
2 Measurable Mappings

Definition 1. (Ω, A) is called measurable space iff Ω 6= ∅ and A is a σ-algebra in Ω.

Elements A ∈ A are called (A–)measurable sets .

In the sequel, (Ωi, Ai) are measurable spaces for i = 1, 2, 3.

Remark 1. Let f : Ω1 → Ω2. For B ∈ A2, we set in short

{f ∈ B} = f−1(B) = {ω ∈ Ω1 : f(ω) ∈ B} ⊂ Ω1

(i) f−1(A2) = {f−1(A) : A ∈ A2} is a σ-algebra in Ω1.

(ii) {A ⊂ Ω2 : f−1(A) ∈ A1} is a σ-algebra in Ω2.

Definition 2. f : Ω1 → Ω2 is A1-A2-measurable iff f−1(A2) ⊂ A1. i.e., iff for all

A ∈ A2 we have {f ∈ A} ∈ A1.

How can we prove measurability of a given mapping?

Theorem 1. If f : Ω1 → Ω2 is A1-A2-measurable and g : Ω2 → Ω3 is A2-A3-

measurable, then g ◦ f : Ω1 → Ω3 is A1-A3-measurable.

Proof. (Compare Bemerkung 5.4,(i), Analysis IV)

(g ◦ f)−1(A3) = f−1(g−1(A3)) ⊂ f−1(A2) ⊂ A1 .

Lemma 1. For f : Ω1 → Ω2 and E ⊂ P(Ω2)

f−1(σ(E)) = σ(f−1(E)).

Proof. By f−1(E) ⊂ f−1(σ(E)) and Remark 1.(i) we get σ(f−1(E)) ⊂ f−1(σ(E)).

Let F = {A ⊂ Ω2 : f−1(A) ∈ σ(f−1(E))}. Then E ⊂ F and F is a σ-algebra, see

Remark 1.(ii). Thus we get σ(E) ⊂ F, i.e., f−1(σ(E)) ⊂ σ(f−1(E)).

Theorem 2. If A2 = σ(E) with E ⊂ P(Ω2), then

f is A1-A2-measurable ⇔ f−1(E) ⊂ A1 .

Proof. (compare Lemma 5.2, Analysis IV) ‘⇒’ is trivial,

‘⇐’:Assume that f−1(E) ⊂ A1. By Lemma 1,

f−1(A2) = f−1(σ(E)) = σ(f−1(E)) ⊂ σ(A1) = A1.

Corollary 1. Let (Ωi, Gi) be topological spaces. Then every continuous f : Ω1 → Ω2

is B(Ω1)-B(Ω2)-measurable.
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Proof. (Compare Korollar 5.3, Analysis IV) For continuous f we have

f−1(G2) ⊂ G1 ⊂ σ(G1) = B(Ω1).

Theorem 2 shows the claim.

Given: measurable spaces (Ωi, Ai) for i ∈ I 6= ∅, mappings fi : Ω → Ωi for i ∈ I and

some non-empty set Ω.

Definition 3. The σ-algebra generated by (fi)i∈I (and (Ai)i∈I)

σ({fi : i ∈ I}) = σ
(⋃

i∈I

f−1
i (Ai)

)
.

Moreover, set σ(f) = σ({f}).

Remark 2. σ({fi : i ∈ I}) is the smallest σ-algebra A in Ω such that all mappings

fi are A-Ai-measurable.

Theorem 3. For every measurable space (Ω̃, Ã) and every mapping g : Ω̃ → Ω,

g is Ã-σ({fi : i ∈ I})-measurable ⇔ ∀ i ∈ I : fi ◦ g is Ã-Ai-measurable.

Proof. Use Lemma 1 to obtain

g−1(σ({fi : i ∈ I})) = σ
(
g−1

(⋃
i∈I

f−1
i (Ai)

))
= σ

(⋃
i∈I

(fi ◦ g)−1(Ai)
)
.

Therefore

g−1 (σ({fi : i ∈ I})) ⊂ Ã ⇔ ∀ i ∈ I : fi ◦ gi is Ã-Ai-measurable.

Now we turn to the particular case of functions with values in R or R, and we consider

the Borel σ-algebra in R or R, respectively. For any measurable space (Ω, A) we use

the following notation

Z(Ω, A) = {f : Ω → R : f is A-B-measurable} ,

Z+(Ω, A) = {f ∈ Z(Ω, A) : f ≥ 0} ,

Z(Ω, A) =
{
f : Ω → R : f is A-B-measurable

}
,

Z+(Ω, A) =
{
f ∈ Z(Ω, A) : f ≥ 0

}
.

Every function f : Ω → R may also be considered as a function with values in R, and

in this case f ∈ Z(Ω, A) iff f ∈ Z(Ω, A).

Corollary 2. For ≺∈ {≤, <,≥, >} and f : Ω → R,

f ∈ Z(Ω, A) ⇔ ∀ a ∈ R : {f ≺ a} ∈ A.
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Proof. (Compare Satz 5.6, Bem.5.7, Analysis IV) For instance, B = σ({[−∞, a] : a ∈ R})
and

{f ≤ a} = f−1([−∞, a])

and B = σ({[−∞, a] : a ∈ R}), see Remark 1.6. It remains to apply Theorem 2.

Theorem 4. For f, g ∈ Z(Ω, A) and ≺∈ {≤, <,≥, >, =, 6=},

{ω ∈ Ω : f(ω) ≺ g(ω)} ∈ A.

