3 Product Spaces

Example 1. A stochastic model for coin tossing. For a single trial,

$$
\begin{equation*}
\Omega=\{0,1\}, \quad \mathfrak{A}=\mathfrak{P}(\Omega), \quad \forall \omega \in \Omega: P(\{\omega\})=1 / 2 \tag{1}
\end{equation*}
$$

For n 'independent' trials, (1) serves as a building-block,

$$
\Omega_{i}=\{0,1\}, \quad \mathfrak{A}_{i}=\mathfrak{P}\left(\Omega_{i}\right), \quad \forall \omega_{i} \in \Omega_{i}: P_{i}\left(\left\{\omega_{i}\right\}\right)=1 / 2,
$$

and we define

$$
\Omega=\prod_{i=1}^{n} \Omega_{i}, \quad \mathfrak{A}=\mathfrak{P}(\Omega), \quad \forall A \in \mathfrak{A}: P(A)=\frac{|A|}{|\Omega|} .
$$

Then

$$
P\left(A_{1} \times \cdots \times A_{n}\right)=P_{1}\left(A_{1}\right) \cdots \cdots P_{n}\left(A_{n}\right)
$$

for all $A_{i} \in \mathfrak{A}_{i}$.
Question: How to model an infinite sequence of trials? To this end,

$$
\Omega=\prod_{i=1}^{\infty} \Omega_{i} .
$$

How to choose a σ-algebra \mathfrak{A} in Ω and a probability measure P on (Ω, \mathfrak{A}) ? A reasonable requirement is

$$
\begin{align*}
& \forall n \in \mathbb{N} \forall A_{i} \in \mathfrak{A}_{i}: \\
& \quad P\left(A_{1} \times \cdots \times A_{n} \times \Omega_{n+1} \times \Omega_{n+2} \ldots\right)=P_{1}\left(A_{1}\right) \cdots P_{n}\left(A_{n}\right) . \tag{2}
\end{align*}
$$

Unfortunately,

$$
\mathfrak{A}=\mathfrak{P}(\Omega)
$$

is too large, since there exists no probability measure on $(\Omega, \mathfrak{P}(\Omega))$ such that (2) holds. The latter fact follows from a theorem by Banach and Kuratowski, which relies on the continuum hypothesis, see Dudley (2002, p. 526). On the other hand,

$$
\begin{equation*}
\mathfrak{A}=\left\{A_{1} \times \cdots \times A_{n} \times \Omega_{n+1} \times \Omega_{n+2} \cdots: n \in \mathbb{N}, A_{i} \in \mathfrak{A}_{i} \text { for } i=1, \ldots, n\right\} \tag{3}
\end{equation*}
$$

is not a σ-algebra.
Given: a non-empty set I and measurable spaces $\left(\Omega_{i}, \mathfrak{A}_{i}\right)$ for $i \in I$. Put

$$
Y=\bigcup_{i \in I} \Omega_{i}
$$

and define

$$
\prod_{i \in I} \Omega_{i}=\left\{\omega \in Y^{I}: \omega(i) \in \Omega_{i} \text { for } i \in I\right\} .
$$

Notation: $\omega=\left(\omega_{i}\right)_{i \in I}$ for $\omega \in \prod_{i \in I} \Omega_{i}$. Moreover, let

$$
\mathfrak{P}_{0}(I)=\{J \subset I: J \text { non-empty, finite }\} .
$$

The following definition is motivated by (3).

Definition 1.

(i) Measurable rectangle

$$
A=\prod_{j \in J} A_{j} \times \prod_{i \in I \backslash J} \Omega_{i}
$$

with $J \in \mathfrak{P}_{0}(I)$ and $A_{j} \in \mathfrak{A}_{j}$ for $j \in J$. Notation: \mathfrak{R} class of measurable rectangles.
(ii) Product (measurable) space (Ω, \mathfrak{A}) with components $\left(\Omega_{i}, \mathfrak{A}_{i}\right), i \in I$,

$$
\Omega=\prod_{i \in I} \Omega_{i}, \quad \mathfrak{A}=\sigma(\mathfrak{R}) .
$$

Notation: $\mathfrak{A}=\bigotimes_{i \in I} \mathfrak{A}_{i}$, product σ-algebra.
Remark 1. The class \mathfrak{R} is a semi-algebra, but not an algebra in general. See Übung 2.3.

