2 Measurable Mappings

Definition 1. (Q,2l) is called measurable space iff Q # () and 2 is a o-algebra in €.
Elements A € 2 are called (-)measurable sets.

In the sequel, (€2;,%;) are measurable spaces for i = 1,2, 3.
Remark 1. Let f: )y — . For B € 2,, we set in short
{feBy=f"(B)={weh : flweBC
(i) f71(2A) = {f'(A) : A €Ay} is a o-algebra in Q.
(i) {ACQy: fHA) €U} is a o-algebra in Q.

Definition 2. f : Q; — Qy is A, -RAy-measurable iff f~1(Ay) C Ay ie., iff for all
A €Ay we have {f € A} € ;.

How can we prove measurability of a given mapping?

Theorem 1. If f : Q) — €y is A;-As-measurable and g : 2y — Q3 is As-As-
measurable, then go f : )y — (3 is A;-A3-measurable.

Proof. (Compare Bemerkung 5.4,(i), Analysis IV)

(gof)™ ' (As) = f (g (A)) C [ (A) C Yy .

Lemma 1. For f: Q) — Q9 and & C P(Qs)

Proof. By f~1(€) C f~!'(0o(€)) and Remark 1.(i) we get o(f~1(&)) C f~1(a(€)).
Let § ={A C Q: f7Y(A) € o(f7'(€))}. Then € C § and § is a o-algebra, see
Remark 1.(ii). Thus we get o(€) C §, i.e., [ (o(€)) C o(f1(€)). O

Theorem 2. If 2, = o(€&) with € C PB(Qy), then
f is A;-Ay-measurable < f1(&) C A .

Proof. (compare Lemma 5.2, Analysis IV) ‘=’ is trivial,
‘<’:Assume that f~'(€) C 2;. By Lemma 1,

7 () = [7H(0(€)) = o(f71(€)) C o) = .
[l

Corollary 1. Let (€;, ®;) be topological spaces. Then every continuous f : ; — Qy
is B(2;)-B(£22)-measurable.
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Proof. (Compare Korollar 5.3, Analysis IV) For continuous f we have
fﬁl<®2) C 051 - O'(@l) = %(Ql)
Theorem 2 shows the claim. O]

Given: measurable spaces (Q;,2;) for i € I # (), mappings f; : Q@ — ; for i € I and
some non-empty set 2.

Definition 3. The o-algebra generated by (f;)icr (and (2;)icr)

o{fiien)=o(Jsr@).

iel
Moreover, set o(f) = o({f})-

Remark 2. o({f; : i € I}) is the smallest o-algebra 2 in Q such that all mappings
fi are A-A;-measurable.

Theorem 3. For every measurable space (Q, 5[) and every mapping ¢ : 2 — Q,
gis -o({f; :i € [})-measurable < Vi€ l: f;og is A-A-measurable.

Proof. Use Lemma 1 to obtain

g oltfiie ) =o(g (Ut @)) =o(Uthion @),
Therefore
g (c({fi:iel})C A < Viel:fog is A-A-measurable.
]

Now we turn to the particular case of functions with values in R or R, and we consider
the Borel o-algebra in R or R, respectively. For any measurable space (€2,2() we use
the following notation

32, 0)={f: Q@ —R: f is A-B-measurable} ,
3.(0.2) = {f € 3(2,2): £ > 0},

3(Q,%) ={f:Q—R: fis A-B-measurable} ,
3,(0.2) = {f 3@ : f >0},

Every function f : Q — R may also be considered as a function with values in R, and
in this case f € 3(Q,2) iff f € 3(Q,2).

