Chapter II

Measure and Integral

1 Classes of Sets

Given: a non-empty set Ω and a class $\mathfrak{A} \subset \mathfrak{P}(\Omega)$ of subsets. Put

$$\mathfrak{A}^{+} = \Big\{\bigcup_{i=1}^{n} A_{i} : n \in \mathbb{N} \land A_{1}, \dots, A_{n} \in \mathfrak{A} \text{ pairwise disjoint}\Big\}.$$

Definition 1.

- (i) \mathfrak{A} closed w.r.t. intersections or \cap -closed iff $A, B \in \mathfrak{A} \Rightarrow A \cap B \in \mathfrak{A}$.
- (ii) \mathfrak{A} closed w.r.t. unions or \cup -closed iff $A, B \in \mathfrak{A} \Rightarrow A \cup B \in \mathfrak{A}$.
- (iii) \mathfrak{A} closed w.r.t. complements or ^c-closed iff $A \in \mathfrak{A} \Rightarrow A^{c} := \Omega \setminus A \in \mathfrak{A}$.
- (iv) \mathfrak{A} semi-algebra (in Ω) if
 - (a) $\Omega \in \mathfrak{A}$,
 - (b) $\mathfrak{A} \cap$ -closed,
 - (c) $A \in \mathfrak{A} \Rightarrow A^c \in \mathfrak{A}^+$.
- (v) \mathfrak{A} algebra (in Ω) if
 - (a) $\Omega \in \mathfrak{A}$,
 - (b) $\mathfrak{A} \cap$ -closed,
 - (c) \mathfrak{A}^{c} -closed.
- (vi) $\mathfrak{A} \sigma$ -algebra (in Ω) if
 - (a) $\Omega \in \mathfrak{A}$,
 - (b) $A_1, A_2, \ldots \in \mathfrak{A} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathfrak{A},$
 - (c) \mathfrak{A}^{c} -closed.

Remark 1. Let \mathfrak{A} denote a σ -algebra in Ω . Recall that a probability measure P on (Ω, \mathfrak{A}) is a mapping

$$P:\mathfrak{A}\to[0,1]$$

such that $P(\Omega) = 1$ and

$$A_1, A_2, \ldots \in \mathfrak{A}$$
 pairwise disjoint $\Rightarrow P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$

Moreover, $(\Omega, \mathfrak{A}, P)$ is called a *probability space*, and P(A) is the *probability* of the event $A \in \mathfrak{A}$.

Remark 2.

- (i) $\mathfrak{A} \sigma$ -algebra $\Rightarrow \mathfrak{A}$ algebra $\Rightarrow \mathfrak{A}$ semi-algebra.
- (ii) \mathfrak{A} closed w.r.t. intersections $\Rightarrow \mathfrak{A}^+$ closed w.r.t. intersections.
- (iii) \mathfrak{A} algebra and $A_1, A_2 \in \mathfrak{A} \Rightarrow A_1 \cup A_2, A_1 \setminus A_2, A_1 \bigtriangleup A_2 \in \mathfrak{A}$.
- (iv) \mathfrak{A} σ -algebra and $A_1, A_2, \dots \in \mathfrak{A} \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathfrak{A}$.

Example 1.

(i) Let $\Omega = \mathbb{R}$ and consider the class of intervals $\mathfrak{A} = \{[a,b]: a, b \in \mathbb{R} \land a < b\} \cup \{]-\infty, b]: b \in \mathbb{R}\} \cup \{[a,\infty[:a \in \mathbb{R}\} \cup \{\mathbb{R}, \emptyset\}.$

Then \mathfrak{A} is a semi-algebra, but not an algebra.

- (ii) $\{A \in \mathfrak{P}(\Omega) : A \text{ finite or } A^c \text{ finite}\}$ is an algebra, but not a σ -algebra in general.
- (iii) $\{A \in \mathfrak{P}(\Omega) : A \text{ countable or } A^c \text{ countable}\}$ is a σ -algebra.
- (iv) $\mathfrak{P}(\Omega)$ is the largest σ -algebra in Ω , $\{\emptyset, \Omega\}$ is the smallest σ -algebra in Ω .

Definition 2.

- (i) \mathfrak{A} monotone class (in Ω) if
 - (a) $A_1, A_2, \ldots \in \mathfrak{A} \land A_n \uparrow A^1 \Rightarrow A \in \mathfrak{A}$,
 - (b) $A_1, A_2, \ldots \in \mathfrak{A} \land A_n \downarrow A^2 \Rightarrow A \in \mathfrak{A}.$
- (ii) \mathfrak{A} Dynkin class (in Ω) if
 - (a) $\Omega \in \mathfrak{A}$,
 - (b) $A_1, A_2 \in \mathfrak{A} \land A_1 \subset A_2 \Rightarrow A_2 \setminus A_1 \in \mathfrak{A}$,
 - (c) $A_1, A_2, \ldots \in \mathfrak{A}$ pairwise disjoint $\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathfrak{A}$.

Remark 3. \mathfrak{A} σ -algebra $\Rightarrow \mathfrak{A}$ monotone class and Dynkin class.

¹I.e., $A_n \subseteq A_{n+1}$ for all n and $A = \bigcup_n A_n$ ²I.e., $A_{n+1} \subseteq A_n$ for all n and $A = \bigcap_n A_n$

Theorem 1.

(i) For every algebra \mathfrak{A}

 $\mathfrak{A} \sigma$ -algebra $\Leftrightarrow \mathfrak{A}$ monotone class.

(ii) For every Dynkin class \mathfrak{A}

 $\mathfrak{A} \sigma$ -algebra $\Leftrightarrow \mathfrak{A}$ closed w.r.t. intersections.

Proof. Ad (i), ' \Leftarrow ': Let $A_1, A_2, \ldots \in \mathfrak{A}$ and put $B_m = \bigcup_{n=1}^m A_n$ and $B = \bigcup_{n=1}^\infty A_n$. Then $B_m \uparrow B$. Furthermore, $B_m \in \mathfrak{A}$ since \mathfrak{A} is an algebra. Thus $B \in \mathfrak{A}$ since \mathfrak{A} is a monotone class.

Ad (ii), ' \Leftarrow ': For $A \in \mathfrak{A}$ we have $A^c = \Omega \setminus A \in \mathfrak{A}$ since \mathfrak{A} is a Dynkin class. For $A, B \in \mathfrak{A}$ we have

$$A \cup B = A \cup (B \setminus (A \cap B)) \in \mathfrak{A}$$

since \mathfrak{A} is also closed w.r.t. intersections. Thus, for $A_1, A_2, \ldots \in \mathfrak{A}$ and B_m as previously we get $B_m \in \mathfrak{A}$ and

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{m=1}^{\infty} (B_m \setminus B_{m-1}) \in \mathfrak{A},$$

where $B_0 = \emptyset$.

Remark 4. Consider σ -algebras (algebras, monotone classes, Dynkin classes) \mathfrak{A}_i for $i \in I \neq \emptyset$. Then $\bigcap_{i \in I} \mathfrak{A}_i$ is a σ -algebra (algebra, monotone class, Dynkin class), too.

Given: a class $\mathfrak{E} \subset \mathfrak{P}(\Omega)$.

Definition 3. The σ -algebra generated by \mathfrak{E}

 $\sigma(\mathfrak{E}) = \bigcap \{ \mathfrak{A} : \mathfrak{A} \text{ } \sigma\text{-algebra in } \Omega \wedge \mathfrak{E} \subset \mathfrak{A} \}.$

Analogously, $\alpha(\mathfrak{E})$, $m(\mathfrak{E})$, $\delta(\mathfrak{E})$ the algebra, monotone class, Dynkin class, respectively, generated by \mathfrak{E} .

Remark 5. For $\gamma \in \{\sigma, \alpha, m, \delta\}$ and $\mathfrak{E}, \mathfrak{E}_1, \mathfrak{E}_2 \subset \mathfrak{P}(\Omega)$

- (i) $\gamma(\mathfrak{E})$ is the smallest ' γ -class' that contains \mathfrak{E} ,
- (ii) $\mathfrak{E}_1 \subset \mathfrak{E}_2 \Rightarrow \gamma(\mathfrak{E}_1) \subset \gamma(\mathfrak{E}_2),$
- (iii) $\gamma(\gamma(\mathfrak{E})) = \gamma(\mathfrak{E}).$

Example 2. Let $\Omega = \mathbb{N}$ and $\mathfrak{E} = \{\{n\} : n \in \mathbb{N}\}$. Then

$$\alpha(\mathfrak{E}) = \{ A \in \mathfrak{P}(\Omega) : A \text{ finite or } A^c \text{ finite} \} =: \mathfrak{A}.$$

Proof: \mathfrak{A} is an algebra, see Example 1, and $\mathfrak{E} \subset \mathfrak{A}$. Thus $\alpha(\mathfrak{E}) \subset \mathfrak{A}$. On the other hand, for every finite set $A \subset \Omega$ we have $A = \bigcup_{n \in A} \{n\} \in \alpha(\mathfrak{E})$, and for every set $A \subset \Omega$ with finite complement we have $A = (A^c)^c \in \alpha(\mathfrak{E})$. Thus $\mathfrak{A} \subset \alpha(\mathfrak{E})$. Moreover,

$$\sigma(\mathfrak{E}) = \mathfrak{P}(\mathbb{N}), \qquad m(\mathfrak{E}) = \mathfrak{E}, \qquad \delta(\mathfrak{E}) = \mathfrak{P}(\mathbb{N}).$$

Theorem 2. [Monotone class theorem, set version]

