4 Construction of (Probability) Measures

Given: $\Omega \neq \emptyset$ and $\emptyset \neq \mathfrak{A} \subset \mathfrak{P}(\Omega)$.

Definition 1. $\mu: \mathfrak{A} \to \mathbb{R}_+ \cup \{\infty\}$ is called

(i) additive if:

$$A, B \in \mathfrak{A} \land A \cap B = \emptyset \land A \cup B \in \mathfrak{A} \quad \Rightarrow \quad \mu(A \cup B) = \mu(A) + \mu(B),$$

(ii) σ -additive if

$$A_1, A_2, \ldots \in \mathfrak{A}$$
 pairwise disjoint $\wedge \bigcup_{i=1}^{\infty} A_i \in \mathfrak{A} \quad \Rightarrow \quad \mu \Big(\bigcup_{i=1}^{\infty} A_i \Big) = \sum_{i=1}^{\infty} \mu(A_i),$

(iii) content (on \mathfrak{A}) if

$$\mathfrak{A}$$
 algebra \wedge μ additive \wedge $\mu(\emptyset) = 0$,

(iv) pre-measure (on \mathfrak{A}) if

$$\mathfrak{A}$$
 semi-algebra \wedge μ σ -additive \wedge $\mu(\emptyset) = 0$,

(v) measure (on \mathfrak{A}) if

$$\mathfrak{A}$$
 σ -algebra \wedge μ pre-measure,

(vi) probability measure (on \mathfrak{A}) if

$$\mu$$
 measure \wedge $\mu(\Omega) = 1$.

Definition 2. $(\Omega, \mathfrak{A}, \mu)$ is called a

- (i) measure space, if μ is a measure on the σ -algebra \mathfrak{A} in Ω ,
- (ii) probability space, if μ is a probability measure on the σ -algebra $\mathfrak A$ in Ω .

Example 1.

- (i) k-dimensional Lebesgue pre-measure λ_k , e.g., on cartesian products of intervals.
- (ii) For any semi-algebra \mathfrak{A} in Ω and $\omega \in \Omega$

$$\delta_{\omega}(A) = 1_A(\omega), \qquad A \in \mathfrak{A},$$

defines a pre-measure. If \mathfrak{A} is a σ -algebra, then δ_{ω} is called the *Dirac measure* at the point ω .

More generally: take sequences $(\omega_n)_{n\in\mathbb{R}}$ in Ω and $(\alpha_n)_{n\in\mathbb{N}}$ in \mathbb{R}_+ such that $\sum_{n=1}^{\infty} \alpha_n = 1$. Then

$$\mu(A) = \sum_{n=1}^{\infty} \alpha_n \cdot 1_A(\omega_n), \qquad A \in \mathfrak{A},$$

defines a discrete probability measure on any σ -algebra \mathfrak{A} in Ω . Note that $\mu = \sum_{n=1}^{\infty} \alpha_n \cdot \varepsilon_{\omega_n}$.

(iii) Counting measure on a σ -algebra \mathfrak{A}

$$\mu(A) = |A|, \qquad A \in \mathfrak{A}.$$

Uniform distribution in the case $|\Omega| < \infty$ and $\mathfrak{A} = \mathfrak{P}(\Omega)$

$$\mu(A) = \frac{|A|}{|\Omega|}, \qquad A \subset \Omega.$$

(iv) On the algebra $\mathfrak{A} = \{A \subset \Omega : A \text{ finite or } A^c \text{ finite}\}\$ let

$$\mu(A) = \begin{cases} 0 & \text{if } |A| < \infty \\ \infty & \text{if } |A| = \infty. \end{cases}$$

Then μ is a content but not a pre-measure in general.

(v) For the semi-algebra of measurable rectangles in Example 3.1 and $A_i \subset \{0,1\}$

$$\mu(A_1 \times \dots \times A_n \times \Omega_{n+1} \times \dots) = \frac{|A_1 \times \dots \times A_n|}{|\{0,1\}^n|}$$

is well defined and yields a pre-measure μ with $\mu(\{0,1\}^{\mathbb{N}}) = 1$.

