2 Measurable Mappings

Definition 1. (Ω, \mathfrak{A}) is called measurable space iff $\Omega \neq \emptyset$ and \mathfrak{A} is a σ-algebra in Ω. Elements $A \in \mathfrak{A}$ are called ($\mathfrak{A}-$) measurable sets.

In the sequel, $\left(\Omega_{i}, \mathfrak{A}_{i}\right)$ are measurable spaces for $i=1,2,3$.
Remark 1. Let $f: \Omega_{1} \rightarrow \Omega_{2}$. For $B \in \mathfrak{A}_{2}$, we set in short

$$
\{f \in B\}=f^{-1}(B)=\left\{\omega \in \Omega_{1}: f(\omega) \in B\right\} \subset \Omega_{1}
$$

(i) $f^{-1}\left(\mathfrak{A}_{2}\right)=\left\{f^{-1}(A): A \in \mathfrak{A}_{2}\right\}$ is a σ-algebra in Ω_{1}.
(ii) $\left\{A \subset \Omega_{2}: f^{-1}(A) \in \mathfrak{A}_{1}\right\}$ is a σ-algebra in Ω_{2}.

Definition 2. $f: \Omega_{1} \rightarrow \Omega_{2}$ is $\mathfrak{A}_{1}-\mathfrak{A}_{2}$-measurable iff $f^{-1}\left(\mathfrak{A}_{2}\right) \subset \mathfrak{A}_{1}$. i.e., iff for all $A \in \mathfrak{A}_{2}$ we have $\{f \in A\} \in \mathfrak{A}_{1}$.

How can we prove measurability of a given mapping?
Theorem 1. If $f: \Omega_{1} \rightarrow \Omega_{2}$ is $\mathfrak{A}_{1}-\mathfrak{A}_{2}$-measurable and $g: \Omega_{2} \rightarrow \Omega_{3}$ is $\mathfrak{A}_{2}-\mathfrak{A}_{3}-$ measurable, then $g \circ f: \Omega_{1} \rightarrow \Omega_{3}$ is $\mathfrak{A}_{1}-\mathfrak{A}_{3}$-measurable.

Proof. (Compare Bemerkung 5.4,(i), Analysis IV)

$$
(g \circ f)^{-1}\left(\mathfrak{A}_{3}\right)=f^{-1}\left(g^{-1}\left(\mathfrak{A}_{3}\right)\right) \subset f^{-1}\left(\mathfrak{A}_{2}\right) \subset \mathfrak{A}_{1} .
$$

Lemma 1. For $f: \Omega_{1} \rightarrow \Omega_{2}$ and $\mathfrak{E} \subset \mathfrak{P}\left(\Omega_{2}\right)$

$$
f^{-1}(\sigma(\mathfrak{E}))=\sigma\left(f^{-1}(\mathfrak{E})\right) .
$$

Proof. By $f^{-1}(\mathfrak{E}) \subset f^{-1}(\sigma(\mathfrak{E}))$ and Remark 1.(i) we get $\sigma\left(f^{-1}(\mathfrak{E})\right) \subset f^{-1}(\sigma(\mathfrak{E}))$.
Let $\mathfrak{F}=\left\{A \subset \Omega_{2}: f^{-1}(A) \in \sigma\left(f^{-1}(\mathfrak{E})\right)\right\}$. Then $\mathfrak{E} \subset \mathfrak{F}$ and \mathfrak{F} is a σ-algebra, see Remark 1.(ii). Thus we get $\sigma(\mathfrak{E}) \subset \mathfrak{F}$, i.e., $f^{-1}(\sigma(\mathfrak{E})) \subset \sigma\left(f^{-1}(\mathfrak{E})\right)$.

Theorem 2. If $\mathfrak{A}_{2}=\sigma(\mathfrak{E})$ with $\mathfrak{E} \subset \mathfrak{P}\left(\Omega_{2}\right)$, then

$$
f \text { is } \mathfrak{A}_{1}-\mathfrak{A}_{2} \text {-measurable } \quad \Leftrightarrow \quad f^{-1}(\mathfrak{E}) \subset \mathfrak{A}_{1} .
$$

Proof. (compare Lemma 5.2, Analysis IV) ' \Rightarrow ' is trivial, $' \Leftarrow$ ': Assume that $f^{-1}(\mathfrak{E}) \subset \mathfrak{A}_{1}$. By Lemma 1 ,

$$
f^{-1}\left(\mathfrak{A}_{2}\right)=f^{-1}(\sigma(\mathfrak{E}))=\sigma\left(f^{-1}(\mathfrak{E})\right) \subset \sigma\left(\mathfrak{A}_{1}\right)=\mathfrak{A}_{1} .
$$

Corollary 1. Let $\left(\Omega_{i}, \mathfrak{G}_{i}\right)$ be topological spaces. Then every continuous $f: \Omega_{1} \rightarrow \Omega_{2}$ is $\mathfrak{B}\left(\Omega_{1}\right)$ - $\mathfrak{B}\left(\Omega_{2}\right)$-measurable.

