Chapter II

Measure and Integral

1 Classes of Sets

Given: a non-empty set Ω and a class $\mathfrak{A} \subset \mathfrak{P}(\Omega)$ of subsets. Put

$$\mathfrak{A}^+ = \Big\{\bigcup_{i=1}^n A_i : n \in \mathbb{N} \land A_1, \dots, A_n \in \mathfrak{A} \text{ pairwise disjoint}\Big\}.$$

Definition 1.

- (i) \mathfrak{A} closed w.r.t. intersections or \cap -closed iff $A, B \in \mathfrak{A} \Rightarrow A \cap B \in \mathfrak{A}$.
- (ii) \mathfrak{A} closed w.r.t. unions or \cup -closed iff $A, B \in \mathfrak{A} \Rightarrow A \cup B \in \mathfrak{A}$.
- (iii) \mathfrak{A} closed w.r.t. complements or ^c-closed iff $A \in \mathfrak{A} \Rightarrow A^{c} := \Omega \setminus A \in \mathfrak{A}$.
- (iv) \mathfrak{A} semi-algebra (in Ω) if
 - (a) $\Omega \in \mathfrak{A}$,
 - (b) $\mathfrak{A} \cap$ -closed,
 - (c) $A \in \mathfrak{A} \Rightarrow A^c \in \mathfrak{A}^+$.
- (v) \mathfrak{A} algebra (in Ω) if
 - (a) $\Omega \in \mathfrak{A}$,
 - (b) $\mathfrak{A} \cap$ -closed,
 - (c) \mathfrak{A}^{c} -closed.
- (vi) $\mathfrak{A} \sigma$ -algebra (in Ω) if
 - (a) $\Omega \in \mathfrak{A}$, (b) $A_1, A_2, \ldots \in \mathfrak{A} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathfrak{A}$, (c) \mathfrak{A} ^c-closed.

Remark 1. Let \mathfrak{A} denote a σ -algebra in Ω . Recall that a *probability measure* P on (Ω, \mathfrak{A}) is a mapping

$$P:\mathfrak{A}\to[0,1]$$

such that $P(\Omega) = 1$ and

$$A_1, A_2, \ldots \in \mathfrak{A}$$
 pairwise disjoint $\Rightarrow P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$

Moreover, $(\Omega, \mathfrak{A}, P)$ is called a *probability space*, and P(A) is the *probability* of the event $A \in \mathfrak{A}$.

Remark 2.

(i) $\mathfrak{A} \sigma$ -algebra $\Rightarrow \mathfrak{A}$ algebra $\Rightarrow \mathfrak{A}$ semi-algebra.

- (ii) \mathfrak{A} closed w.r.t. intersections $\Rightarrow \mathfrak{A}^+$ closed w.r.t. intersections.
- (iii) \mathfrak{A} algebra and $A_1, A_2 \in \mathfrak{A} \Rightarrow A_1 \cup A_2, A_1 \setminus A_2, A_1 \bigtriangleup A_2 \in \mathfrak{A}$.
- (iv) \mathfrak{A} σ -algebra and $A_1, A_2, \dots \in \mathfrak{A} \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathfrak{A}$.

Example 1.

(i) Let $\Omega = \mathbb{R}$ and consider the class of intervals

$$\mathfrak{A} = \{ [a,b] : a,b \in \mathbb{R} \land a < b \} \cup \{]-\infty,b] : b \in \mathbb{R} \} \cup \{]a,\infty[: a \in \mathbb{R} \} \cup \{ \mathbb{R}, \emptyset \}.$$

Then \mathfrak{A} is a semi-algebra, but not an algebra.

- (ii) $\{A \in \mathfrak{P}(\Omega) : A \text{ finite or } A^c \text{ finite}\}$ is an algebra, but not a σ -algebra in general.
- (iii) $\{A \in \mathfrak{P}(\Omega) : A \text{ countable or } A^c \text{ countable}\}$ is a σ -algebra.
- (iv) $\mathfrak{P}(\Omega)$ is the largest σ -algebra in Ω , $\{\emptyset, \Omega\}$ is the smallest σ -algebra in Ω .

Definition 2.

- (i) \mathfrak{A} monotone class (in Ω) if
 - (a) $A_1, A_2, \ldots \in \mathfrak{A} \land A_n \uparrow A^1 \Rightarrow A \in \mathfrak{A},$
 - (b) $A_1, A_2, \ldots \in \mathfrak{A} \land A_n \downarrow A^2 \Rightarrow A \in \mathfrak{A}.$

(ii) \mathfrak{A} Dynkin class (in Ω) if

- (a) $\Omega \in \mathfrak{A}$,
- (b) $A_1, A_2 \in \mathfrak{A} \land A_1 \subset A_2 \Rightarrow A_2 \setminus A_1 \in \mathfrak{A}$,
- (c) $A_1, A_2, \ldots \in \mathfrak{A}$ pairwise disjoint $\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathfrak{A}$.

