space, if i is a measure on the o-algebra 2 in €,

(ii) probability space, if u is a probability measure on the o-algebra 2 in €.
Example 1.

(i) k—dimensional Lebesgque pre-measure A\, e.g., on cartesian products of intervals.
(ii) For any semi-algebra 2 in €2 and w € Q

dw(A) = 1a(w), Aei,

defines a pre-measure. If 2 is a o-algebra, then ¢, is called the Dirac measure
at the point w.

More generally: take sequences (wp)ner in € and (a,)nen in Ry such that
> o, =1. Then

pA) =300 Talw),  Ae
n=1

defines a discrete probability measure on any g-algebra 2 in €). Note that p =

Yoy Euy -
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(iii) Counting measure on a o-algebra 2
u(A) = [A], Aedl
Uniform distribution in the case [Q| < oo and 2 = ()

_ 4]

N(A) = @,

A C Q.

(iv) On the algebra A = {A C Q : A finite or A° finite} let
0 if|Al<oo
uay =47
oo if |[A] = 0.
Then p is a content but not a pre-measure in general.
(v) For the semi-algebra of measurable rectangles in Example 3.1 and A; C {0,1}

AL x o x A
1{0,1}" |

is well defined and yields a pre-measure p with 4 ({0, 1}N) =1

(A X X Ay X Qg X0

Remark 1. For every content g on 2 and A, B €
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Theorem 1. Consider the following properties for a content p on 2A:
(i) p pre-measure,
(i) A1, Ag,... e AANUZ A e A= pu(U2, A) <3002, 1(Ay) (o-subadditivity),

(ili) Ay, Agy... € ANA, T A e A = limy oo pu(A,) = p(A) (o-continuity from
below),

(iv) A1, Ao € ANA, | A€ AN p(A) < oo = limy o u(A4,) = p(A) (o-

continuity from above),

(v) Aj,Ag, .. € ANA, | DA p(Ar) < 0o = limy, o p(Ay) = 0 (o-continuity at 0).

Then
(i) & (i) < (iii) = (iv) < (v).
If p(€2) < oo, then (iii) < (iv).
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Proof. ‘(i) = (ii): Put B, = J*, A; and By = (). Then

o0

U U m \ Bmfl)

with pairwise disjoint sets B, \ Bn_1 € 2. Clearly B,, \ B,_1 C A,,. Hence, by

Remark 1.(i),
u(U Az) =) u(Bn\ Bna) <> (A

‘(ii) = (i) Let Ay, Ay, ... € A be pairwise disjoint with [ J;°, A; € A. Then

w(Ua) = () = > aa
and therefore
> <u((J4).

The reverse estimate holds by assumption.
‘(i) = (iii): Put A9 =0 and B,, = A, \ A—1. Then

(G ) ZM = T}E{}Oiﬂ(Bm) = ggngou(o Bm> = lim p(A,).

m=1

‘(iii) = (i): Let A;, Ag,... € A be pairwise disjoint with (J;-; A; € 2, and put
B, =", A;. Then B,, 1,2, A; and

() = Jim w5 =3

‘(iv) = (v)’ trivially holds.
‘(v) = (iv): Use B, = A, \ A | 0.
‘(i) = (v): Note that pu(A;) = oo, pu(A; \ Airq). Hence

0= ]}LT{}OX;M(Ai \ Aig) = lim p(Ay).

“(iv) A pu(Q) < oo = (iii)”: Clearly A, T A implies A¢ | A°. Thus
p(A) = (@) = p(A9) = Tim (u(Q2) = p(A7)) = lim p(Ay).

]

Theorem 2 (Extension: semi-algebra ~~ algebra). For every semi-algebra 2
and every additive mapping u : A — R, U {oo} with u(0) =0

%Iﬁ content on a(A) 1 i = 1

Moreover, if p is o-additive then j is o-additive, too.
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Proof. We have a(2() = A, see Lemma 1.1. Necessarily

ﬁ(C) 4;) = iu(/m (1)

for Ay, ..., A, € A pairwise disjoint. Use (1) to obtain a well-defined extension of
onto (). It easily follows that p is additive or even o-additive. O

Example 2. For the semi-algebra 2( in Example 1.(v) (%) is the algebra of cylinder
sets, and

~ A n
M(AXQN‘FlX..'):W’ AC{O,].} .

Let © be a pre-measure on 2. The outer measure generated by p is
(*(A) == inf {Zu(Ai) C A eAAC UooAz} :
i=1 =1
It is straightforward that p*(@ = 0) and that p* is monotone and o—subadditive.