Example 2. Obviously, (2) only makes sense if \mathfrak{A} contains the product σ-algebra $\bigotimes_{i=1}^{n} \mathfrak{A}_{i}$. We will show that there exists a uniquely determined probability measure P on the product space $\left(\prod_{i=1}^{\infty}\{0,1\}, \bigotimes_{i=1}^{\infty} \mathfrak{P}(\{0,1\})\right)$ that satisfies (2), see Remark 4.3.(ii). The corresponding probability space yields a stochastic model for the simple case of gambling, which was mentioned in the introductory Example I.2.

We study several classes of mappings or subsets that generate the product σ-algebra. Moreover, we characterize measurability of mappings that take values in a product space.
Put $\Omega=\prod_{i \in I} \Omega_{i}$. For any $\emptyset \neq S \subset I$ let

$$
\pi_{S}^{I}: \Omega \rightarrow \prod_{i \in S} \Omega_{i}, \quad\left(\omega_{i}\right)_{i \in I} \mapsto\left(\omega_{i}\right)_{i \in S}
$$

denote the projection of Ω onto $\prod_{i \in S} \Omega_{i}$ (restriction of mappings ω). In particular, for $i \in I$ the i-th projection is given by $\pi_{\{i\}}^{I}$. Sometimes we simply write π_{S} instead of π_{S}^{I} and π_{i} instead of $\pi_{\{i\}}$.

Theorem 1.

(i) $\bigotimes_{i \in I} \mathfrak{A}_{i}=\sigma\left(\left\{\pi_{i}: i \in I\right\}\right)$.
(ii) $\forall i \in I: \mathfrak{A}_{i}=\sigma\left(\mathfrak{E}_{i}\right) \quad \Rightarrow \quad \bigotimes_{i \in I} \mathfrak{A}_{i}=\sigma\left(\bigcup_{i \in I} \pi_{i}^{-1}\left(\mathfrak{E}_{i}\right)\right)$.

Proof. Ad (i), ' \supset ': We show that every projection $\pi_{i}: \Omega \rightarrow \Omega_{i}$ is $\left(\bigotimes_{i \in I} \mathfrak{A}_{i}\right)-\mathfrak{A}_{i^{-}}$ measurable. For $A_{i} \in \mathfrak{A}_{i}$

$$
\pi_{i}^{-1}\left(A_{i}\right)=A_{i} \times \prod_{i \in I \backslash\{i\}} \Omega_{i} \in \mathfrak{R} .
$$

Ad (i), ' \subset ': We show that $\mathfrak{R} \subset \sigma\left(\left\{\pi_{i}: i \in I\right\}\right)$. For $J \in \mathfrak{P}_{0}(I)$ and $A_{j} \in \mathfrak{A}_{j}$ with $j \in J$

$$
\prod_{j \in J} A_{j} \times \prod_{i \in I \backslash J} \Omega_{i}=\bigcap_{j \in J} \pi_{j}^{-1}\left(A_{j}\right) .
$$

Ad (ii): By Lemma 2.1 and (i)

$$
\bigotimes_{i \in I} \mathfrak{A}_{i}=\sigma\left(\bigcup_{i \in I} \pi_{i}^{-1}\left(\mathfrak{A}_{i}\right)\right)=\sigma\left(\bigcup_{i \in I} \sigma\left(\pi_{i}^{-1}\left(\mathfrak{E}_{i}\right)\right)\right)=\sigma\left(\bigcup_{i \in I} \pi_{i}^{-1}\left(\mathfrak{E}_{\mathfrak{i}}\right)\right) .
$$

Corollary 1.

(i) For every measurable space $(\widetilde{\Omega}, \widetilde{\mathfrak{A}})$ and every mapping $g: \widetilde{\Omega} \rightarrow \Omega$

$$
g \text { is } \widetilde{\mathfrak{A}}-\bigotimes_{i \in I} \mathfrak{A}_{i} \text {-measurable } \quad \Leftrightarrow \quad \forall i \in I: \pi_{i} \circ g \text { is } \widetilde{\mathfrak{A}}-\mathfrak{A}_{i} \text {-measurable. }
$$

(ii) For every $\emptyset \neq S \subset I$ the projection π_{S}^{I} is $\bigotimes_{i \in I} \mathfrak{A}_{i}-\bigotimes_{i \in S} \mathfrak{A}_{i}$-measurable.