Remark 1. For every content μ on \mathfrak{A} and $A, B \in \mathfrak{A}$

- (i) $A \subset B \Rightarrow \mu(A) < \mu(A \cap B) + \mu(A^c \cap B) = \mu(B)$ (monotonicity),
- (ii) $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B \setminus A) + \mu(A \cap B) = \mu(A) + \mu(B)$
- (iii) $A \subset B \land \mu(A) < \infty \Rightarrow \mu(B \setminus A) = \mu(B) \mu(A),$
- (iv) $\mu(A) < \infty \land \mu(B) < \infty \Rightarrow |\mu(A) \mu(B)| < \mu(A \triangle B)$,
- (v) $\mu(A \cup B) = \mu(A) + \mu(B \cap A^c) \le \mu(A) + \mu(B)$ (subadditivity).

Theorem 1. Consider the following properties for a content μ on \mathfrak{A} :

- (i) μ pre-measure,
- (ii) $A_1, A_2, \ldots \in \mathfrak{A} \wedge \bigcup_{i=1}^{\infty} A_i \in \mathfrak{A} \Rightarrow \mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i) \ (\sigma\text{-subadditivity}),$
- (iii) $A_1, A_2, \ldots \in \mathfrak{A} \wedge A_n \uparrow A \in \mathfrak{A} \Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu(A)$ (σ -continuity from below),
- (iv) $A_1, A_2, \ldots \in \mathfrak{A} \wedge A_n \downarrow A \in \mathfrak{A} \wedge \mu(A_1) < \infty \Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu(A)$ (σ -continuity from above),
- (v) $A_1, A_2, \ldots \in \mathfrak{A} \wedge A_n \downarrow \emptyset \wedge \mu(A_1) < \infty \Rightarrow \lim_{n \to \infty} \mu(A_n) = 0 \ (\sigma \text{-continuity at } \emptyset).$

Then

$$(i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v).$$

If $\mu(\Omega) < \infty$, then (iii) \Leftrightarrow (iv).

Proof. '(i) \Rightarrow (ii)': Put $B_m = \bigcup_{i=1}^m A_i$ and $B_0 = \emptyset$. Then

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{m=1}^{\infty} (B_m \setminus B_{m-1})$$

with pairwise disjoint sets $B_m \setminus B_{m-1} \in \mathfrak{A}$. Clearly $B_m \setminus B_{m-1} \subset A_m$. Hence, by Remark 1.(i),

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{m=1}^{\infty} \mu(B_m \setminus B_{m-1}) \le \sum_{m=1}^{\infty} \mu(A_m).$$

'(ii) \Rightarrow (i)': Let $A_1, A_2, \ldots \in \mathfrak{A}$ be pairwise disjoint with $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$. Then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \ge \mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu(A_i),$$

and therefore

$$\sum_{i=1}^{\infty} \mu(A_i) \le \mu\Big(\bigcup_{i=1}^{\infty} A_i\Big).$$

The reverse estimate holds by assumption.

'(i) \Rightarrow (iii)': Put $A_0 = \emptyset$ and $B_m = A_m \setminus A_{m-1}$. Then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{m=1}^{\infty} \mu(B_m) = \lim_{n \to \infty} \sum_{m=1}^{n} \mu(B_m) = \lim_{n \to \infty} \mu\left(\bigcup_{m=1}^{n} B_m\right) = \lim_{n \to \infty} \mu(A_n).$$

'(iii) \Rightarrow (i)': Let $A_1, A_2, \ldots \in \mathfrak{A}$ be pairwise disjoint with $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$, and put $B_m = \bigcup_{i=1}^m A_i$. Then $B_m \uparrow \bigcup_{i=1}^{\infty} A_i$ and

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{m \to \infty} \mu(B_m) = \sum_{i=1}^{\infty} \mu(A_i).$$

'(iv) \Rightarrow (v)' trivially holds.

 $(v) \Rightarrow (iv)$: Use $B_n = A_n \setminus A \downarrow \emptyset$.