Proof. (Compare Korollar 5.3, Analysis IV) For continuous f we have

$$
f^{-1}\left(\mathfrak{G}_{2}\right) \subset \mathfrak{G}_{1} \subset \sigma\left(\mathfrak{G}_{1}\right)=\mathfrak{B}\left(\Omega_{1}\right)
$$

Theorem 2 shows the claim.
Given: measurable spaces $\left(\Omega_{i}, \mathfrak{A}_{i}\right)$ for $i \in I \neq \emptyset$, mappings $f_{i}: \Omega \rightarrow \Omega_{i}$ for $i \in I$ and some non-empty set Ω.

Definition 3. The σ-algebra generated by $\left(f_{i}\right)_{i \in I}$ (and $\left.\left(\mathfrak{A}_{i}\right)_{i \in I}\right)$

$$
\sigma\left(\left\{f_{i}: i \in I\right\}\right)=\sigma\left(\bigcup_{i \in I} f_{i}^{-1}\left(\mathfrak{A}_{i}\right)\right)
$$

Moreover, set $\sigma(f)=\sigma(\{f\})$.
Remark 2. $\sigma\left(\left\{f_{i}: i \in I\right\}\right)$ is the smallest σ-algebra \mathfrak{A} in Ω such that all mappings f_{i} are $\mathfrak{A}-\mathfrak{A}_{i}$-measurable.

Theorem 3. For every measurable space $(\widetilde{\Omega}, \widetilde{\mathfrak{A}})$ and every mapping $g: \widetilde{\Omega} \rightarrow \Omega$,

$$
g \text { is } \widetilde{\mathfrak{A}}-\sigma\left(\left\{f_{i}: i \in I\right\}\right) \text {-measurable } \quad \Leftrightarrow \quad \forall i \in I: f_{i} \circ g \text { is } \widetilde{\mathfrak{A}}-\mathfrak{A}_{i} \text {-measurable. }
$$

Proof. Use Lemma 1 to obtain

$$
g^{-1}\left(\sigma\left(\left\{f_{i}: i \in I\right\}\right)\right)=\sigma\left(g^{-1}\left(\bigcup_{i \in I} f_{i}^{-1}\left(\mathfrak{A}_{i}\right)\right)\right)=\sigma\left(\bigcup_{i \in I}\left(f_{i} \circ g\right)^{-1}\left(\mathfrak{A}_{i}\right)\right) .
$$

Therefore

$$
g^{-1}\left(\sigma\left(\left\{f_{i}: i \in I\right\}\right)\right) \subset \widetilde{\mathfrak{A}} \quad \Leftrightarrow \quad \forall i \in I: f_{i} \circ g_{i} \text { is } \widetilde{\mathfrak{A}}-\mathfrak{A}_{i} \text {-measurable. }
$$

Now we turn to the particular case of functions with values in \mathbb{R} or $\overline{\mathbb{R}}$, and we consider the Borel σ-algebra in \mathbb{R} or $\overline{\mathbb{R}}$, respectively. For any measurable space (Ω, \mathfrak{A}) we use the following notation

$$
\begin{aligned}
\mathfrak{Z}(\Omega, \mathfrak{A}) & =\{f: \Omega \rightarrow \mathbb{R}: f \text { is } \mathfrak{A} \text { - } \mathfrak{B} \text {-measurable }\}, \\
\mathfrak{Z}_{+}(\Omega, \mathfrak{A}) & =\{f \in \mathfrak{Z}(\Omega, \mathfrak{A}): f \geq 0\}, \\
\overline{\mathfrak{Z}}(\Omega, \mathfrak{A}) & =\{f: \Omega \rightarrow \overline{\mathbb{R}}: f \text { is } \mathfrak{A} \overline{\mathfrak{B}} \text {-measurable }\}, \\
\overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A}) & =\{f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A}): f \geq 0\} .
\end{aligned}
$$

Every function $f: \Omega \rightarrow \mathbb{R}$ may also be considered as a function with values in $\overline{\mathbb{R}}$, and in this case $f \in \mathfrak{Z}(\Omega, \mathfrak{A})$ iff $f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$.