- (i) \mathfrak{E} closed w.r.t. intersections $\Rightarrow \sigma(\mathfrak{E}) = \delta(\mathfrak{E})$.
- (ii) \mathfrak{E} algebra $\Rightarrow \sigma(\mathfrak{E}) = m(\mathfrak{E}).$

Proof. Ad (i): Remark 3 implies

$$\delta(\mathfrak{E}) \subset \sigma(\mathfrak{E}).$$

We claim that

$$\delta(\mathfrak{E})$$
 is closed w.r.t. intersections. (1)

Then, by Theorem 1.(ii),

$$\sigma(\mathfrak{E}) \subset \delta(\mathfrak{E}).$$

Put

$$\mathfrak{C}_B = \{ C \subset \Omega : C \cap B \in \delta(\mathfrak{E}) \}, \qquad B \in \delta(\mathfrak{E}),$$

so that (1) is equivalent to

$$\forall B \in \delta(\mathfrak{E}) : \delta(\mathfrak{E}) \subset \mathfrak{C}_B.$$
⁽²⁾

It is straightforward to verify that

$$\forall B \in \delta(\mathfrak{E}) : \mathfrak{C}_B \text{ Dynkin class.}$$
(3)

Moreover, since \mathfrak{E} is closed w.r.t. intersections,

$$\forall E \in \mathfrak{E} : \mathfrak{E} \subset \mathfrak{C}_E$$

Therefore

 $\forall E \in \mathfrak{E} : \delta(\mathfrak{E}) \subset \mathfrak{C}_E,$

i.e., for all $E \in \mathfrak{E}, B \in \delta(\mathfrak{E}), E \cap B \in \delta(\mathfrak{E})$; hence

$$\forall B \in \delta(\mathfrak{E}) : \mathfrak{E} \subset \mathfrak{C}_B.$$

Since \mathfrak{C}_B is a Dynkin system, $\delta(B) \subset \mathfrak{C}_B$.

Ad (ii): Obviously, $m(\mathfrak{E}) \subset \sigma(\mathfrak{E})$. By Part (ii) of Theorem 1, it is enough to show that $m(\mathfrak{E})$ is an algebra. This amounts to the claim that

$$m(\mathfrak{E})$$
 is ^c-closed and \cap -closed. (4)

First, the class

$$\mathfrak{C} := \{ A \in m(\mathfrak{E}) \ : \ A^c \in m(\mathfrak{E}) \}$$

is monotone, contains \mathfrak{E} by assumption, and thus equals $m(\mathfrak{E})$. Second, in complete analogy to Part (i), for $B \in m(\mathfrak{E})$ it follows that the set

$$\mathfrak{C}_B = \{ C \subset \Omega : C \cap B \in m(\mathfrak{E}) \}$$

is a monotone class containing \mathfrak{E} and thus $m(\mathfrak{E})$, so that $m(\mathfrak{E})$ is indeed \cap -closed. \Box

Lemma 1. \mathfrak{E} semi-algebra $\Rightarrow \alpha(\mathfrak{E}) = \mathfrak{E}^+$.

Proof. Clearly $\mathfrak{E} \subset \mathfrak{E}^+ \subset \alpha(\mathfrak{E})$. It remains to show that \mathfrak{E}^+ is an algebra. For

$$A = \bigcup_{i=1}^{n} A_i \in \mathfrak{E}^+, \qquad A_i \in \mathfrak{E} \text{ disjoint},$$
$$B = \bigcup_{i=1}^{n} B_i \in \mathfrak{E}^+, \qquad B_i \in \mathfrak{E} \text{ disjoint},$$
$$A \cap B = \bigcup_{\substack{i \le n \\ j \le m}} (A_i \cap B_j), \qquad (A_i \cap B_j) \in \mathfrak{E} \text{ disjoint}.$$

Hence \mathfrak{E}^+ is $\cap\!\!-\!\mathrm{stable}.$ For

$$A = \bigcup_{i=1}^{n} A_i \in \mathfrak{E}^+, \qquad A_i \in \mathfrak{E} \text{ disjoint},$$

with

$$A_i^c = \bigcup_{j \le n_i} B_j^i, \qquad B_j^i \in \mathfrak{E} \text{ disjoint},$$

we have

$$\begin{aligned} A^c &= \bigcap_{i \le n} \bigcup_{j \le n_i} B^i_j \\ &= \bigcup_{\substack{(j_1, \dots, j_n) \\ j_i \le n_i}} \left(\bigcap_{\substack{i=1 \\ \in \mathfrak{E} \text{ disjoint}}}^n B^i_{j_i} \right). \end{aligned}$$

Hence $A^c \in \mathfrak{E}^+$, and \mathfrak{E}^+ is an algebra.

Put

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\},\$$

and equip this with the metric $d(x, y) := |\arctan(x) - \arctan(y)|$. Then $\overline{\mathbb{R}}$ is a complete, compact, separable, order complete metric space. For $a \in \mathfrak{R}$ set

$$(\pm\infty) + (\pm\infty) = a + (\pm\infty) = (\pm\infty) + a = \pm\infty, \qquad a/_{\pm\infty} = 0,$$
$$a \cdot (\pm\infty) = (\pm\infty) \cdot a = \begin{cases} \pm\infty & \text{if } a > 0\\ 0 & \text{if } a = 0\\ \mp\infty & \text{if } a < 0 \end{cases}$$

as well as $-\infty < a < \infty$.

Recall that (Ω, \mathfrak{G}) is a *topological space* iff $\mathfrak{G} \subset \mathfrak{P}(\Omega)$ satisfies

(i)
$$\emptyset, \Omega \in \mathfrak{G}$$
,

- (ii) \mathfrak{G} is closed w.r.t. to intersections,
- (iii) for every family $(G_i)_{i \in I}$ with $G_i \in \mathfrak{G}$ we have $\bigcup_{i \in I} G_i \in \mathfrak{G}$.

 \mathfrak{G} is the set of open subsets of Ω , and the complements of open sets are the closed subsets of Ω . $K \subset \Omega$ is compact iff for every family $(G_i)_{i \in I}$ with $G_i \in \mathfrak{G}$ and

$$K \subset \bigcup_{i \in I} G_i$$

there is a finite set $I_0 \subset I$ such that

$$K \subset \bigcup_{i \in I_0} G_i.$$

For $\Omega = \mathbb{R}^k$ and $\Omega = \overline{\mathbb{R}}^k$, we consider the natural (product) topologies \mathfrak{G}_k , $\overline{\mathfrak{G}}_k$. **Definition** 4. For every topological space (Ω, \mathfrak{G})

Definition 4. For every topological space (Ω, \mathfrak{G})

$$\mathfrak{B}(\Omega) = \sigma(\mathfrak{G})$$

is the Borel- σ -algebra (in Ω w.r.t. \mathfrak{G}). We shorten

$$\mathfrak{B} = \mathfrak{B}(\mathbb{R}), \quad \overline{\mathfrak{B}} = \mathfrak{B}(\overline{\mathbb{R}}), \quad \mathfrak{B}_k = \mathfrak{B}(\mathbb{R}^k), \overline{\mathfrak{B}}_k = \mathfrak{B}(\overline{\mathbb{R}}^k),$$

Remark 6. We have

$$\mathfrak{B}_k = \sigma(\{F \subset \mathbb{R}^k : F \text{ closed}\}) = \sigma(\{K \subset \mathbb{R}^k : K \text{ compact}\})$$
$$= \sigma(\{]-\infty, a] : a \in \mathbb{R}^k\}) = \sigma(\{]-\infty, a] : a \in \mathbb{Q}^k\})$$

and

$$\overline{\mathfrak{B}} = \{ B \subset \overline{\mathbb{R}} : B \cap \mathbb{R} \in \mathfrak{B} \}.$$
(5)

One can prove that $\#\mathfrak{B}_k = \#\mathbb{R}^k$, and thus

$$\mathfrak{B}_k \subsetneq \mathfrak{P}(\mathbb{R}^k)$$

see Billingsley (1979, Exercise 2.21).

Definition 5. For any σ -algebra \mathfrak{A} in Ω and $\widetilde{\Omega} \subset \Omega$

$$\widetilde{\mathfrak{A}} = \{ \widetilde{\Omega} \cap A : A \in \mathfrak{A} \}$$

is the trace- σ -algebra of \mathfrak{A} in $\widetilde{\Omega}$, sometimes denoted by $\widetilde{\Omega} \cap \mathfrak{A}$.

Remark 7.

- (i) \mathfrak{A} is a σ -algebra in Ω .
- (ii) $\widetilde{\mathfrak{A}} \not\subset \mathfrak{A}$ in general, but if $\widetilde{\Omega} \in \mathfrak{A}$, then $\widetilde{\mathfrak{A}} = \{A \in \mathfrak{A} : A \subset \widetilde{\Omega}\}.$

(iii)
$$\mathfrak{A} = \sigma(\mathfrak{E}) \Rightarrow \mathfrak{A} = \sigma(\{\Omega \cap E : E \in \mathfrak{E}\}).$$

(iv)
$$\mathfrak{B}_k = \mathbb{R}^k \cap \overline{\mathfrak{B}}_k$$
, see (5) for $k = 1$.

(v) $[a, b] \cap \mathfrak{B}_k = \sigma(\{[a, c] : a \le c \le b\}), \text{ see (iii)}.$

2 Measurable Mappings

Definition 1. (Ω, \mathfrak{A}) is called *measurable space* iff $\Omega \neq \emptyset$ and \mathfrak{A} is a σ -algebra in Ω . Elements $A \in \mathfrak{A}$ are called (\mathfrak{A}) -*measurable sets*.

