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1 Classes of Sets

Given: a non-empty set Ω and a class A ⊂ P(Ω) of subsets. Put

A+ =
{ n⋃

i=1

Ai : n ∈ N ∧ A1, . . . , An ∈ A pairwise disjoint
}

.

Definition 1.

(i) A closed w.r.t. intersections or ∩–closed iff A, B ∈ A ⇒ A ∩B ∈ A.

(ii) A closed w.r.t. unions or ∪–closed iff A, B ∈ A ⇒ A ∪B ∈ A.

(iii) A closed w.r.t. complements or c–closed iff A ∈ A ⇒ Ac := Ω \ A ∈ A.

(iv) A semi-algebra (in Ω) if

(a) Ω ∈ A,

(b) A ∩–closed,

(c) A ∈ A ⇒ Ac ∈ A+.

(v) A algebra (in Ω) if

(a) Ω ∈ A,

(b) A ∩–closed,

(c) A c–closed.

(vi) A σ-algebra (in Ω) if

(a) Ω ∈ A,

(b) A1, A2, . . . ∈ A ⇒
⋃∞

n=1 An ∈ A,

(c) A c–closed.

Remark 1. Let A denote a σ-algebra in Ω. Recall that a probability measure P on

(Ω, A) is a mapping

P : A → [0, 1]

such that P (Ω) = 1 and

A1, A2, . . . ∈ A pairwise disjoint ⇒ P
( ∞⋃

i=1

Ai

)
=

∞∑
i=1

P (Ai).

Moreover, (Ω, A, P ) is called a probability space, and P (A) is the probability of the

event A ∈ A.

Remark 2.

(i) A σ-algebra ⇒ A algebra ⇒ A semi-algebra.
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(ii) A closed w.r.t. intersections ⇒ A+ closed w.r.t. intersections.

(iii) A algebra and A1, A2 ∈ A ⇒ A1 ∪ A2, A1 \ A2, A1 M A2 ∈ A.

(iv) A σ-algebra and A1, A2, · · · ∈ A ⇒
⋂∞

n=1 An ∈ A.

Example 1.

(i) Let Ω = R and consider the class of intervals

A = {]a, b] : a, b ∈ R ∧ a < b} ∪ {]−∞, b] : b ∈ R} ∪ {]a,∞[ : a ∈ R} ∪ {R, ∅}.

Then A is a semi-algebra, but not an algebra.

(ii) {A ∈ P(Ω) : A finite or Ac finite} is an algebra, but not a σ-algebra in general.

(iii) {A ∈ P(Ω) : A countable or Ac countable} is a σ-algebra.

(iv) P(Ω) is the largest σ-algebra in Ω, {∅, Ω} is the smallest σ-algebra in Ω.

Definition 2.

(i) A monotone class (in Ω) if

(a) A1, A2, . . . ∈ A ∧ An ↑ A1 ⇒ A ∈ A,

(b) A1, A2, . . . ∈ A ∧ An ↓ A2 ⇒ A ∈ A.

(ii) A Dynkin class (in Ω) if

(a) Ω ∈ A,

(b) A1, A2 ∈ A ∧ A1 ⊂ A2 ⇒ A2 \ A1 ∈ A,

(c) A1, A2, . . . ∈ A pairwise disjoint ⇒
⋃∞

n=1 An ∈ A.

Remark 3. A σ-algebra ⇒ A monotone class and Dynkin class.

1I.e., An ⊆ An+1 for all n and A =
⋃

n An
2I.e., An+1 ⊆ An for all n and A =

⋂
n An
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Theorem 1.

(i) For every algebra A

A σ-algebra ⇔ A monotone class.

(ii) For every Dynkin class A

A σ-algebra ⇔ A closed w.r.t. intersections.

Proof. Ad (i), ‘⇐’: Let A1, A2, . . . ∈ A and put Bm =
⋃m

n=1 An and B =
⋃∞

n=1 An.

Then Bm ↑ B. Furthermore, Bm ∈ A since A is an algebra. Thus B ∈ A since A is a

monotone class.

Ad (ii), ‘⇐’: For A ∈ A we have Ac = Ω \ A ∈ A since A is a Dynkin class. For

A, B ∈ A we have

A ∪B = A ∪ (B \ (A ∩B)) ∈ A

since A is also closed w.r.t. intersections. Thus, for A1, A2, . . . ∈ A and Bm as previ-

ously we get Bm ∈ A and

∞⋃
n=1

An =
∞⋃

m=1

(Bm \Bm−1) ∈ A,

where B0 = ∅.

Remark 4. Consider σ-algebras (algebras, monotone classes, Dynkin classes) Ai for

i ∈ I 6= ∅. Then
⋂

i∈I Ai is a σ-algebra (algebra, monotone class, Dynkin class), too.

Given: a class E ⊂ P(Ω).

Definition 3. The σ-algebra generated by E

σ(E) =
⋂
{A : A σ-algebra in Ω ∧ E ⊂ A}.

Analogously, α(E), m(E), δ(E) the algebra, monotone class, Dynkin class, respec-

tively, generated by E.

Remark 5. For γ ∈ {σ, α, m, δ} and E, E1, E2 ⊂ P(Ω)

(i) γ(E) is the smallest ‘γ-class’ that contains E,

(ii) E1 ⊂ E2 ⇒ γ(E1) ⊂ γ(E2),

(iii) γ(γ(E)) = γ(E).

Example 2. Let Ω = N and E = {{n} : n ∈ N}. Then

α(E) = {A ∈ P(Ω) : A finite or Ac finite} =: A.