Corollary 2. For <€ {<,<,>,>} and f: Q — R,

fe3(QA) < VacR:{f<a}ecA
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Proof. (Compare Satz 5.6, Bem.5.7, Analysis [V) For instance, B = o({[—00,a] : a € R})
and

{f <a}=f"([~00,a))
and B = o({[~0o0,d] : a € R}), see Remark 1.6. It remains to apply Theorem 2. [J

Theorem 4. For f,g € 3(Q,2) and <€ {<, <, >, >, =, #},
{weQ: flw) <g(w)} e
Proof. For instance, Corollary 2 yields

{we: flw) <gw}=J{f<a<g}

q€Q
=JUf<an{g>qh e
q€Q
O
Theorem 5. For every sequence f1, fa,... € 3(,20),
(1) inanN fn7 SupneN fn € 3(97 Ql)v
(ii) liminf, oo fn, limsup, .. fn € 3(Q,A),
(iii) if (f,)nen converges at every point w € €, then lim,, .. f,, € 3(Q2,20).
Proof. (Compare Satz 5.8, 5.9, Analysis [V) For a € R
‘ = <agb = <al.
{;rellgfn < a} U {fn<al, {ilégfn < a} N {fn<a}
neN neN
Hence, Corollary 2 yields (i). Since
limsup f,, = inf sup f,, liminf f, = sup inf f,,
n—oo meN p>m n—oo meN n2m
we obtain (ii) from (i). Finally, (iii) follows from (ii). O

By
[T =max(0, f), f~ =max(0,—f)

we denote the positive part and the negative part, respectively, of f: Q — R.
Remark 3. For f € 3(,2) we have f*, f~,|f] € 3,(Q, ).
Theorem 6. For f,g € 3(,2),

f£g, f-9. flg€3(Q9),

provided that these functions are well defined.
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Proof. (Compare Folgerung 5.5, Analysis IV) The proof is again based on Corollary
2. For simplicity we only consider the case that f and g are real-valued. Clearly
g € 3(Q,2) implies —g € 3(Q, ), too. Furthermore, for every a € R,

{(f+g<a}=J{f<atn{g<a—-q},

q€Q

and therefore f £ ¢ € 3(Q,2). Clearly f-g € 3(Q,) if f is constant. Moreover,
x +— 22 defines a B-B-measurable function, see Corollary 1, and

frg=1/4-((f+9?>=(f—9)?

We apply Theorem 1 to obtain f - g € 3(€,2) in general. Finally, it is easy to show
that g € 3(€,2) implies 1/g € 3(Q,2A). ]

Definition 4. f € 3(,2) is called simple function if |f(Q)| < oo. Put

() ={f € 3(Q,2) : f simple},
() ={feX(QA): f>0}.

Remark 4. f € 3(Q,2) iff

f:Zai-lAi
=1

with aq,...a, € R pairwise different and Ay,..., A, € 2 pairwise disjoint such that
Uiy A=

Theorem 7. (Compare Theorem 5.11, Analysis IV) For every (bounded) function
f € 3.(Q, ) there exists a sequence fi, fa,--- € X, (€Q,2) such that f, T f (with
uniform convergence).

Proof. Let n € N and put

k—1
fo=> gn 4w T 1B,

where
A ={(k=1)/(2") < f <k/(2")}, B.={f=n}.
O

Now we consider a mapping 7" : £2; — )5 and a g-algebra 2, in €2;. We characterize
measurability of functions with respect to o(T) = T (2s).

Theorem 8 (Factorization Lemma). For every function f: Q; — R

f€3(,0(T) < 3Jge3(,Ag):f=goT.
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Proof. ‘<’ is trivially satisfied. ‘=": First, assume that f € ¥, (Qy,0(7)), i.e.,

= Zai <1y,
i=1

with pairwise disjoint sets Ay, ..., A, € o(T'). Take pairwise disjoint sets By, ..., B, €
2, such that A; = T~!(B;) and put

g = ZOQ‘ . 131,.
=1

Clearly f = goT and g € 3(Qq,2s).
Now, assume that f € 3,.(Qy,0(T)). Take a sequence (f,)nen in X4 (2, 0(T)) ac-

cording to Theorem 7. We already know that f,, = g, oT for suitable g, € 3(Q2, 2s).
Hence

f=sup f,=sup(g,oT) = (supgn)oT =goT

where g = sup,, g, € 3(Qa, As).

In the general case, we already know that
ff=goT, [f~=goT
for suitable g1, gs € 3(92,912). Put
C={g1 = g2 =00} €Ay,

and observe that T(Q2;) N C = @ since f = fT — f~. We conclude that f = go T
where

g=0g1-1p—g2-1p € 3(Q, Ay)
with D = C°. ]

Our method of proof for Theorem 8 is sometimes called algebraic induction.
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