In the sequel, $(\Omega_i, \mathfrak{A}_i)$ are measurable spaces for i = 1, 2, 3.

Remark 1. Let $f: \Omega_1 \to \Omega_2$. For $B \in \mathfrak{A}_2$, we set in short

$$\{f \in B\} = f^{-1}(B) = \{\omega \in \Omega_1 : f(\omega) \in B\} \subset \Omega_1$$

- (i) $f^{-1}(\mathfrak{A}_2) = \{f^{-1}(A) : A \in \mathfrak{A}_2\}$ is a σ -algebra in Ω_1 .
- (ii) $\{A \subset \Omega_2 : f^{-1}(A) \in \mathfrak{A}_1\}$ is a σ -algebra in Ω_2 .

Definition 2. $f : \Omega_1 \to \Omega_2$ is $\mathfrak{A}_1 - \mathfrak{A}_2$ -measurable iff $f^{-1}(\mathfrak{A}_2) \subset \mathfrak{A}_1$. i.e., iff for all $A \in \mathfrak{A}_2$ we have $\{f \in A\} \in \mathfrak{A}_1$.

How can we prove measurability of a given mapping?

Theorem 1. If $f : \Omega_1 \to \Omega_2$ is $\mathfrak{A}_1-\mathfrak{A}_2$ -measurable and $g : \Omega_2 \to \Omega_3$ is $\mathfrak{A}_2-\mathfrak{A}_3$ -measurable, then $g \circ f : \Omega_1 \to \Omega_3$ is $\mathfrak{A}_1-\mathfrak{A}_3$ -measurable.

Proof. (Compare Bemerkung 5.4,(i), Analysis IV)

$$(g \circ f)^{-1}(\mathfrak{A}_3) = f^{-1}(g^{-1}(\mathfrak{A}_3)) \subset f^{-1}(\mathfrak{A}_2) \subset \mathfrak{A}_1.$$

Lemma 1. For $f: \Omega_1 \to \Omega_2$ and $\mathfrak{E} \subset \mathfrak{P}(\Omega_2)$

$$f^{-1}(\sigma(\mathfrak{E})) = \sigma(f^{-1}(\mathfrak{E})).$$

Proof. By $f^{-1}(\mathfrak{E}) \subset f^{-1}(\sigma(\mathfrak{E}))$ and Remark 1.(i) we get $\sigma(f^{-1}(\mathfrak{E})) \subset f^{-1}(\sigma(\mathfrak{E}))$. Let $\mathfrak{F} = \{A \subset \Omega_2 : f^{-1}(A) \in \sigma(f^{-1}(\mathfrak{E}))\}$. Then $\mathfrak{E} \subset \mathfrak{F}$ and \mathfrak{F} is a σ -algebra, see Remark 1.(ii). Thus we get $\sigma(\mathfrak{E}) \subset \mathfrak{F}$, i.e., $f^{-1}(\sigma(\mathfrak{E})) \subset \sigma(f^{-1}(\mathfrak{E}))$.

Theorem 2. If $\mathfrak{A}_2 = \sigma(\mathfrak{E})$ with $\mathfrak{E} \subset \mathfrak{P}(\Omega_2)$, then

f is \mathfrak{A}_1 - \mathfrak{A}_2 -measurable $\Leftrightarrow f^{-1}(\mathfrak{E}) \subset \mathfrak{A}_1$.

Proof. (compare Lemma 5.2, Analysis IV) ' \Rightarrow ' is trivial, ' \Leftarrow ':Assume that $f^{-1}(\mathfrak{E}) \subset \mathfrak{A}_1$. By Lemma 1,

$$f^{-1}(\mathfrak{A}_2) = f^{-1}(\sigma(\mathfrak{E})) = \sigma(f^{-1}(\mathfrak{E})) \subset \sigma(\mathfrak{A}_1) = \mathfrak{A}_1.$$

Corollary 1. Let $(\Omega_i, \mathfrak{G}_i)$ be topological spaces. Then every continuous $f : \Omega_1 \to \Omega_2$ is $\mathfrak{B}(\Omega_1)$ - $\mathfrak{B}(\Omega_2)$ -measurable.

 \square

Proof. (Compare Korollar 5.3, Analysis IV) For continuous f we have

$$f^{-1}(\mathfrak{G}_2) \subset \mathfrak{G}_1 \subset \sigma(\mathfrak{G}_1) = \mathfrak{B}(\Omega_1)$$

Theorem 2 shows the claim.

Given: measurable spaces $(\Omega_i, \mathfrak{A}_i)$ for $i \in I \neq \emptyset$, mappings $f_i : \Omega \to \Omega_i$ for $i \in I$ and some non-empty set Ω .

Definition 3. The σ -algebra generated by $(f_i)_{i \in I}$ (and $(\mathfrak{A}_i)_{i \in I}$)

$$\sigma(\{f_i : i \in I\}) = \sigma\Big(\bigcup_{i \in I} f_i^{-1}(\mathfrak{A}_i)\Big).$$

Moreover, set $\sigma(f) = \sigma(\{f\})$.

Remark 2. $\sigma(\{f_i : i \in I\})$ is the smallest σ -algebra \mathfrak{A} in Ω such that all mappings f_i are \mathfrak{A} - \mathfrak{A}_i -measurable.

Theorem 3. For every measurable space $(\widetilde{\Omega}, \widetilde{\mathfrak{A}})$ and every mapping $g : \widetilde{\Omega} \to \Omega$,

$$g \text{ is } \widetilde{\mathfrak{A}}-\sigma(\{f_i: i \in I\})\text{-measurable} \quad \Leftrightarrow \quad \forall i \in I: f_i \circ g \text{ is } \widetilde{\mathfrak{A}}-\mathfrak{A}_i\text{-measurable}.$$

Proof. Use Lemma 1 to obtain

$$g^{-1}(\sigma(\{f_i:i\in I\})) = \sigma\Big(g^{-1}\Big(\bigcup_{i\in I}f_i^{-1}(\mathfrak{A}_i)\Big)\Big) = \sigma\Big(\bigcup_{i\in I}(f_i\circ g)^{-1}(\mathfrak{A}_i)\Big).$$

Therefore

$$g^{-1}(\sigma(\{f_i : i \in I\})) \subset \widetilde{\mathfrak{A}} \quad \Leftrightarrow \quad \forall i \in I : f_i \circ g_i \text{ is } \widetilde{\mathfrak{A}}-\mathfrak{A}_i\text{-measurable.}$$

Now we turn to the particular case of functions with values in \mathbb{R} or $\overline{\mathbb{R}}$, and we consider the Borel σ -algebra in \mathbb{R} or $\overline{\mathbb{R}}$, respectively. For any measurable space (Ω, \mathfrak{A}) we use the following notation

$$\begin{aligned} \mathfrak{Z}(\Omega,\mathfrak{A}) &= \{f: \Omega \to \mathbb{R} : f \text{ is } \mathfrak{A}\text{-}\mathfrak{B}\text{-measurable}\},\\ \mathfrak{Z}_+(\Omega,\mathfrak{A}) &= \{f \in \mathfrak{Z}(\Omega,\mathfrak{A}) : f \ge 0\},\\ \overline{\mathfrak{Z}}(\Omega,\mathfrak{A}) &= \{f: \Omega \to \overline{\mathbb{R}} : f \text{ is } \mathfrak{A}\text{-}\overline{\mathfrak{B}}\text{-measurable}\},\\ \overline{\mathfrak{Z}}_+(\Omega,\mathfrak{A}) &= \{f \in \overline{\mathfrak{Z}}(\Omega,\mathfrak{A}) : f \ge 0\}.\end{aligned}$$

Every function $f : \Omega \to \mathbb{R}$ may also be considered as a function with values in $\overline{\mathbb{R}}$, and in this case $f \in \mathfrak{Z}(\Omega, \mathfrak{A})$ iff $f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$.

Corollary 2. For $\prec \in \{\leq, <, \geq, >\}$ and $f : \Omega \to \overline{\mathbb{R}}$,

$$f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A}) \quad \Leftrightarrow \quad \forall \, a \in \mathbb{R} : \{ f \prec a \} \in \mathfrak{A}.$$

Proof. (Compare Satz 5.6, Bem.5.7, Analysis IV) For instance, $\overline{\mathfrak{B}} = \sigma(\{[-\infty, a] : a \in \mathbb{R}\})$ and

$$\{f \le a\} = f^{-1}([-\infty, a])$$

and $\overline{\mathfrak{B}} = \sigma(\{[-\infty, a] : a \in \mathbb{R}\})$, see Remark 1.6. It remains to apply Theorem 2. \Box

Theorem 4. For $f, g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ and $\prec \in \{\leq, <, \geq, >, =, \neq\}$,

$$\{\omega \in \Omega : f(\omega) \prec g(\omega)\} \in \mathfrak{A}.$$

Proof. For instance, Corollary 2 yields

$$\begin{split} \{\omega \in \Omega : f(\omega) < g(\omega)\} &= \bigcup_{q \in \mathbb{Q}} \left\{ f < q < g \right\} \\ &= \bigcup_{q \in \mathbb{Q}} \left(\{ f < q \} \cap \{ g > q \} \right) \in \mathfrak{A}. \end{split}$$

Theorem 5. For every sequence $f_1, f_2, \ldots \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,

- (i) $\inf_{n \in \mathbb{N}} f_n$, $\sup_{n \in \mathbb{N}} f_n \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,
- (ii) $\liminf_{n\to\infty} f_n$, $\limsup_{n\to\infty} f_n \in \overline{\mathfrak{Z}}(\Omega,\mathfrak{A})$,
- (iii) if $(f_n)_{n\in\mathbb{N}}$ converges at every point $\omega \in \Omega$, then $\lim_{n\to\infty} f_n \in \overline{\mathfrak{Z}}(\Omega,\mathfrak{A})$.