Proof: A is an algebra, see Example 1, and E ⊂ A. Thus α(E) ⊂ A. On the other

hand, for every finite set A ⊂ Ω we have A =
⋃

n∈A{n} ∈ α(E), and for every set

A ⊂ Ω with finite complement we have A = (Ac)c ∈ α(E). Thus A ⊂ α(E).

Moreover,

σ(E) = P(N), m(E) = E, δ(E) = P(N).
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Theorem 2. [Monotone class theorem, set version]

(i) E closed w.r.t. intersections ⇒ σ(E) = δ(E).

(ii) E algebra ⇒ σ(E) = m(E).

Proof. Ad (i): Remark 3 implies

δ(E) ⊂ σ(E).

We claim that

δ(E) is closed w.r.t. intersections. (1)

Then, by Theorem 1.(ii),

σ(E) ⊂ δ(E).

Put

CB = {C ⊂ Ω : C ∩B ∈ δ(E)}, B ∈ δ(E),

so that (1) is equivalent to

∀B ∈ δ(E) : δ(E) ⊂ CB. (2)

It is straightforward to verify that

∀B ∈ δ(E) : CB Dynkin class. (3)

Moreover, since E is closed w.r.t. intersections,

∀E ∈ E : E ⊂ CE.

Therefore

∀E ∈ E : δ(E) ⊂ CE,

i.e., for all E ∈ E, B ∈ δ(E), E ∩B ∈ δ(E); hence

∀B ∈ δ(E) : E ⊂ CB.

Since CB is a Dynkin system, δ(B) ⊂ CB.

Ad (ii): Obviously, m(E) ⊂ σ(E). By Part (ii) of Theorem 1, it is enough to show

that m(E) is an algebra. This amounts to the claim that

m(E) is c–closed and ∩ –closed . (4)

First, the class

C := {A ∈ m(E) : Ac ∈ m(E)}

is monotone, contains E by assumption, and thus equals m(E). Second, in complete

analogy to Part (i), for B ∈ m(E) it follows that the set

CB = {C ⊂ Ω : C ∩B ∈ m(E)}

is a monotone class containing E and thus m(E), so that m(E) is indeed ∩–closed.
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Lemma 1. E semi-algebra ⇒ α(E) = E+.

Proof. Clearly E ⊂ E+ ⊂ α(E). It remains to show that E+ is an algebra. For

A =
n⋃

i=1

Ai ∈ E+, Ai ∈ E disjoint,

B =
n⋃

i=1

Bi ∈ E+, Bi ∈ E disjoint,

A ∩B =
⋃
i≤n
j≤m

(Ai ∩Bj), (Ai ∩Bj) ∈ E disjoint.

Hence E+ is ∩–stable. For

A =
n⋃

i=1

Ai ∈ E+, Ai ∈ E disjoint,

with

Ac
i =

⋃
j≤ni

Bi
j, Bi

j ∈ E disjoint,

we have

Ac =
⋂
i≤n

⋃
j≤ni

Bi
j

=
⋃

(j1,...,jn)
ji≤ni

( n⋂
i=1

Bi
ji︸ ︷︷ ︸

∈E disjoint

)
.

Hence Ac ∈ E+, and E+ is an algebra.

Put

R = R ∪ {−∞,∞},

and equip this with the metric d(x, y) := |arctan(x)−arctan(y)|. Then R is a complete,

compact, separable, order complete metric space. For a ∈ R set

(±∞) + (±∞) = a + (±∞) = (±∞) + a = ±∞, a/±∞ = 0,

a · (±∞) = (±∞) · a =


±∞ if a > 0

0 if a = 0

∓∞ if a < 0

as well as −∞ < a < ∞.

Recall that (Ω, G) is a topological space iff G ⊂ P(Ω) satisfies

(i) ∅, Ω ∈ G,
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(ii) G is closed w.r.t. to intersections,

(iii) for every family (Gi)i∈I with Gi ∈ G we have
⋃

i∈I Gi ∈ G.

G is the set of open subsets of Ω, and the complements of open sets are the closed

subsets of Ω. K ⊂ Ω is compact iff for every family (Gi)i∈I with Gi ∈ G and

K ⊂
⋃
i∈I

Gi

there is a finite set I0 ⊂ I such that

K ⊂
⋃
i∈I0

Gi.

For Ω = Rk and Ω = Rk
, we consider the natural (product) topologies Gk, Gk.

Definition 4. For every topological space (Ω, G)

B(Ω) = σ(G)

is the Borel-σ-algebra (in Ω w.r.t. G). We shorten

B = B(R), B = B(R), Bk = B(Rk), Bk = B(Rk
),

Remark 6. We have

Bk = σ({F ⊂ Rk : F closed}) = σ({K ⊂ Rk : K compact})
= σ({]−∞, a] : a ∈ Rk}) = σ({]−∞, a] : a ∈ Qk})

and

B = {B ⊂ R : B ∩ R ∈ B}. (5)

One can prove that #Bk = #Rk, and thus

Bk  P(Rk)

see Billingsley (1979, Exercise 2.21).

Definition 5. For any σ-algebra A in Ω and Ω̃ ⊂ Ω

Ã = {Ω̃ ∩ A : A ∈ A}

is the trace-σ-algebra of A in Ω̃, sometimes denoted by Ω̃ ∩ A.

Remark 7.

(i) Ã is a σ-algebra in Ω̃.

(ii) Ã 6⊂ A in general, but if Ω̃ ∈ A, then Ã = {A ∈ A : A ⊂ Ω̃}.

(iii) A = σ(E) ⇒ Ã = σ({Ω̃ ∩ E : E ∈ E}).

(iv) Bk = Rk ∩Bk, see (5) for k = 1.

(v) [a, b[ ∩Bk = σ({[a, c[ : a ≤ c ≤ b}), see (iii).
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