'(i)' \Rightarrow (v)': Note that $\mu(A_1) = \sum_{i=1}^{\infty} \mu(A_i \setminus A_{i+1})$. Hence

$$0 = \lim_{k \to \infty} \sum_{i=k}^{\infty} \mu(A_i \setminus A_{i+1}) = \lim_{k \to \infty} \mu(A_k).$$

'(iv) $\wedge \mu(\Omega) < \infty \Rightarrow$ (iii)': Clearly $A_n \uparrow A$ implies $A_n^c \downarrow A^c$. Thus

$$\mu(A) = \mu(\Omega) - \mu(A^c) = \lim_{n \to \infty} (\mu(\Omega) - \mu(A_n^c)) = \lim_{n \to \infty} \mu(A_n).$$

Theorem 2 (Extension: semi-algebra \rightsquigarrow algebra). For every semi-algebra \mathfrak{A} and every additive mapping $\mu: \mathfrak{A} \to \mathbb{R}_+ \cup \{\infty\}$ with $\mu(\emptyset) = 0$

$$\exists \widehat{\mu} \text{ content on } \alpha(\mathfrak{A}) : \widehat{\mu}|_{\mathfrak{A}} = \mu.$$

Moreover, if μ is σ -additive then $\widehat{\mu}$ is σ -additive, too.

Proof. We have $\alpha(\mathfrak{A}) = \mathfrak{A}^+$, see Lemma 1.1. Necessarily

$$\widehat{\mu}\Big(\bigcup_{i=1}^{n} A_i\Big) = \sum_{i=1}^{n} \mu(A_i) \tag{1}$$

for $A_1, \ldots, A_n \in \mathfrak{A}$ pairwise disjoint. Use (1) to obtain a well-defined extension of μ onto $\alpha(\mathfrak{A})$. It easily follows that μ is additive or even σ -additive.

Example 2. For the semi-algebra \mathfrak{A} in Example 1.(v) $\alpha(\mathfrak{A})$ is the algebra of cylinder sets, and

$$\widehat{\mu}(A \times \Omega_{n+1} \times \cdots) = \frac{|A|}{|\{0,1\}^n|}, \qquad A \subset \{0,1\}^n.$$

Let μ be a pre-measure on \mathfrak{A} . The outer measure generated by μ is

$$\mu^*(A) := \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathfrak{A}, A \subseteq \bigcup_{i=1}^{\infty} \infty A_i \right\} ,$$

It is straightforward that $\mu^*(\emptyset = 0)$ and that μ^* is monotone and σ -subadditive.

Theorem 3 (Extension: algebra $\rightsquigarrow \sigma$ -algebra, Carathéodory). For every premeasure μ on an algebra \mathfrak{A} ,

(a) the class

$$\mathfrak{A}_{\mu^*} := \left\{ A \subseteq \Omega : \mu^*(B) = \mu^*(A \cap B) + \mu^*(A^c \cap B) \forall B \subseteq \Omega \right\}$$

is a σ -algebra, and μ^* is a measure on \mathfrak{A}_{μ^*} .

(b) $\mathfrak{A} \subseteq \mathfrak{A}_{\mu^*}$, and $\mu = \mu^*$ on \mathfrak{A} . In particular, there exists a measure μ^* on $\sigma(\mathfrak{A})$ extending μ .

Proof. We will start with part (b), i.e., we show that

- (i) $\mu^*|_{\mathfrak{A}} = \mu$,
- (ii) $\forall A \in \mathfrak{A} \ \forall B \in \mathfrak{P}(\Omega) : \quad \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c).$
- Ad (i): For $A \in \mathfrak{A}$

$$\mu^*(A) \le \mu(A) + \sum_{i=2}^{\infty} \mu(\emptyset) = \mu(A),$$

and for $A_i \in \mathfrak{A}$ with $A \subset \bigcup_{i=1}^{\infty} A_i$

$$\mu(A) = \mu\left(\bigcup_{i=1}^{\infty} (A_i \cap A)\right) \le \sum_{i=1}^{\infty} \mu(A_i \cap A) \le \sum_{i=1}^{\infty} \mu(A_i)$$

follows from Theorem 1.(ii).