Proof. (Compare Satz 5.8, 5.9, Analysis IV) For $a \in \mathbb{R}$

$$\left\{\inf_{n\in\mathbb{N}}f_n < a\right\} = \bigcup_{n\in\mathbb{N}}\left\{f_n < a\right\}, \quad \left\{\sup_{n\in\mathbb{N}}f_n \le a\right\} = \bigcap_{n\in\mathbb{N}}\left\{f_n \le a\right\}.$$

Hence, Corollary 2 yields (i). Since

$$\limsup_{n \to \infty} f_n = \inf_{m \in \mathbb{N}} \sup_{n \ge m} f_n, \quad \liminf_{n \to \infty} f_n = \sup_{m \in \mathbb{N}} \inf_{n \ge m} f_n,$$

we obtain (ii) from (i). Finally, (iii) follows from (ii).

By

$$f^+ = \max(0, f), \quad f^- = \max(0, -f)$$

we denote the positive part and the negative part, respectively, of $f: \Omega \to \overline{\mathbb{R}}$.

Remark 3. For $f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ we have $f^+, f^-, |f| \in \overline{\mathfrak{Z}}_+(\Omega, \mathfrak{A})$.

Theorem 6. For $f, g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,

$$f \pm g, \ f \cdot g, \ f/g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A}),$$

provided that these functions are well defined.

Proof. (Compare Folgerung 5.5, Analysis IV) The proof is again based on Corollary 2. For simplicity we only consider the case that f and g are real-valued. Clearly $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ implies $-g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$, too. Furthermore, for every $a \in \mathbb{R}$,

$$\{f + g < a\} = \bigcup_{q \in \mathbb{Q}} \{f < q\} \cap \{g < a - q\},\$$

and therefore $f \pm g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$. Clearly $f \cdot g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ if f is constant. Moreover, $x \mapsto x^2$ defines a \mathfrak{B} - \mathfrak{B} -measurable function, see Corollary 1, and

$$f \cdot g = 1/4 \cdot \left((f+g)^2 - (f-g)^2 \right)$$

We apply Theorem 1 to obtain $f \cdot g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ in general. Finally, it is easy to show that $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ implies $1/g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$.

Definition 4. $f \in \mathfrak{Z}(\Omega, \mathfrak{A})$ is called *simple function* if $|f(\Omega)| < \infty$. Put

$$\Sigma(\Omega, \mathfrak{A}) = \{ f \in \mathfrak{Z}(\Omega, \mathfrak{A}) : f \text{ simple} \},\$$

$$\Sigma_{+}(\Omega, \mathfrak{A}) = \{ f \in \Sigma(\Omega, \mathfrak{A}) : f \ge 0 \}.$$

Remark 4. $f \in \Sigma(\Omega, \mathfrak{A})$ iff

$$f = \sum_{i=1}^{n} \alpha_i \cdot \mathbf{1}_A$$

with $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ pairwise different and $A_1, \ldots, A_n \in \mathfrak{A}$ pairwise disjoint such that $\bigcup_{i=1}^n A_i = \Omega$.

Theorem 7. (Compare Theorem 5.11, Analysis IV) For every (bounded) function $f \in \overline{\mathfrak{Z}}_+(\Omega, \mathfrak{A})$ there exists a sequence $f_1, f_2, \dots \in \Sigma_+(\Omega, \mathfrak{A})$ such that $f_n \uparrow f$ (with uniform convergence).

Proof. Let $n \in N$ and put

$$f_n = \sum_{k=1}^{n \cdot 2^n} \frac{k-1}{2^n} \cdot 1_{A_{n,k}} + n \cdot 1_{B_n}$$

where

$$A_{n,k} = \{(k-1)/(2^n) \le f < k/(2^n)\}, \quad B_n = \{f \ge n\}.$$

Now we consider a mapping $T : \Omega_1 \to \Omega_2$ and a σ -algebra \mathfrak{A}_2 in Ω_2 . We characterize measurability of functions with respect to $\sigma(T) = T^{-1}(\mathfrak{A}_2)$.

Theorem 8 (Factorization Lemma). For every function $f: \Omega_1 \to \overline{\mathbb{R}}$

$$f \in \overline{\mathfrak{Z}}(\Omega_1, \sigma(T)) \quad \Leftrightarrow \quad \exists g \in \overline{\mathfrak{Z}}(\Omega_2, \mathfrak{A}_2) : f = g \circ T.$$

Proof. ' \Leftarrow ' is trivially satisfied. ' \Rightarrow ': First, assume that $f \in \Sigma_+(\Omega_1, \sigma(T))$, i.e.,

$$f = \sum_{i=1}^{n} \alpha_i \cdot \mathbf{1}_{A_i}$$

with pairwise disjoint sets $A_1, \ldots, A_n \in \sigma(T)$. Take pairwise disjoint sets $B_1, \ldots, B_n \in \mathfrak{A}_2$ such that $A_i = T^{-1}(B_i)$ and put

$$g = \sum_{i=1}^{n} \alpha_i \cdot \mathbf{1}_{B_i}.$$

Clearly $f = g \circ T$ and $g \in \overline{\mathfrak{Z}}(\Omega_2, \mathfrak{A}_2)$.

Now, assume that $f \in \overline{\mathfrak{Z}}_+(\Omega_1, \sigma(T))$. Take a sequence $(f_n)_{n \in \mathbb{N}}$ in $\Sigma_+(\Omega_1, \sigma(T))$ according to Theorem 7. We already know that $f_n = g_n \circ T$ for suitable $g_n \in \overline{\mathfrak{Z}}(\Omega_2, \mathfrak{A}_2)$. Hence

$$f = \sup_{n} f_n = \sup_{n} (g_n \circ T) = (\sup_{n} g_n) \circ T = g \circ T$$

where $g = \sup_n g_n \in \overline{\mathfrak{Z}}(\Omega_2, \mathfrak{A}_2).$

In the general case, we already know that

$$f^+ = g_1 \circ T, \quad f^- = g_2 \circ T$$

for suitable $g_1, g_2 \in \overline{\mathfrak{Z}}(\Omega_2, \mathfrak{A}_2)$. Put

$$C = \{g_1 = g_2 = \infty\} \in \mathfrak{A}_2,$$

and observe that $T(\Omega_1) \cap C = \emptyset$ since $f = f^+ - f^-$. We conclude that $f = g \circ T$ where

$$g = g_1 \cdot 1_D - g_2 \cdot 1_D \in \mathfrak{Z}(\Omega_2, \mathfrak{A}_2)$$

with $D = C^c$.

Our method of proof for Theorem 8 is sometimes called algebraic induction.

3 Product Spaces

Example 1. A stochastic model for coin tossing. For a single trial,

$$\Omega = \{0, 1\}, \quad \mathfrak{A} = \mathfrak{P}(\Omega), \quad \forall \, \omega \in \Omega : P(\{\omega\}) = 1/2.$$
(1)

For n 'independent' trials, (1) serves as a building-block,

$$\Omega_i = \{0, 1\}, \quad \mathfrak{A}_i = \mathfrak{P}(\Omega_i), \quad \forall \, \omega_i \in \Omega_i : P_i(\{\omega_i\}) = 1/2,$$

and we define

$$\Omega = \prod_{i=1}^{n} \Omega_{i}, \quad \mathfrak{A} = \mathfrak{P}(\Omega), \quad \forall A \in \mathfrak{A} : P(A) = \frac{|A|}{|\Omega|}.$$

Then

$$P(A_1 \times \cdots \times A_n) = P_1(A_1) \cdot \cdots \cdot P_n(A_n)$$

for all $A_i \in \mathfrak{A}_i$.

Question: How to model an infinite sequence of trials? To this end,

$$\Omega = \prod_{i=1}^{\infty} \Omega_i.$$

How to choose a σ -algebra \mathfrak{A} in Ω and a probability measure P on (Ω, \mathfrak{A}) ? A reasonable requirement is

$$\forall n \in \mathbb{N} \ \forall A_i \in \mathfrak{A}_i :$$
$$P(A_1 \times \dots \times A_n \times \Omega_{n+1} \times \Omega_{n+2} \dots) = P_1(A_1) \cdot \dots \cdot P_n(A_n).$$
(2)

Unfortunately,

$$\mathfrak{A} = \mathfrak{P}(\Omega)$$

is too large, since there exists no probability measure on $(\Omega, \mathfrak{P}(\Omega))$ such that (2) holds. The latter fact follows from a theorem by Banach and Kuratowski, which relies on the continuum hypothesis, see Dudley (2002, p. 526). On the other hand,

$$\mathfrak{A} = \{A_1 \times \dots \times A_n \times \Omega_{n+1} \times \Omega_{n+2} \dots : n \in \mathbb{N}, \ A_i \in \mathfrak{A}_i \text{ for } i = 1, \dots, n\}$$
(3)

is not a σ -algebra.