Corollary 2. For $\prec \in\{\leq,<, \geq,>\}$ and $f: \Omega \rightarrow \overline{\mathbb{R}}$,

$$
f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A}) \quad \Leftrightarrow \quad \forall a \in \mathbb{R}:\{f \prec a\} \in \mathfrak{A} .
$$

Proof. (Compare Satz 5.6, Bem.5.7, Analysis IV) For instance, $\overline{\mathfrak{B}}=\sigma(\{[-\infty, a]: a \in \mathbb{R}\})$ and

$$
\{f \leq a\}=f^{-1}([-\infty, a])
$$

and $\overline{\mathfrak{B}}=\sigma(\{[-\infty, a]: a \in \mathbb{R}\})$, see Remark 1.6. It remains to apply Theorem 2.
Theorem 4. For $f, g \in \overline{\mathfrak{J}}(\Omega, \mathfrak{A})$ and $\prec \in\{\leq,<, \geq,>,=, \neq\}$,

$$
\{\omega \in \Omega: f(\omega) \prec g(\omega)\} \in \mathfrak{A} .
$$

Proof. For instance, Corollary 2 yields

$$
\begin{aligned}
\{\omega \in \Omega: f(\omega)<g(\omega)\} & =\bigcup_{q \in \mathbb{Q}}\{f<q<g\} \\
& =\bigcup_{q \in \mathbb{Q}}(\{f<q\} \cap\{g>q\}) \in \mathfrak{A} .
\end{aligned}
$$

Theorem 5. For every sequence $f_{1}, f_{2}, \ldots \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,
(i) $\inf _{n \in \mathbb{N}} f_{n}, \sup _{n \in \mathbb{N}} f_{n} \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,
(ii) $\liminf _{n \rightarrow \infty} f_{n}, \limsup \operatorname{sum}_{n \rightarrow \infty} f_{n} \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,
(iii) if $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges at every point $\omega \in \Omega$, then $\lim _{n \rightarrow \infty} f_{n} \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$.

Proof. (Compare Satz 5.8, 5.9, Analysis IV) For $a \in \mathbb{R}$

$$
\left\{\inf _{n \in \mathbb{N}} f_{n}<a\right\}=\bigcup_{n \in \mathbb{N}}\left\{f_{n}<a\right\}, \quad\left\{\sup _{n \in \mathbb{N}} f_{n} \leq a\right\}=\bigcap_{n \in \mathbb{N}}\left\{f_{n} \leq a\right\}
$$

Hence, Corollary 2 yields (i). Since

$$
\limsup _{n \rightarrow \infty} f_{n}=\inf _{m \in \mathbb{N}} \sup _{n \geq m} f_{n}, \quad \liminf _{n \rightarrow \infty} f_{n}=\sup _{m \in \mathbb{N}} \inf _{n \geq m} f_{n},
$$

we obtain (ii) from (i). Finally, (iii) follows from (ii).
By

$$
f^{+}=\max (0, f), \quad f^{-}=\max (0,-f)
$$

we denote the positive part and the negative part, respectively, of $f: \Omega \rightarrow \overline{\mathbb{R}}$.
Remark 3. For $f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ we have $f^{+}, f^{-},|f| \in \overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$.
Theorem 6. For $f, g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,

$$
f \pm g, f \cdot g, f / g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})
$$

provided that these functions are well defined.

Proof. (Compare Folgerung 5.5, Analysis IV) The proof is again based on Corollary 2. For simplicity we only consider the case that f and g are real-valued. Clearly $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ implies $-g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$, too. Furthermore, for every $a \in \mathbb{R}$,

$$
\{f+g<a\}=\bigcup_{q \in \mathbb{Q}}\{f<q\} \cap\{g<a-q\},
$$

and therefore $f \pm g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$. Clearly $f \cdot g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ if f is constant. Moreover, $x \mapsto x^{2}$ defines a \mathfrak{B} - \mathfrak{B}-measurable function, see Corollary 1 , and

$$
f \cdot g=1 / 4 \cdot\left((f+g)^{2}-(f-g)^{2}\right)
$$

We apply Theorem 1 to obtain $f \cdot g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ in general. Finally, it is easy to show that $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ implies $1 / g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$.