Ad (ii): ' \leq ' holds due to sub-additivity of μ^* ; if

$$B \subseteq \bigcup_{i=1}^{\infty} A_i$$

with $A_i \in \mathfrak{A}$, then $A_i \cap A, A_i \cap A^c \in \mathfrak{A}$ and

$$B \cap A \subseteq \bigcup_{i=1}^{\infty} A_i \cap A, \qquad B \cap A^c \subseteq \bigcup_{i=1}^{\infty} A_i \cap A^c.$$

This directly implies \ge .

Now we prove (a); to this end, we claim first that

(iii)
$$\mathfrak{A}_{\mu^*}$$
 is \cap -closed, $\forall A_1, A_2 \in \mathfrak{A}_{\mu^*} \ \forall B \in \mathfrak{P}(\Omega) : \quad \mu^*(B) = \mu^*(B \cap (A_1 \cap A_2)) + \mu^*(B \cap (A_1 \cap A_2)^c).$

(iv) \mathfrak{A}_{μ^*} ^c-closed,

i.e., \mathfrak{A} is an algebra.

Ad (iii): We have

$$\mu^*(B) = \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c)$$

= $\mu^*(B \cap A_1 \cap A_2) + \mu^*(B \cap A_1 \cap A_2^c) + \mu^*(B \cap A_1^c)$

and

$$\mu^*(B \cap (A_1 \cap A_2)^c) = \mu^*(B \cap A_1^c \cup B \cap A_2^c) = \mu^*(B \cap A_2^c \cap A_1) + \mu^*(B \cap A_1^c).$$

Ad (iv): Obvious.

Next we claim that μ^* is additive on \mathfrak{A}^* , and even more,

(v)
$$\forall A_1, A_2 \in \mathfrak{A}_{\mu^*}$$
 disjoint $\forall B \in \mathfrak{P}(\Omega) : \mu^*(B \cap (A_1 \cup A_2)) = \mu^*(B \cap A_1) + \mu^*(B \cap A_2)$.

In fact, since $A_1 \cap A_2 = \emptyset$,

$$\mu^*(B \cap (A_1 \cup A_2)) = \mu^*(B \cap A_1) + \mu^*(B \cap A_2 \cap A_1^c) = \mu^*(B \cap A_1) + \mu^*(B \cap A_2).$$

At last, we claim that \mathfrak{A}^* is a Dynkin class and μ^* is σ -additive on \mathfrak{A}^* , i.e.,

(vi) $\forall A_1, A_2, \ldots \in \mathfrak{A}_{\mu^*}$ pairwise disjoint

$$\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}_{\mu^*} \quad \wedge \quad \mu^* \Big(\bigcup_{i=1}^{\infty} A_i \Big) = \sum_{i=1}^{\infty} \mu^* (A_i).$$

Let $B \in \mathfrak{P}(\Omega)$. By (iv), (v), and monotonicity of μ^*

$$\mu^*(B) = \mu^* \left(B \cap \bigcup_{i=1}^n A_i \right) + \mu^* \left(B \cap \left(\bigcup_{i=1}^n A_i \right)^c \right)$$
$$\geq \sum_{i=1}^n \mu^* (B \cap A_i) + \mu^* \left(B \cap \left(\bigcup_{i=1}^\infty A_i \right)^c \right).$$

Use σ -subadditivity of μ^* to get

$$\mu^*(B) \ge \sum_{i=1}^{\infty} \mu^*(B \cap A_i) + \mu^* \left(B \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \right)$$
$$\ge \mu^* \left(B \cap \bigcup_{i=1}^{\infty} A_i \right) + \mu^* \left(B \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \right)$$
$$\ge \mu^*(B).$$

Hence $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}_{\mu^*}$. Take $B = \bigcup_{i=1}^{\infty} A_i$ to obtain σ -additivity of $\mu^*|_{\mathfrak{A}_{\mu^*}}$. Conclusions:

- \mathfrak{A}_{μ^*} is a Dynkin class and \cap -closed ((iv), (vi)), and hence a σ -algebra, see Theorem 1.1.(ii),
- $\mathfrak{A} \subset \mathfrak{A}_{\mu^*}$ by (ii), hence $\sigma(\mathfrak{A}) \subset \mathfrak{A}_{\mu^*}$.
- $\mu^*|_{\mathfrak{A}_{\mu^*}}$ is a measure with $\mu^*|_{\mathfrak{A}} = \mu$, see (vi) and (i).