Given: a non-empty set I and measurable spaces $(\Omega_i, \mathfrak{A}_i)$ for $i \in I$. Put

$$Y = \bigcup_{i \in I} \Omega_i$$

and define

$$\prod_{i \in I} \Omega_i = \{ \omega \in Y^I : \omega(i) \in \Omega_i \text{ for } i \in I \}.$$

Notation: $\omega = (\omega_i)_{i \in I}$ for $\omega \in \prod_{i \in I} \Omega_i$. Moreover, let

 $\mathfrak{P}_0(I) = \{ J \subset I : J \text{ non-empty, finite} \}.$

The following definition is motivated by (3).

Definition 1.

(i) Measurable rectangle

$$A = \prod_{j \in J} A_j \times \prod_{i \in I \setminus J} \Omega_i$$

with $J \in \mathfrak{P}_0(I)$ and $A_j \in \mathfrak{A}_j$ for $j \in J$. Notation: \mathfrak{R} class of measurable rectangles.

(ii) Product (measurable) space (Ω, \mathfrak{A}) with components $(\Omega_i, \mathfrak{A}_i), i \in I$,

$$\Omega = \prod_{i \in I} \Omega_i, \qquad \mathfrak{A} = \sigma(\mathfrak{R}).$$

Notation: $\mathfrak{A} = \bigotimes_{i \in I} \mathfrak{A}_i$, product σ -algebra.

Remark 1. The class \Re is a semi-algebra, but not an algebra in general. See Übung 2.3.

Example 2. Obviously, (2) only makes sense if \mathfrak{A} contains the product σ -algebra $\bigotimes_{i=1}^{n} \mathfrak{A}_{i}$. We will show that there exists a uniquely determined probability measure P on the product space $(\prod_{i=1}^{\infty} \{0,1\}, \bigotimes_{i=1}^{\infty} \mathfrak{P}(\{0,1\}))$ that satisfies (2), see Remark 4.3.(ii). The corresponding probability space yields a stochastic model for the simple case of gambling, which was mentioned in the introductory Example I.2.

We study several classes of mappings or subsets that generate the product σ -algebra. Moreover, we characterize measurability of mappings that take values in a product space.

Put $\Omega = \prod_{i \in I} \Omega_i$. For any $\emptyset \neq S \subset I$ let

$$\pi_S^I: \Omega \to \prod_{i \in S} \Omega_i, \quad (\omega_i)_{i \in I} \mapsto (\omega_i)_{i \in S}$$

denote the projection of Ω onto $\prod_{i \in S} \Omega_i$ (restriction of mappings ω). In particular, for $i \in I$ the *i*-th projection is given by $\pi_{\{i\}}^I$. Sometimes we simply write π_S instead of π_S^I and π_i instead of $\pi_{\{i\}}$.

Theorem 1.

- (i) $\bigotimes_{i \in I} \mathfrak{A}_i = \sigma(\{\pi_i : i \in I\}).$
- (ii) $\forall i \in I : \mathfrak{A}_i = \sigma(\mathfrak{E}_i) \implies \bigotimes_{i \in I} \mathfrak{A}_i = \sigma\left(\bigcup_{i \in I} \pi_i^{-1}(\mathfrak{E}_i)\right).$

Proof. Ad (i), ' \supset ': We show that every projection $\pi_i : \Omega \to \Omega_i$ is $(\bigotimes_{i \in I} \mathfrak{A}_i) - \mathfrak{A}_i$ -measurable. For $A_i \in \mathfrak{A}_i$

$$\pi_i^{-1}(A_i) = A_i \times \prod_{i \in I \setminus \{i\}} \Omega_i \in \mathfrak{R}.$$

Ad (i), 'C': We show that $\mathfrak{R} \subset \sigma(\{\pi_i : i \in I\})$. For $J \in \mathfrak{P}_0(I)$ and $A_j \in \mathfrak{A}_j$ with $j \in J$

$$\prod_{j \in J} A_j \times \prod_{i \in I \setminus J} \Omega_i = \bigcap_{j \in J} \pi_j^{-1}(A_j)$$

Ad (ii): By Lemma 2.1 and (i)

$$\bigotimes_{i\in I}\mathfrak{A}_i = \sigma\Big(\bigcup_{i\in I}\pi_i^{-1}(\mathfrak{A}_i)\Big) = \sigma\Big(\bigcup_{i\in I}\sigma(\pi_i^{-1}(\mathfrak{E}_i))\Big) = \sigma\Big(\bigcup_{i\in I}\pi_i^{-1}(\mathfrak{E}_i)\Big).$$

Corollary 1.

(i) For every measurable space $(\widetilde{\Omega}, \widetilde{\mathfrak{A}})$ and every mapping $g : \widetilde{\Omega} \to \Omega$

$$g \text{ is } \widetilde{\mathfrak{A}}$$
- $\bigotimes_{i \in I} \mathfrak{A}_i$ -measurable $\Leftrightarrow \forall i \in I : \pi_i \circ g \text{ is } \widetilde{\mathfrak{A}}$ - \mathfrak{A}_i -measurable.

(ii) For every $\emptyset \neq S \subset I$ the projection π_S^I is $\bigotimes_{i \in I} \mathfrak{A}_i \cdot \bigotimes_{i \in S} \mathfrak{A}_i$ -measurable.

Proof. Ad (i): Follows immediately from Theorem 2.3 and Theorem 1.(i). Ad (ii): Note that $\pi_{\{i\}}^S \circ \pi_S^I = \pi_i^I$ and use (i).

Remark 2. From Theorem 1.(i) and Corollary 1 we get

$$\bigotimes_{i\in I} \mathfrak{A}_i = \sigma(\{\pi_S^I : S \in \mathfrak{P}_0(I)\}).$$

The sets

$$\left(\pi_{S}^{I}\right)^{-1}(B) = B \times \left(\prod_{i \in I \setminus S} \Omega_{i}\right)$$

with $S \in \mathfrak{P}_0(I)$ and $B \in \bigotimes_{i \in S} \mathfrak{A}_i$ are called *cylinder sets*. Notation: \mathfrak{C} class of cylinder sets. The class \mathfrak{C} is an algebra in Ω , but not a σ -algebra in general. Moreover,

$$\mathfrak{R} \subset \alpha(\mathfrak{R}) \subset \mathfrak{C} \subset \sigma(\mathfrak{R}),$$

where equality does not hold in general.

Every product measurable set is countably determined in the following sense.

Theorem 2. For every $A \in \bigotimes_{i \in I} \mathfrak{A}_i$ there exists a non-empty countable set $S \subset I$ and a set $B \in \bigotimes_{i \in S} \mathfrak{A}_i$ such that

$$A = \left(\pi_S^I\right)^{-1} (B).$$

Proof. Put

$$\widetilde{\mathfrak{A}} = \Big\{ A \in \bigotimes_{i \in I} \mathfrak{A}_i : \exists S \subset I \text{ non-empty, countable } \exists B \in \bigotimes_{i \in S} \mathfrak{A}_i : A = \left(\pi_S^I\right)^{-1} (B) \Big\}.$$

By definition, $\widetilde{\mathfrak{A}}$ contains every cylinder set and $\widetilde{\mathfrak{A}} \subset \bigotimes_{i \in I} \mathfrak{A}_i$. It remains to show that $\widetilde{\mathfrak{A}}$ is a σ -algebra. Obviously, $\Omega \in \widetilde{\mathfrak{A}}$, and if $A = (\pi_S^I)^{-1}(B)$, $A^c = (\pi_S^I)^{-1}(B^c)$. Finally, if $A_n = (\pi_{S_n}^I)^{-1}(B_n)$, we define $S = \bigcup_n S_n$ and $\widetilde{B}_n = (\pi_{S_n}^S)^{-1}(B_n) = B_n \times \prod_{i \in S \setminus B_n} \in \bigotimes_{i \in S} \mathfrak{A}_i$ (see Corollary 1, (ii)); then

$$\bigcap_{n} A_{n} = \bigcap_{n} (\pi_{S}^{I})^{-1} (\widetilde{B}_{n}) = ((\pi^{I})_{S})^{-1} \left(\bigcap_{n} \widetilde{B}_{n}\right) ,$$

hence $\bigcap_n A_n \in \widetilde{\mathfrak{A}}$.

Now we study products of Borel- σ -algebras.

Theorem 3.

$$\mathfrak{B}_k = \bigotimes_{i=1}^k \mathfrak{B}, \qquad \overline{\mathfrak{B}}_k = \bigotimes_{i=1}^k \overline{\mathfrak{B}}.$$

Proof. By Remark 16,

$$B_k = \sigma\left(\left\{\prod_{i=1}^k \left| -\infty, a_i \right| : a_i \in \mathbb{R} \text{ for } i = 1, \dots, k\right\}\right) \subset \bigotimes_{i=1}^k \mathfrak{B}.$$

On the other hand, $\pi_i : \mathbb{R}^k \to \mathbb{R}$ is continuous, hence it remains to apply Corollary 2.1 and Theorem 1.(i). Analogously, $\overline{\mathfrak{B}}_k = \bigotimes_{i=1}^k \overline{\mathfrak{B}}$ follows. \Box

Remark 3. Consider a measurable space $(\widetilde{\Omega}, \widetilde{\mathfrak{A}})$ and a mapping

$$f = (f_1, \ldots, f_k) : \widetilde{\Omega} \to \overline{\mathbb{R}}^k.$$

Then, according to Theorem 3, f is $\widetilde{\mathfrak{A}}$ - $\overline{\mathfrak{B}}_k$ -measurable iff all functions f_i are $\widetilde{\mathfrak{A}}$ - $\overline{\mathfrak{B}}$ -measurable.

4 Construction of (Probability) Measures

Given: $\Omega \neq \emptyset$ and $\emptyset \neq \mathfrak{A} \subset \mathfrak{P}(\Omega)$.