Definition 4. $f \in \mathfrak{Z}(\Omega, \mathfrak{A})$ is called simple function if $|f(\Omega)|<\infty$. Put

$$
\begin{aligned}
\Sigma(\Omega, \mathfrak{A}) & =\{f \in \mathfrak{Z}(\Omega, \mathfrak{A}): f \text { simple }\}, \\
\Sigma_{+}(\Omega, \mathfrak{A}) & =\{f \in \Sigma(\Omega, \mathfrak{A}): f \geq 0\} .
\end{aligned}
$$

Remark 4. $f \in \Sigma(\Omega, \mathfrak{A})$ iff

$$
f=\sum_{i=1}^{n} \alpha_{i} \cdot 1_{A_{i}}
$$

with $\alpha_{1}, \ldots \alpha_{n} \in \mathbb{R}$ pairwise different and $A_{1}, \ldots, A_{n} \in \mathfrak{A}$ pairwise disjoint such that $\bigcup_{i=1}^{n} A_{i}=\Omega$.

Theorem 7. (Compare Theorem 5.11, Analysis IV) For every (bounded) function $f \in \overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$ there exists a sequence $f_{1}, f_{2}, \cdots \in \Sigma_{+}(\Omega, \mathfrak{A})$ such that $f_{n} \uparrow f$ (with uniform convergence).

Proof. Let $n \in N$ and put

$$
f_{n}=\sum_{k=1}^{n \cdot 2^{n}} \frac{k-1}{2^{n}} \cdot 1_{A_{n, k}}+n \cdot 1_{B_{n}}
$$

where

$$
A_{n, k}=\left\{(k-1) /\left(2^{n}\right) \leq f<k /\left(2^{n}\right)\right\}, \quad B_{n}=\{f \geq n\} .
$$

Now we consider a mapping $T: \Omega_{1} \rightarrow \Omega_{2}$ and a σ-algebra \mathfrak{A}_{2} in Ω_{2}. We characterize measurability of functions with respect to $\sigma(T)=T^{-1}\left(\mathfrak{A}_{2}\right)$.

Theorem 8 (Factorization Lemma). For every function $f: \Omega_{1} \rightarrow \overline{\mathbb{R}}$

$$
f \in \overline{\mathfrak{Z}}\left(\Omega_{1}, \sigma(T)\right) \quad \Leftrightarrow \quad \exists g \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right): f=g \circ T .
$$

Proof. ' \Leftarrow ' is trivially satisfied. ' \Rightarrow ': First, assume that $f \in \Sigma_{+}\left(\Omega_{1}, \sigma(T)\right)$, i.e.,

$$
f=\sum_{i=1}^{n} \alpha_{i} \cdot 1_{A_{i}}
$$

with pairwise disjoint sets $A_{1}, \ldots, A_{n} \in \sigma(T)$. Take pairwise disjoint sets $B_{1}, \ldots, B_{n} \in$ \mathfrak{A}_{2} such that $A_{i}=T^{-1}\left(B_{i}\right)$ and put

$$
g=\sum_{i=1}^{n} \alpha_{i} \cdot 1_{B_{i}}
$$

Clearly $f=g \circ T$ and $g \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right)$.
Now, assume that $f \in \overline{\mathfrak{Z}}_{+}\left(\Omega_{1}, \sigma(T)\right)$. Take a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\Sigma_{+}\left(\Omega_{1}, \sigma(T)\right)$ according to Theorem 7. We already know that $f_{n}=g_{n} \circ T$ for suitable $g_{n} \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right)$. Hence

$$
f=\sup _{n} f_{n}=\sup _{n}\left(g_{n} \circ T\right)=\left(\sup _{n} g_{n}\right) \circ T=g \circ T
$$

where $g=\sup _{n} g_{n} \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right)$.
In the general case, we already know that

$$
f^{+}=g_{1} \circ T, \quad f^{-}=g_{2} \circ T
$$

for suitable $g_{1}, g_{2} \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right)$. Put

$$
C=\left\{g_{1}=g_{2}=\infty\right\} \in \mathfrak{A}_{2},
$$

and observe that $T\left(\Omega_{1}\right) \cap C=\emptyset$ since $f=f^{+}-f^{-}$. We conclude that $f=g \circ T$ where

$$
g=g_{1} \cdot 1_{D}-g_{2} \cdot 1_{D} \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right)
$$

with $D=C^{c}$.
Our method of proof for Theorem 8 is sometimes called algebraic induction.