Remark 2. The extension from Theorem 3 is non-unique, in general. For instance, on $\Omega = \mathbb{R}$, the pre-measure

$$\mu(A) = \infty \cdot \#A = \begin{cases} 0 & \text{if } A = \emptyset \\ \infty & \text{otherwise} \end{cases}, \qquad A \in \alpha(\mathfrak{J}_1)$$

on the algebra generated by intervals (see Ex.1) has the extensions $\mu_1(A) = \#A$ (counting measure) and $\mu_2(A) = \infty \cdot \#A$ to \mathfrak{B} .

Definition 3. $\mu: \mathfrak{A} \to \mathbb{R}_+ \cup \{\infty\}$ is called

(i) σ -finite, if

$$\exists B_1, B_2, \ldots \in \mathfrak{A}$$
 pairwise disjoint : $\Omega = \bigcup_{i=1}^{\infty} B_i \wedge \forall i \in \mathbb{N} : \mu(B_i) < \infty$,

(ii) finite, if $\Omega \in \mathfrak{A}$ and $\mu(\Omega) < \infty$.

Theorem 4 (Uniqueness). \mathfrak{A}_0 be \cap -closed, μ_1 , μ_2 be measures on $\mathfrak{A} = \sigma(\mathfrak{A}_0)$. If $\mu_1|_{\mathfrak{A}_0}$ is σ -finite and $\mu_1|_{\mathfrak{A}_0} = \mu_2|_{\mathfrak{A}_0}$, then $\mu_1 = \mu_2$.

Proof. Take B_i according to Definition 3, with \mathfrak{A}_0 instead of \mathfrak{A} , and put

$$\mathfrak{D}_i = \{ A \in \mathfrak{A} : \mu_1(A \cap B_i) = \mu_2(A \cap B_i) \}.$$

Obviously, \mathfrak{D}_i is a Dynkin class and $\mathfrak{A}_0 \subset \mathfrak{D}_i$. Theorem 1.2.(i) yields

$$\mathfrak{D}_i \subset \mathfrak{A} = \sigma(\mathfrak{A}_0) = \delta(\mathfrak{A}_0) \subset \mathfrak{D}_i.$$

Thus $\mathfrak{A} = \mathfrak{D}_i$ and for $A \in \mathfrak{A}$,

$$\mu_1(A) = \sum_{i=1}^{\infty} \mu_1(A \cap B_i) = \sum_{i=1}^{\infty} \mu_2(A \cap B_i) = \mu_2(A).$$

Corollary 1. For every semi-algebra $\mathfrak A$ and every pre-measure μ on $\mathfrak A$ that is σ -finite

$$\exists \mu^* \text{ measure on } \sigma(\mathfrak{A}): \quad \mu^*|_{\mathfrak{A}} = \mu.$$

Proof. Use Theorems 2, 3, and 4.

Remark 3. Applications of Corollary 1:

- (i) For $\Omega = \mathbb{R}^k$ and the Lebesgue pre-measure λ_k on \mathfrak{J}_k we get the Lebesgue measure on \mathfrak{B}_k . Notation for the latter: λ_k .
- (ii) In Example 1.(v) there exists a uniquely determined probability measure P on $\bigotimes_{i=1}^{\infty} \mathfrak{P}(\{0,1\})$ such that

$$P(A_1 \times \dots \times A_n \times \{0,1\} \times \dots) = \frac{|A_1 \times \dots \times A_n|}{|\{0,1\}^n|}$$

for $A_1, \ldots, A_n \subset \{0, 1\}$. We will study the general construction of product measures in Section 8.