Proof. Ad (i): Follows immediately from Theorem 2.3 and Theorem 1.(i).
Ad (ii): Note that $\pi_{\{i\}}^{S} \circ \pi_{S}^{I}=\pi_{i}^{I}$ and use (i).
Remark 2. From Theorem 1.(i) and Corollary 1 we get

$$
\bigotimes_{i \in I} \mathfrak{A}_{i}=\sigma\left(\left\{\pi_{S}^{I}: S \in \mathfrak{P}_{0}(I)\right\}\right) .
$$

The sets

$$
\left(\pi_{S}^{I}\right)^{-1}(B)=B \times\left(\prod_{i \in I \backslash S} \Omega_{i}\right)
$$

with $S \in \mathfrak{P}_{0}(I)$ and $B \in \bigotimes_{i \in S} \mathfrak{A}_{i}$ are called cylinder sets. Notation: \mathfrak{C} class of cylinder sets. The class \mathfrak{C} is an algebra in Ω, but not a σ-algebra in general. Moreover,

$$
\mathfrak{R} \subset \alpha(\mathfrak{R}) \subset \mathfrak{C} \subset \sigma(\mathfrak{R})
$$

where equality does not hold in general.

Every product measurable set is countably determined in the following sense.
Theorem 2. For every $A \in \otimes_{i \in I} \mathfrak{A}_{i}$ there exists a non-empty countable set $S \subset I$ and a set $B \in \otimes_{i \in S} \mathfrak{A}_{i}$ such that

$$
A=\left(\pi_{S}^{I}\right)^{-1}(B)
$$

Proof. Put

$$
\tilde{\mathfrak{A}}=\left\{A \in \bigotimes_{i \in I} \mathfrak{A}_{i}: \exists S \subset I \text { non-empty, countable } \exists B \in \bigotimes_{i \in S} \mathfrak{A}_{i}: A=\left(\pi_{S}^{I}\right)^{-1}(B)\right\} .
$$

By definition, $\widetilde{\mathfrak{A}}$ contains every cylinder set and $\widetilde{\mathfrak{A}} \subset \bigotimes_{i \in I} \mathfrak{A}_{i}$. It remains to show that $\widetilde{\mathfrak{A}}$ is a σ-algebra. Obviously, $\Omega \in \widetilde{\mathfrak{A}}$, and if $A=\left(\pi_{S}^{I}\right)^{-1}(B), A^{c}=\left(\pi_{S}^{I}\right)^{-1}\left(B^{c}\right)$. Finally, if $A_{n}=\left(\pi_{S_{n}}^{I}\right)^{-1}\left(B_{n}\right)$, we define $S=\bigcup_{n} S_{n}$ and $\widetilde{B}_{n}=\left(\pi_{S_{n}}^{S}\right)^{-1}\left(B_{n}\right)=B_{n} \times \prod_{i \in S \backslash B_{n}} \in$ $\bigotimes_{i \in S} \mathfrak{A}_{i}$ (see Corollary 1, (ii)); then

$$
\bigcap_{n} A_{n}=\bigcap_{n}\left(\pi_{S}^{I}\right)^{-1}\left(\widetilde{B}_{n}\right)=\left(\left(\pi^{I}\right)_{S}\right)^{-1}\left(\bigcap_{n} \widetilde{B}_{n}\right)
$$

hence $\bigcap_{n} A_{n} \in \widetilde{\mathfrak{A}}$.
Now we study products of Borel- σ-algebras.

Theorem 3.

$$
\mathfrak{B}_{k}=\bigotimes_{i=1}^{k} \mathfrak{B}, \quad \overline{\mathfrak{B}}_{k}=\bigotimes_{i=1}^{k} \overline{\mathfrak{B}} .
$$

Proof. ByRemarkrefch2s1.refch2r5,

$$
\left.\left.B_{k}=\sigma\left(\left\{\prod_{i=1}^{k}\right]-\infty, a_{i}\right]: a_{i} \in \mathbb{R} \text { for } i=1, \ldots, k\right\}\right) \subset \bigotimes_{i=1}^{k} \mathfrak{B}
$$

On the other hand, $\pi_{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is continuous, hence it remains to apply Corollary 2.1 and Theorem 1.(i). Analogously, $\overline{\mathfrak{B}}_{k}=\bigotimes_{i=1}^{k} \overline{\mathfrak{B}}$ follows.

Remark 3. Consider a measurable space ($\widetilde{\Omega}, \widetilde{\mathfrak{A}})$ and a mapping

$$
f=\left(f_{1}, \ldots, f_{k}\right): \widetilde{\Omega} \rightarrow \overline{\mathbb{R}}^{k}
$$

Then, according to Theorem 3, f is $\widetilde{\mathfrak{A}}-\overline{\mathfrak{B}}_{k}$-measurable iff all functions f_{i} are $\widetilde{\mathfrak{A}}-\overline{\mathfrak{B}}-$ measurable.