Remark 3. \mathfrak{A} σ -algebra $\Rightarrow \mathfrak{A}$ monotone class and Dynkin class.

¹I.e., $A_n \subseteq A_{n+1}$ for all n and $A = \bigcup_n A_n$

²I.e., $A_{n+1} \subseteq A_n$ for all n and $A = \bigcap_n^n A_n$

Theorem 1.

(i) For every algebra \mathfrak{A}

 $\mathfrak{A} \sigma$ -algebra $\Leftrightarrow \mathfrak{A}$ monotone class.

(ii) For every Dynkin class \mathfrak{A}

 $\mathfrak{A} \sigma$ -algebra $\Leftrightarrow \mathfrak{A}$ closed w.r.t. intersections.

Proof. Ad (i), ' \Leftarrow ': Let $A_1, A_2, \ldots \in \mathfrak{A}$ and put $B_m = \bigcup_{n=1}^m A_n$ and $B = \bigcup_{n=1}^\infty A_n$. Then $B_m \uparrow B$. Furthermore, $B_m \in \mathfrak{A}$ since \mathfrak{A} is an algebra. Thus $B \in \mathfrak{A}$ since \mathfrak{A} is a monotone class.

Ad (ii), ' \Leftarrow ': For $A \in \mathfrak{A}$ we have $A^c = \Omega \setminus A \in \mathfrak{A}$ since \mathfrak{A} is a Dynkin class. For $A, B \in \mathfrak{A}$ we have

$$A \cup B = A \cup (B \setminus (A \cap B)) \in \mathfrak{A}$$

since \mathfrak{A} is also closed w.r.t. intersections. Thus, for $A_1, A_2, \ldots \in \mathfrak{A}$ and B_m as previously we get $B_m \in \mathfrak{A}$ and

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{m=1}^{\infty} (B_m \setminus B_{m-1}) \in \mathfrak{A},$$

where $B_0 = \emptyset$.

Remark 4. Consider σ -algebras (algebras, monotone classes, Dynkin classes) \mathfrak{A}_i for $i \in I \neq \emptyset$. Then $\bigcap_{i \in I} \mathfrak{A}_i$ is a σ -algebra (algebra, monotone class, Dynkin class), too.

Given: a class $\mathfrak{E} \subset \mathfrak{P}(\Omega)$.

Definition 3. The σ -algebra generated by \mathfrak{E}

 $\sigma(\mathfrak{E}) = \bigcap \{ \mathfrak{A} : \mathfrak{A} \text{ } \sigma\text{-algebra in } \Omega \wedge \mathfrak{E} \subset \mathfrak{A} \}.$

Analogously, $\alpha(\mathfrak{E})$, $m(\mathfrak{E})$, $\delta(\mathfrak{E})$ the algebra, monotone class, Dynkin class, respectively, generated by \mathfrak{E} .

Remark 5. For $\gamma \in \{\sigma, \alpha, m, \delta\}$ and $\mathfrak{E}, \mathfrak{E}_1, \mathfrak{E}_2 \subset \mathfrak{P}(\Omega)$

- (i) $\gamma(\mathfrak{E})$ is the smallest ' γ -class' that contains \mathfrak{E} ,
- (ii) $\mathfrak{E}_1 \subset \mathfrak{E}_2 \Rightarrow \gamma(\mathfrak{E}_1) \subset \gamma(\mathfrak{E}_2),$
- (iii) $\gamma(\gamma(\mathfrak{E})) = \gamma(\mathfrak{E}).$

Example 2. Let $\Omega = \mathbb{N}$ and $\mathfrak{E} = \{\{n\} : n \in \mathbb{N}\}$. Then

$$\alpha(\mathfrak{E}) = \{A \in \mathfrak{P}(\Omega) : A \text{ finite or } A^c \text{ finite}\} =: \mathfrak{A}.$$

Proof: \mathfrak{A} is an algebra, see Example 1, and $\mathfrak{E} \subset \mathfrak{A}$. Thus $\alpha(\mathfrak{E}) \subset \mathfrak{A}$. On the other hand, for every finite set $A \subset \Omega$ we have $A = \bigcup_{n \in A} \{n\} \in \alpha(\mathfrak{E})$, and for every set $A \subset \Omega$ with finite complement we have $A = (A^c)^c \in \alpha(\mathfrak{E})$. Thus $\mathfrak{A} \subset \alpha(\mathfrak{E})$. Moreover,

$$\sigma(\mathfrak{E}) = \mathfrak{P}(\mathbb{N}), \qquad m(\mathfrak{E}) = \mathfrak{E}, \qquad \delta(\mathfrak{E}) = \mathfrak{P}(\mathbb{N}).$$