Theorem 3 (Extension: algebra ~» g-algebra, Carathéodory). For every pre-
measure /4 on an algebra 2,

(a) the class
A, = {A CQ : u*(B) = (ANB) + p*(A°N BB C Q}

is a o—algebra, and p* is a measure on 2A,-.

— [

Proof. We will start with part (b), i.e., we show that

(i) VA€AVB € R(Q):  p*(B) = " (BN A) + (B N A°).

Ad (i): For A €

e}

w(A) < p(A) + > ) = u(A),

i—2
and for A; € A with A C 2, 4

[e.9] (e 9]

p(4) = p(JAin ) <3 a0 ) <3 (A

=1 i=1 i=1

follows from Theorem 1.(ii).
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Ad (ii): ‘<’ holds due to sub-additivity of u*; if

BQU&
i=1
with A; € A, then A, N A, A; N A° € A and
BnAcC|JAinA,  BnAc|JAna®,
i=1 i=1
This directly implies ‘>’.

Now we prove (a); to this end, we claim first that

(iii) A~ is N—closed, VA;, Ay € A VB € P(Q) :  p*(B) = p (BN (A1 NAy)) +

(iv) A, “—closed,

i.e., A is an algebra.

Ad (iii): We have

pr(B) = p (BN A+ (BN AS)
=p (BNA; NA)+p (BNA NAS) + p* (BN AS)

and
P (BN (A1 NA)) =p"(BNATUBNAS) = (BNASNA) + w' (BN AY).

Ad (iv): Obvious.

Next we claim that p* is additive on 2*, and even more,

(v) VA1, Ay € A,- disjoint VB € P(Q) : p*(BN(A1UAY)) = p*(BNAy)+p* (BN
Ay).

In fact, since A; N Ay = 0,

At last, we claim that 2* is a Dynkin class and p* is o—additive on 2*, i.e.,

(vi) VA, Ay, ... € AU, pairwise disjoint

e, M(G A7) = S (A,
1=1 i=1 i=1
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Let B € B(Q2). By (iv), (v), and monotonicity of p*

-
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w*(B) :u*(BanJAz) +u*(Bm<
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Use o-subadditivity of u* to get
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Hence |JZ, Ai € ,~. Take B = (J;Z, A; to obtain o-additivity of p*|g..

Conclusions:

e 2, is a Dynkin class and N-closed ((iv), (vi)), and hence a o-algebra, see
Theorem 1.1.(ii),

e A C A by (ii), hence o(A) C A -
® "]y, is a measure with p*[y = p, see (vi) and (i).
0

Remark 2. The extension from Theorem 3 is non-unique, in general. For instance,
on 2 = R, the pre-measure

0 ifA=10

. )
oo otherwise

,u(A):oo-#A:{ A€ a(3y)

on the algebra generated by intervals (see Ex.1) has the extensions ui(A) = #A
(counting measure) and ps(A) = 0o - #A to B.

Definition 3. p: 2 — R, U {oo} is called

(i) o-finite, if

3By, By, ... € A pairwise disjoint : Q= U BiAVieN: u(B;) < oo,
i=1

(ii) finite, if Q € A and p(N2) < oco.

Theorem 4 (Uniqueness). 2, be N—closed, p1, pe be measures on A = o(2Ay). If
s, is o—finite and pq|o, = p2|ay, then uy = po.
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Proof. Take B; according to Definition 3, with 2l instead of 2, and put
D, ={AcU: (AN B;) = u (AN By)}.
Obviously, ®; is a Dynkin class and 2y C ©;. Theorem 1.2.(i) yields
D, CA=0(Ap) =0(A) CD;.

Thus A =9, and for A € 2,
p(A) = ZM(A NB;) = Zﬂz(A N B;) = p2(A).
=1 =1

O

Corollary 1. For every semi-algebra 2l and every pre-measure p on 2 that is o-finite
%I,u* measure on o(2A) 1 pF|o = L.

Proof. Use Theorems 2, 3, and 4. O]

Remark 3. Applications of Corollary 1:

(i) For Q = R¥ and the Lebesgue pre-measure \, on J; we get the Lebesgue measure
on B;. Notation for the latter: \,.

(ii) In Example 1.(v) there exists a uniquely determined probability measure P on

X, B({0,1}) such that

Ay x - x A,
P(Alx...xAnx{O,l}x...):| 1|{01}n| |

for Ay,..., A, C {0,1}. We will study the general construction of product
measures in Section 8.
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