Definition 1. $\mu : \mathfrak{A} \to \mathbb{R}_+ \cup \{\infty\}$ is called

(i) *additive* if:

$$A, B \in \mathfrak{A} \land A \cap B = \emptyset \land A \cup B \in \mathfrak{A} \quad \Rightarrow \quad \mu(A \cup B) = \mu(A) + \mu(B),$$

(ii) σ -additive if

 $A_1, A_2, \ldots \in \mathfrak{A}$ pairwise disjoint $\wedge \bigcup_{i=1}^{\infty} A_i \in \mathfrak{A} \implies \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i),$

(iii) content (on \mathfrak{A}) if

$$\mathfrak{A}$$
 algebra $\wedge \quad \mu$ additive $\wedge \quad \mu(\emptyset) = 0$,

(iv) pre-measure (on \mathfrak{A}) if

$$\mathfrak{A}$$
 semi-algebra $\wedge \mu \sigma$ -additive $\wedge \mu(\emptyset) = 0$,

- (v) measure (on \mathfrak{A}) if
- $\mathfrak{A} \sigma$ -algebra $\land \mu$ pre-measure,
- (vi) probability measure (on \mathfrak{A}) if

$$\mu$$
 measure $\wedge \quad \mu(\Omega) = 1.$

Definition 2. $(\Omega, \mathfrak{A}, \mu)$ is called a

- (i) measure space, if μ is a measure on the σ -algebra \mathfrak{A} in Ω ,
- (ii) probability space, if μ is a probability measure on the σ -algebra \mathfrak{A} in Ω .

Example 1.

- (i) k-dimensional Lebesgue pre-measure λ_k , e.g., on cartesian products of intervals.
- (ii) For any semi-algebra \mathfrak{A} in Ω and $\omega \in \Omega$

$$\delta_{\omega}(A) = 1_A(\omega), \qquad A \in \mathfrak{A},$$

defines a pre-measure. If \mathfrak{A} is a σ -algebra, then δ_{ω} is called the *Dirac measure* at the point ω .

More generally: take sequences $(\omega_n)_{n\in\mathbb{R}}$ in Ω and $(\alpha_n)_{n\in\mathbb{N}}$ in \mathbb{R}_+ such that $\sum_{n=1}^{\infty} \alpha_n = 1$. Then

$$\mu(A) = \sum_{n=1}^{\infty} \alpha_n \cdot 1_A(\omega_n), \qquad A \in \mathfrak{A},$$

defines a discrete probability measure on any σ -algebra \mathfrak{A} in Ω . Note that $\mu = \sum_{n=1}^{\infty} \alpha_n \cdot \varepsilon_{\omega_n}$.

(iii) Counting measure on a σ -algebra \mathfrak{A}

$$\mu(A) = |A|, \qquad A \in \mathfrak{A}.$$

Uniform distribution in the case $|\Omega| < \infty$ and $\mathfrak{A} = \mathfrak{P}(\Omega)$

$$\mu(A) = \frac{|A|}{|\Omega|}, \qquad A \subset \Omega.$$

(iv) On the algebra $\mathfrak{A} = \{A \subset \Omega : A \text{ finite or } A^c \text{ finite}\}\$ let

$$\mu(A) = \begin{cases} 0 & \text{if } |A| < \infty \\ \infty & \text{if } |A| = \infty. \end{cases}$$

Then μ is a content but not a pre-measure in general.

(v) For the semi-algebra of measurable rectangles in Example 3.1 and $A_i \subset \{0, 1\}$

$$\mu(A_1 \times \cdots \times A_n \times \Omega_{n+1} \times \cdots) = \frac{|A_1 \times \cdots \times A_n|}{|\{0,1\}^n|}$$

is well defined and yields a pre-measure μ with $\mu(\{0,1\}^{\mathbb{N}}) = 1$.

Remark 1. For every content μ on \mathfrak{A} and $A, B \in \mathfrak{A}$

- (i) $A \subset B \Rightarrow \mu(A) \le \mu(A \cap B) + \mu(A^c \cap B) = \mu(B)$ (monotonicity),
- (ii) $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B \setminus A) + \mu(A \cap B) = \mu(A) + \mu(B),$

(iii)
$$A \subset B \land \mu(A) < \infty \Rightarrow \mu(B \setminus A) = \mu(B) - \mu(A),$$

(iv) $\mu(A) < \infty \land \mu(B) < \infty \Rightarrow |\mu(A) - \mu(B)| \le \mu(A \bigtriangleup B),$

 $(\mathbf{v}) \ \mu(A\cup B)=\mu(A)+\mu(B\cap A^c)\leq \mu(A)+\mu(B) \ (subadditivity).$

Theorem 1. Consider the following properties for a content μ on \mathfrak{A} :

- (i) μ pre-measure,
- (ii) $A_1, A_2, \ldots \in \mathfrak{A} \land \bigcup_{i=1}^{\infty} A_i \in \mathfrak{A} \Rightarrow \mu \left(\bigcup_{i=1}^{\infty} A_i \right) \leq \sum_{i=1}^{\infty} \mu(A_i) \ (\sigma\text{-subadditivity}),$
- (iii) $A_1, A_2, \ldots \in \mathfrak{A} \land A_n \uparrow A \in \mathfrak{A} \Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu(A)$ (σ -continuity from below),
- (iv) $A_1, A_2, \ldots \in \mathfrak{A} \land A_n \downarrow A \in \mathfrak{A} \land \mu(A_1) < \infty \Rightarrow \lim_{n \to \infty} \mu(A_n) = \mu(A)$ (*socationality from above*),

(v)
$$A_1, A_2, \ldots \in \mathfrak{A} \land A_n \downarrow \emptyset \land \mu(A_1) < \infty \Rightarrow \lim_{n \to \infty} \mu(A_n) = 0 \ (\sigma \text{-continuity at } \emptyset)$$

Then

$$(i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v).$$

If $\mu(\Omega) < \infty$, then (iii) \Leftrightarrow (iv).

Proof. '(i) \Rightarrow (ii)': Put $B_m = \bigcup_{i=1}^m A_i$ and $B_0 = \emptyset$. Then

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{m=1}^{\infty} (B_m \setminus B_{m-1})$$

with pairwise disjoint sets $B_m \setminus B_{m-1} \in \mathfrak{A}$. Clearly $B_m \setminus B_{m-1} \subset A_m$. Hence, by Remark 1.(i),

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{m=1}^{\infty} \mu(B_m \setminus B_{m-1}) \le \sum_{m=1}^{\infty} \mu(A_m).$$

'(ii) \Rightarrow (i)': Let $A_1, A_2, \ldots \in \mathfrak{A}$ be pairwise disjoint with $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$. Then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \ge \mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu(A_i)$$

and therefore

$$\sum_{i=1}^{\infty} \mu(A_i) \le \mu\Big(\bigcup_{i=1}^{\infty} A_i\Big).$$

The reverse estimate holds by assumption. '(i) \Rightarrow (iii)': Put $A_0 = \emptyset$ and $B_m = A_m \setminus A_{m-1}$. Then

$$\mu\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{m=1}^{\infty} \mu(B_m) = \lim_{n \to \infty} \sum_{m=1}^{n} \mu(B_m) = \lim_{n \to \infty} \mu\Big(\bigcup_{m=1}^{n} B_m\Big) = \lim_{n \to \infty} \mu(A_n).$$

'(iii) \Rightarrow (i)': Let $A_1, A_2, \ldots \in \mathfrak{A}$ be pairwise disjoint with $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$, and put $B_m = \bigcup_{i=1}^m A_i$. Then $B_m \uparrow \bigcup_{i=1}^{\infty} A_i$ and

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{m \to \infty} \mu(B_m) = \sum_{i=1}^{\infty} \mu(A_i)$$

'(iv) \Rightarrow (v)' trivially holds. '(v) \Rightarrow (iv)': Use $B_n = A_n \setminus A \downarrow \emptyset$. '(i)' \Rightarrow (v)': Note that $\mu(A_1) = \sum_{i=1}^{\infty} \mu(A_i \setminus A_{i+1})$. Hence

$$0 = \lim_{k \to \infty} \sum_{i=k}^{\infty} \mu(A_i \setminus A_{i+1}) = \lim_{k \to \infty} \mu(A_k).$$

'(iv) $\wedge \mu(\Omega) < \infty \Rightarrow$ (iii)': Clearly $A_n \uparrow A$ implies $A_n^c \downarrow A^c$. Thus

$$\mu(A) = \mu(\Omega) - \mu(A^c) = \lim_{n \to \infty} (\mu(\Omega) - \mu(A_n^c)) = \lim_{n \to \infty} \mu(A_n).$$

Theorem 2 (Extension: semi-algebra \rightsquigarrow **algebra).** For every semi-algebra \mathfrak{A} and every additive mapping $\mu : \mathfrak{A} \to \mathbb{R}_+ \cup \{\infty\}$ with $\mu(\emptyset) = 0$

$$\exists_{1} \widehat{\mu} \text{ content on } \alpha(\mathfrak{A}) : \quad \widehat{\mu}|_{\mathfrak{A}} = \mu.$$

Moreover, if μ is σ -additive then $\hat{\mu}$ is σ -additive, too.