Theorem 2. [Monotone class theorem, set version]

- (i) \mathfrak{E} closed w.r.t. intersections $\Rightarrow \sigma(\mathfrak{E}) = \delta(\mathfrak{E})$.
- (ii) \mathfrak{E} algebra $\Rightarrow \sigma(\mathfrak{E}) = m(\mathfrak{E}).$

Proof. Ad (i): Remark 3 implies

$$\delta(\mathfrak{E}) \subset \sigma(\mathfrak{E}).$$

We claim that

$$\delta(\mathfrak{E})$$
 is closed w.r.t. intersections. (1)

Then, by Theorem 1.(ii),

$$\sigma(\mathfrak{E}) \subset \delta(\mathfrak{E}).$$

Put

$$\mathfrak{C}_B = \{ C \subset \Omega : C \cap B \in \delta(\mathfrak{E}) \}, \qquad B \in \delta(\mathfrak{E}),$$

so that (1) is equivalent to

$$\forall B \in \delta(\mathfrak{E}) : \delta(\mathfrak{E}) \subset \mathfrak{C}_B.$$
⁽²⁾

It is straightforward to verify that

$$\forall B \in \delta(\mathfrak{E}) : \mathfrak{C}_B \text{ Dynkin class.}$$
(3)

Moreover, since \mathfrak{E} is closed w.r.t. intersections,

$$\forall E \in \mathfrak{E} : \mathfrak{E} \subset \mathfrak{C}_E$$

Therefore

 $\forall E \in \mathfrak{E} : \delta(\mathfrak{E}) \subset \mathfrak{C}_E,$

i.e., for all $E \in \mathfrak{E}, B \in \delta(\mathfrak{E}), E \cap B \in \delta(\mathfrak{E})$; hence

$$\forall B \in \delta(\mathfrak{E}) : \mathfrak{E} \subset \mathfrak{C}_B.$$

Since \mathfrak{C}_B is a Dynkin system, $\delta(B) \subset \mathfrak{C}_B$.

Ad (ii): Obviously, $m(\mathfrak{E}) \subset \sigma(\mathfrak{E})$. By Part (ii) of Theorem 1, it is enough to show that $m(\mathfrak{E})$ is an algebra. This amounts to the claim that

$$m(\mathfrak{E})$$
 is ^c-closed and \cap -closed. (4)

First, the class

$$\mathfrak{C} := \{ A \in m(\mathfrak{E}) \ : \ A^c \in m(\mathfrak{E}) \}$$

is monotone, contains \mathfrak{E} by assumption, and thus equals $m(\mathfrak{E})$. Second, in complete analogy to Part (i), for $B \in m(\mathfrak{E})$ it follows that the set

$$\mathfrak{C}_B = \{ C \subset \Omega : C \cap B \in m(\mathfrak{E}) \}$$

is a monotone class containing \mathfrak{E} and thus $m(\mathfrak{E})$, so that $m(\mathfrak{E})$ is indeed \cap -closed. \Box

Lemma 1. \mathfrak{E} semi-algebra $\Rightarrow \alpha(\mathfrak{E}) = \mathfrak{E}^+$.

Proof. Clearly $\mathfrak{E} \subset \mathfrak{E}^+ \subset \alpha(\mathfrak{E})$. It remains to show that \mathfrak{E}^+ is an algebra. For

$$A = \bigcup_{i=1}^{n} A_i \in \mathfrak{E}^+, \qquad A_i \in \mathfrak{E} \text{ disjoint},$$
$$B = \bigcup_{i=1}^{n} B_i \in \mathfrak{E}^+, \qquad B_i \in \mathfrak{E} \text{ disjoint},$$
$$A \cap B = \bigcup_{\substack{i \le n \\ j \le m}} (A_i \cap B_j), \qquad (A_i \cap B_j) \in \mathfrak{E} \text{ disjoint}.$$

Hence \mathfrak{E}^+ is $\cap\!\!-\!\mathrm{stable}.$ For

$$A = \bigcup_{i=1}^{n} A_i \in \mathfrak{E}^+, \qquad A_i \in \mathfrak{E} \text{ disjoint},$$

with

$$A_i^c = \bigcup_{j \le n_i} B_j^i, \qquad B_j^i \in \mathfrak{E} \text{ disjoint},$$

we have

$$\begin{aligned} A^c &= \bigcap_{i \le n} \bigcup_{j \le n_i} B^i_j \\ &= \bigcup_{\substack{(j_1, \dots, j_n) \\ j_i \le n_i}} \left(\bigcap_{\substack{i=1 \\ \in \mathfrak{E} \text{ disjoint}}}^n B^i_{j_i} \right). \end{aligned}$$

Hence $A^c \in \mathfrak{E}^+$, and \mathfrak{E}^+ is an algebra.