Proof. For instance, Corollary 2 yields

{ω ∈ Ω : f(ω) < g(ω)} =
⋃
q∈Q

{f < q < g}

=
⋃
q∈Q

({f < q} ∩ {g > q}) ∈ A.

Theorem 5. For every sequence f1, f2, . . . ∈ Z(Ω, A),

(i) infn∈N fn, supn∈N fn ∈ Z(Ω, A),

(ii) lim infn→∞ fn, lim supn→∞ fn ∈ Z(Ω, A),

(iii) if (fn)n∈N converges at every point ω ∈ Ω, then limn→∞ fn ∈ Z(Ω, A).

Proof. (Compare Satz 5.8, 5.9, Analysis IV) For a ∈ R{
inf
n∈N

fn < a

}
=

⋃
n∈N

{fn < a} ,

{
sup
n∈N

fn ≤ a

}
=

⋂
n∈N

{fn ≤ a} .

Hence, Corollary 2 yields (i). Since

lim sup
n→∞

fn = inf
m∈N

sup
n≥m

fn, lim inf
n→∞

fn = sup
m∈N

inf
n≥m

fn,

we obtain (ii) from (i). Finally, (iii) follows from (ii).

By

f+ = max(0, f), f− = max(0,−f)

we denote the positive part and the negative part, respectively, of f : Ω → R.

Remark 3. For f ∈ Z(Ω, A) we have f+, f−, |f | ∈ Z+(Ω, A).

Theorem 6. For f, g ∈ Z(Ω, A),

f ± g, f · g, f/g ∈ Z(Ω, A),

provided that these functions are well defined.
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Proof. (Compare Folgerung 5.5, Analysis IV) The proof is again based on Corollary

2. For simplicity we only consider the case that f and g are real-valued. Clearly

g ∈ Z(Ω, A) implies −g ∈ Z(Ω, A), too. Furthermore, for every a ∈ R,

{f + g < a} =
⋃
q∈Q

{f < q} ∩ {g < a− q},

and therefore f ± g ∈ Z(Ω, A). Clearly f · g ∈ Z(Ω, A) if f is constant. Moreover,

x 7→ x2 defines a B-B-measurable function, see Corollary 1, and

f · g = 1/4 ·
(
(f + g)2 − (f − g)2

)
We apply Theorem 1 to obtain f · g ∈ Z(Ω, A) in general. Finally, it is easy to show

that g ∈ Z(Ω, A) implies 1/g ∈ Z(Ω, A).

Definition 4. f ∈ Z(Ω, A) is called simple function if |f(Ω)| < ∞. Put

Σ(Ω, A) = {f ∈ Z(Ω, A) : f simple} ,

Σ+(Ω, A) = {f ∈ Σ(Ω, A) : f ≥ 0} .

Remark 4. f ∈ Σ(Ω, A) iff

f =
n∑

i=1

αi · 1Ai

with α1, . . . αn ∈ R pairwise different and A1, . . . , An ∈ A pairwise disjoint such that⋃n
i=1 Ai = Ω.

Theorem 7. (Compare Theorem 5.11, Analysis IV) For every (bounded) function

f ∈ Z+(Ω, A) there exists a sequence f1, f2, · · · ∈ Σ+(Ω, A) such that fn ↑ f (with

uniform convergence).

Proof. Let n ∈ N and put

fn =
n·2n∑
k=1

k − 1

2n
· 1An,k

+ n · 1Bn

where

An,k = {(k − 1)/(2n) ≤ f < k/(2n)} , Bn = {f ≥ n} .

Now we consider a mapping T : Ω1 → Ω2 and a σ-algebra A2 in Ω2. We characterize

measurability of functions with respect to σ(T ) = T−1(A2).

Theorem 8 (Factorization Lemma). For every function f : Ω1 → R

f ∈ Z(Ω1, σ(T )) ⇔ ∃ g ∈ Z(Ω2, A2) : f = g ◦ T.
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Proof. ‘⇐’ is trivially satisfied. ‘⇒’: First, assume that f ∈ Σ+(Ω1, σ(T )), i.e.,

f =
n∑

i=1

αi · 1Ai

with pairwise disjoint sets A1, . . . , An ∈ σ(T ). Take pairwise disjoint sets B1, . . . , Bn ∈
A2 such that Ai = T−1(Bi) and put

g =
n∑

i=1

αi · 1Bi
.

Clearly f = g ◦ T and g ∈ Z(Ω2, A2).

Now, assume that f ∈ Z+(Ω1, σ(T )). Take a sequence (fn)n∈N in Σ+(Ω1, σ(T )) ac-

cording to Theorem 7. We already know that fn = gn ◦ T for suitable gn ∈ Z(Ω2, A2).

Hence

f = sup
n

fn = sup
n

(gn ◦ T ) = (sup
n

gn) ◦ T = g ◦ T

where g = supn gn ∈ Z(Ω2, A2).

In the general case, we already know that

f+ = g1 ◦ T, f− = g2 ◦ T

for suitable g1, g2 ∈ Z(Ω2, A2). Put

C = {g1 = g2 = ∞} ∈ A2,

and observe that T (Ω1) ∩ C = ∅ since f = f+ − f−. We conclude that f = g ◦ T

where

g = g1 · 1D − g2 · 1D ∈ Z(Ω2, A2)

with D = Cc.

Our method of proof for Theorem 8 is sometimes called algebraic induction.
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