Proof. We have $\alpha(\mathfrak{A}) = \mathfrak{A}^+$, see Lemma 1.1. Necessarily

$$\widehat{\mu}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mu(A_{i}) \tag{1}$$

for $A_1, \ldots, A_n \in \mathfrak{A}$ pairwise disjoint. Use (1) to obtain a well-defined extension of μ onto $\alpha(\mathfrak{A})$. It easily follows that μ is additive or even σ -additive. \Box

Example 2. For the semi-algebra \mathfrak{A} in Example 1.(v) $\alpha(\mathfrak{A})$ is the algebra of cylinder sets, and

$$\widehat{\mu}(A \times \Omega_{n+1} \times \cdots) = \frac{|A|}{|\{0,1\}^n|}, \qquad A \subset \{0,1\}^n.$$

Let μ be a pre-measure on \mathfrak{A} . The *outer measure* generated by μ is

$$\mu^*(A) := \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathfrak{A}, A \subseteq \bigcup_{i=1}^{\infty} \infty A_i \right\} ,$$

It is straightforward that $\mu^*(\emptyset = 0)$ and that μ^* is monotone and σ -subadditive.

Theorem 3 (Extension: algebra $\rightsquigarrow \sigma$ -algebra, Carathéodory). For every premeasure μ on an algebra \mathfrak{A} ,

(a) the class

$$\mathfrak{A}_{\mu^*} := \left\{ A \subseteq \Omega : \mu^*(B) = \mu^*(A \cap B) + \mu^*(A^c \cap B) \forall B \subseteq \Omega \right\}$$

is a σ -algebra, and μ^* is a measure on \mathfrak{A}_{μ^*} .

(b) $\mathfrak{A} \subseteq \mathfrak{A}_{\mu^*}$, and $\mu = \mu^*$ on \mathfrak{A} . In particular, there exists a measure μ^* on $\sigma(\mathfrak{A})$ extending μ .

Proof. We will start with part (b), i.e., we show that

(i) $\mu^*|_{\mathfrak{A}} = \mu$,

(ii)
$$\forall A \in \mathfrak{A} \ \forall B \in \mathfrak{P}(\Omega) : \quad \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

Ad (i): For $A \in \mathfrak{A}$

$$\mu^*(A) \le \mu(A) + \sum_{i=2}^{\infty} \mu(\emptyset) = \mu(A),$$

and for $A_i \in \mathfrak{A}$ with $A \subset \bigcup_{i=1}^{\infty} A_i$

$$\mu(A) = \mu\left(\bigcup_{i=1}^{\infty} (A_i \cap A)\right) \le \sum_{i=1}^{\infty} \mu(A_i \cap A) \le \sum_{i=1}^{\infty} \mu(A_i)$$

follows from Theorem 1.(ii).

Ad (ii): ' \leq ' holds due to sub-additivity of μ^* ; if

$$B \subseteq \bigcup_{i=1}^{\infty} A_i$$

with $A_i \in \mathfrak{A}$, then $A_i \cap A, A_i \cap A^c \in \mathfrak{A}$ and

$$B \cap A \subseteq \bigcup_{i=1}^{\infty} A_i \cap A, \qquad B \cap A^c \subseteq \bigcup_{i=1}^{\infty} A_i \cap A^c.$$

This directly implies ' \geq '.

Now we prove (a); to this end, we claim first that

(iii) \mathfrak{A}_{μ^*} is \cap -closed, $\forall A_1, A_2 \in \mathfrak{A}_{\mu^*} \ \forall B \in \mathfrak{P}(\Omega) : \quad \mu^*(B) = \mu^*(B \cap (A_1 \cap A_2)) + \mu^*(B \cap (A_1 \cap A_2)^c).$

(iv)
$$\mathfrak{A}_{\mu^*}$$
 ^c-closed,

i.e., \mathfrak{A} is an algebra. Ad (iii): We have

$$\mu^*(B) = \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c)$$

= $\mu^*(B \cap A_1 \cap A_2) + \mu^*(B \cap A_1 \cap A_2^c) + \mu^*(B \cap A_1^c)$

and

$$\mu^*(B \cap (A_1 \cap A_2)^c) = \mu^*(B \cap A_1^c \cup B \cap A_2^c) = \mu^*(B \cap A_2^c \cap A_1) + \mu^*(B \cap A_1^c).$$

Ad (iv): Obvious.

Next we claim that μ^* is additive on \mathfrak{A}^* , and even more,

(v) $\forall A_1, A_2 \in \mathfrak{A}_{\mu^*}$ disjoint $\forall B \in \mathfrak{P}(\Omega) : \mu^*(B \cap (A_1 \cup A_2)) = \mu^*(B \cap A_1) + \mu^*(B \cap A_2).$

In fact, since $A_1 \cap A_2 = \emptyset$,

$$\mu^*(B \cap (A_1 \cup A_2)) = \mu^*(B \cap A_1) + \mu^*(B \cap A_2 \cap A_1^c) = \mu^*(B \cap A_1) + \mu^*(B \cap A_2).$$

At last, we claim that \mathfrak{A}^* is a Dynkin class and μ^* is σ -additive on \mathfrak{A}^* , i.e.,

(vi) $\forall A_1, A_2, \ldots \in \mathfrak{A}_{\mu^*}$ pairwise disjoint

$$\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}_{\mu^*} \quad \wedge \quad \mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \mu^*(A_i).$$

Let $B \in \mathfrak{P}(\Omega)$. By (iv), (v), and monotonicity of μ^*

$$\mu^*(B) = \mu^* \left(B \cap \bigcup_{i=1}^n A_i \right) + \mu^* \left(B \cap \left(\bigcup_{i=1}^n A_i \right)^c \right)$$
$$\geq \sum_{i=1}^n \mu^*(B \cap A_i) + \mu^* \left(B \cap \left(\bigcup_{i=1}^\infty A_i \right)^c \right).$$

Use σ -subadditivity of μ^* to get

$$\mu^*(B) \ge \sum_{i=1}^{\infty} \mu^*(B \cap A_i) + \mu^* \left(B \cap \left(\bigcup_{i=1}^{\infty} A_i\right)^c \right)$$
$$\ge \mu^* \left(B \cap \bigcup_{i=1}^{\infty} A_i \right) + \mu^* \left(B \cap \left(\bigcup_{i=1}^{\infty} A_i\right)^c \right)$$
$$\ge \mu^*(B).$$

Hence $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}_{\mu^*}$. Take $B = \bigcup_{i=1}^{\infty} A_i$ to obtain σ -additivity of $\mu^*|_{\mathfrak{A}_{\mu^*}}$. Conclusions:

- \mathfrak{A}_{μ^*} is a Dynkin class and \cap -closed ((iv), (vi)), and hence a σ -algebra, see Theorem 1.1.(ii),
- $\mathfrak{A} \subset \mathfrak{A}_{\mu^*}$ by (ii), hence $\sigma(\mathfrak{A}) \subset \mathfrak{A}_{\mu^*}$.
- $\mu^*|_{\mathfrak{A}_{\mu^*}}$ is a measure with $\mu^*|_{\mathfrak{A}} = \mu$, see (vi) and (i).

Remark 2. The extension from Theorem 3 is non-unique, in general. For instance, on $\Omega = \mathbb{R}$, the pre-measure

$$\mu(A) = \infty \cdot \#A = \begin{cases} 0 & \text{if } A = \emptyset \\ \infty & \text{otherwise} \end{cases}, \qquad A \in \alpha(\mathfrak{J}_1)$$

on the algebra generated by intervals (see Ex.1) has the extensions $\mu_1(A) = \#A$ (counting measure) and $\mu_2(A) = \infty \cdot \#A$ to **B**.

Definition 3. $\mu : \mathfrak{A} \to \mathbb{R}_+ \cup \{\infty\}$ is called

(i) σ -finite, if

$$\exists B_1, B_2, \ldots \in \mathfrak{A}$$
 pairwise disjoint : $\Omega = \bigcup_{i=1}^{\infty} B_i \wedge \forall i \in \mathbb{N} : \mu(B_i) < \infty$,

(ii) finite, if $\Omega \in \mathfrak{A}$ and $\mu(\Omega) < \infty$.

Theorem 4 (Uniqueness). \mathfrak{A}_0 be \cap -closed, μ_1 , μ_2 be measures on $\mathfrak{A} = \sigma(\mathfrak{A}_0)$. If $\mu_1|_{\mathfrak{A}_0}$ is σ -finite and $\mu_1|_{\mathfrak{A}_0} = \mu_2|_{\mathfrak{A}_0}$, then $\mu_1 = \mu_2$.

Proof. Take B_i according to Definition 3, with \mathfrak{A}_0 instead of \mathfrak{A} , and put

$$\mathfrak{D}_i = \{ A \in \mathfrak{A} : \mu_1(A \cap B_i) = \mu_2(A \cap B_i) \}.$$

Obviously, \mathfrak{D}_i is a Dynkin class and $\mathfrak{A}_0 \subset \mathfrak{D}_i$. Theorem 1.2.(i) yields

$$\mathfrak{D}_i \subset \mathfrak{A} = \sigma(\mathfrak{A}_0) = \delta(\mathfrak{A}_0) \subset \mathfrak{D}_i.$$

Thus $\mathfrak{A} = \mathfrak{D}_i$ and for $A \in \mathfrak{A}$,

$$\mu_1(A) = \sum_{i=1}^{\infty} \mu_1(A \cap B_i) = \sum_{i=1}^{\infty} \mu_2(A \cap B_i) = \mu_2(A).$$

Corollary 1. For every semi-algebra \mathfrak{A} and every pre-measure μ on \mathfrak{A} that is σ -finite

$$\exists \mu^* \text{ measure on } \sigma(\mathfrak{A}) : \quad \mu^*|_{\mathfrak{A}} = \mu.$$

Proof. Use Theorems 2, 3, and 4.