Put

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\},\$$

and equip this with the metric $d(x, y) := |\arctan(x) - \arctan(y)|$. Then $\overline{\mathbb{R}}$ is a complete, compact, separable, order complete metric space. For $a \in \mathfrak{R}$ set

$$(\pm\infty) + (\pm\infty) = a + (\pm\infty) = (\pm\infty) + a = \pm\infty, \qquad a/_{\pm\infty} = 0,$$
$$a \cdot (\pm\infty) = (\pm\infty) \cdot a = \begin{cases} \pm\infty & \text{if } a > 0\\ 0 & \text{if } a = 0\\ \mp\infty & \text{if } a < 0 \end{cases}$$

as well as $-\infty < a < \infty$.

Recall that (Ω, \mathfrak{G}) is a *topological space* iff $\mathfrak{G} \subset \mathfrak{P}(\Omega)$ satisfies

(i)
$$\emptyset, \Omega \in \mathfrak{G}$$
,

- (ii) \mathfrak{G} is closed w.r.t. to intersections,
- (iii) for every family $(G_i)_{i \in I}$ with $G_i \in \mathfrak{G}$ we have $\bigcup_{i \in I} G_i \in \mathfrak{G}$.

 \mathfrak{G} is the set of open subsets of Ω , and the complements of open sets are the closed subsets of Ω . $K \subset \Omega$ is compact iff for every family $(G_i)_{i \in I}$ with $G_i \in \mathfrak{G}$ and

$$K \subset \bigcup_{i \in I} G_i$$

there is a finite set $I_0 \subset I$ such that

$$K \subset \bigcup_{i \in I_0} G_i.$$

For $\Omega = \mathbb{R}^k$ and $\Omega = \overline{\mathbb{R}}^k$, we consider the natural (product) topologies \mathfrak{G}_k , $\overline{\mathfrak{G}}_k$.

Definition 4. For every topological space (Ω, \mathfrak{G})

$$\mathfrak{B}(\Omega) = \sigma(\mathfrak{G})$$

is the Borel- σ -algebra (in Ω w.r.t. \mathfrak{G}). We shorten

$$\mathfrak{B} = \mathfrak{B}(\mathbb{R}), \quad \overline{\mathfrak{B}} = \mathfrak{B}(\overline{\mathbb{R}}), \quad \mathfrak{B}_k = \mathfrak{B}(\mathbb{R}^k), \overline{\mathfrak{B}}_k = \mathfrak{B}(\overline{\mathbb{R}}^k),$$

Remark 6. We have

$$\mathfrak{B}_k = \sigma(\{F \subset \mathbb{R}^k : F \text{ closed}\}) = \sigma(\{K \subset \mathbb{R}^k : K \text{ compact}\})$$
$$= \sigma(\{]-\infty, a] : a \in \mathbb{R}^k\}) = \sigma(\{]-\infty, a] : a \in \mathbb{Q}^k\})$$

and

$$\overline{\mathfrak{B}} = \{ B \subset \overline{\mathbb{R}} : B \cap \mathbb{R} \in \mathfrak{B} \}.$$
(5)

One can prove that $\#\mathfrak{B}_k = \#\mathbb{R}^k$, and thus

$$\mathfrak{B}_k \subsetneq \mathfrak{P}(\mathbb{R}^k)$$

see Billingsley (1979, Exercise 2.21).

Definition 5. For any σ -algebra \mathfrak{A} in Ω and $\widetilde{\Omega} \subset \Omega$

$$\widetilde{\mathfrak{A}} = \{ \widetilde{\Omega} \cap A : A \in \mathfrak{A} \}$$

is the trace- σ -algebra of \mathfrak{A} in $\widetilde{\Omega}$, sometimes denoted by $\widetilde{\Omega} \cap \mathfrak{A}$.

Remark 7.

- (i) \mathfrak{A} is a σ -algebra in Ω .
- (ii) $\widetilde{\mathfrak{A}} \not\subset \mathfrak{A}$ in general, but if $\widetilde{\Omega} \in \mathfrak{A}$, then $\widetilde{\mathfrak{A}} = \{A \in \mathfrak{A} : A \subset \widetilde{\Omega}\}.$

(iii)
$$\mathfrak{A} = \sigma(\mathfrak{E}) \Rightarrow \mathfrak{A} = \sigma(\{\Omega \cap E : E \in \mathfrak{E}\}).$$

(iv)
$$\mathfrak{B}_k = \mathbb{R}^k \cap \overline{\mathfrak{B}}_k$$
, see (5) for $k = 1$.

(v) $[a, b] \cap \mathfrak{B}_k = \sigma(\{[a, c] : a \le c \le b\}), \text{ see (iii)}.$