Remark 3. Applications of Corollary 1:

- (i) For $\Omega = \mathbb{R}^k$ and the Lebesgue pre-measure λ_k on \mathfrak{J}_k we get the Lebesgue measure on \mathfrak{B}_k . Notation for the latter: λ_k .
- (ii) In Example 1.(v) there exists a uniquely determined probability measure P on $\bigotimes_{i=1}^{\infty} \mathfrak{P}(\{0,1\})$ such that

$$P(A_1 \times \dots \times A_n \times \{0, 1\} \times \dots) = \frac{|A_1 \times \dots \times A_n|}{|\{0, 1\}^n|}$$

for $A_1, \ldots, A_n \subset \{0, 1\}$. We will study the general construction of product measures in Section 8.

5 Integration

For the proofs, see Analysis IV or Elstrodt (1996, Kap. VI). Fixed in this section: A measure space $(\Omega, \mathfrak{A}, \mu)$. Notation:

- $\Sigma_+ = \Sigma_+(\Omega, \mathfrak{A})$ (nonnegative simple functions),
- $\overline{\mathfrak{Z}}_+ = \overline{\mathfrak{Z}}_+(\Omega, \mathfrak{A})$ (nonnegative \mathfrak{A} - $\overline{\mathfrak{B}}$ -measurable functions),

Definition 1. Integral Let $f \in \Sigma_+$,

$$f = \sum_{i=1}^{n} \alpha_i \cdot 1_{A_i}, \qquad \alpha_i \in \mathfrak{R}, A_i \in \mathfrak{A}.$$

Then define its *Integral* w.r.t. μ as

$$\int f \, d\mu = \sum_{i=1}^n \alpha_i \cdot \mu(A_i) \; .$$

Lemma 1. The mapping $\int \cdot d\mu : \Sigma_+ \to \mathfrak{R}_+$ is

- (i) positive-linear: $\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu, f, g \in \Sigma_+, \alpha, \beta \in \Re_+,$
- (ii) monotone: $f \leq g \Rightarrow \int f \, d\mu \leq \int g \, d\mu$ (monotonicity).

Definition 2. Integral of $f \in \overline{\mathfrak{Z}}_+$ w.r.t. μ

$$\int f \, d\mu = \sup \left\{ \int g \, d\mu : g \in \Sigma_+ \land g \le f \right\}.$$

Theorem 1 (Monotone convergence, Beppo Levi). (e.g., Thm.6.4, Analysis IV, SS06) Let $f_n \in \overline{\mathfrak{Z}}_+$ such that

$$\forall n \in \mathbb{N} : f_n \le f_{n+1}.$$

Then

$$\int \sup_{n} f_n \, d\mu = \sup_{n} \int f_n \, d\mu.$$

Remark 1. For every $f \in \overline{\mathfrak{Z}}_+$ there exists a sequence of functions $f_n \in \Sigma_+$ such that $f_n \uparrow f$, see Theorem 2.7.

Example 1. Consider

$$f_n = \frac{1}{n} \cdot \mathbf{1}_{[0,n]}$$

on $(\mathbb{R}, \mathfrak{B}, \lambda_1)$. Then

$$\int f_n \, d\lambda_1 = 1, \qquad \lim_{n \to \infty} f_n = 0.$$

Lemma 2. The mapping $\int \cdot d\mu : \mathfrak{Z}_+ \to \overline{\mathfrak{R}}_+$ is still positive-linear and monotone.

Theorem 2 (Fatou's Lemma). (See, e.g., Lemma 6.6, Ananlysis IV, SS06) For every sequence $(f_n)_n$ in $\overline{\mathfrak{Z}}_+$

$$\int \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int f_n \, d\mu.$$

Proof. For $g_n = \inf_{k \ge n} f_k$ we have $g_n \in \overline{\mathfrak{Z}}_+$ and $g_n \uparrow \liminf_n f_n$. By Theorem 1 and Lemma 1.(iii)

$$\int \liminf_{n} f_n \, d\mu = \lim_{n \to \infty} \int g_n \, d\mu \le \liminf_{n \to \infty} \int f_n \, d\mu.$$

Theorem 3. Let $f \in \overline{\mathfrak{Z}}_+$. Then

$$\int f \, d\mu = 0 \Leftrightarrow \mu(\{f > 0\}) = 0.$$

Definition 3. A property Π holds μ -almost everywhere (μ -a.e., a.e.), if

 $\exists A \in \mathfrak{A} : \{ \omega \in \Omega : \Pi \text{ does not hold for } \omega \} \subset A \land \mu(A) = 0.$

In case of a probability measure we say: μ -almost surely, μ -a.s., with probability one.

Notation: $\overline{\mathfrak{Z}} = \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ is the class of \mathfrak{A} - $\overline{\mathfrak{B}}$ -measurable functions.

Definition 4. $f \in \overline{\mathfrak{Z}}$ quasi- μ -integrable if

$$\int f_+ \, d\mu < \infty \quad \lor \quad \int f_- \, d\mu < \infty.$$

In this case: *integral* of f (w.r.t. μ)

$$\int f \, d\mu = \int f_+ \, d\mu - \int f_- \, d\mu.$$

 $f \in \overline{\mathfrak{Z}} \ \mu$ -integrable if

$$\int f_+ \, d\mu < \infty \quad \wedge \quad \int f_- \, d\mu < \infty.$$

Theorem 4.

- (i) $f \ \mu$ -integrable $\Rightarrow \mu(\{|f| = \infty\}) = 0$,
- (ii) $f \ \mu$ -integrable $\land g \in \overline{\mathfrak{Z}} \land f = g \ \mu$ -a.e. $\Rightarrow g \ \mu$ -integrable $\land \int f \ d\mu = \int g \ d\mu$.
- (iii) equivalent properties for $f \in \overline{\mathfrak{Z}}$:
 - (a) $f \mu$ -integrable,
 - (b) $|f| \mu$ -integrable,
 - (c) $\exists g : g \ \mu\text{-integrable} \land |f| \le g \ \mu\text{-a.e.},$

(iv) for f and g μ -integrable and $c \in \mathbb{R}$

- (a) f+g well-defined μ -a.e. and μ -integrable with $\int (f+g) d\mu = \int f d\mu + \int g d\mu$,
- (b) $c \cdot f \mu$ -integrable with $\int (cf) d\mu = c \cdot \int f d\mu$,
- (c) $f \leq g \ \mu$ -a.e. $\Rightarrow \int f \ d\mu \leq \int g \ d\mu$.

Theorem 5 (Dominated convergence, Lebesgue). Assume that

- (i) $f_n \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$,
- (ii) $\exists g \ \mu$ -integrable $\forall n \in \mathbb{N} : |f_n| \leq g \ \mu$ -a.e.,
- (iii) $f \in \overline{\mathfrak{Z}}$ such that $\lim_{n \to \infty} f_n = f \mu$ -a.e.

Then f is μ -integrable and

$$\int f \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu.$$

Example 2. Consider

$$f_n = n \cdot 1_{]0,1/n[}$$

on $(\mathbb{R}, \mathfrak{B}, \lambda_1)$. Then

$$\int f_n \, d\lambda_1 = 1, \qquad \lim_{n \to \infty} f_n = 0.$$

6 \mathfrak{L}^p -Spaces

Given: a measure space $(\Omega, \mathfrak{A}, \mu)$ and $1 \leq p < \infty$. Put $\mathfrak{Z} = \mathfrak{Z}(\Omega, \mathfrak{A})$.

Definition 1.

$$\mathfrak{L}^{p} = \mathfrak{L}^{p}(\Omega, \mathfrak{A}, \mu) = \Big\{ f \in \mathfrak{Z} : \int |f|^{p} \, d\mu < \infty \Big\}.$$

In particular, for p = 1: integrable functions and $\mathfrak{L} = \mathfrak{L}^1$, and for p = 2: square-integrable functions. Put

$$||f||_p = \left(\int |f|^p \, d\mu\right)^{1/p}, \qquad f \in \mathfrak{L}^p.$$

Theorem 1 (Hölder inequality). Let $1 < p, q < \infty$ such that 1/p + 1/q = 1 and let $f \in \mathfrak{L}^p$, $g \in \mathfrak{L}^q$. Then

$$\int |f \cdot g| \, d\mu \le \|f\|_p \cdot \|g\|_q.$$

In particular, for p = q = 2: Cauchy-Schwarz inequality.

Proof. See Analysis III or Elstrodt (1996, \S VI.1) as well as Theorem 5.3.

Theorem 2. \mathfrak{L}^p is a vector space and $\|\cdot\|_p$ is a semi-norm on \mathfrak{L}^p . Furthermore,

$$||f||_p = 0 \quad \Leftrightarrow \quad f = 0 \ \mu$$
-a.e.

Proof. See Analysis III or Elstrodt (1996, §VI.2).

Definition 2. Let $f, f_n \in \mathfrak{L}^p$ for $n \in \mathbb{N}$. $(f_n)_n$ converges to f in \mathfrak{L}^p (in mean of order p) if

$$\lim_{n \to \infty} \|f - f_n\|_p = 0$$

In particular, for p = 1: convergence in mean, and for p = 2: mean-square convergence. Notation:

$$f_n \xrightarrow{\mathfrak{L}^p} f.$$

Remark 1. Let $f, f_n \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$. Recall (define) that $(f_n)_n$ converges to $f \mu$ -a.e. if

$$\mu(A^c) = 0$$

for

$$A = \left\{ \lim_{n \to \infty} f_n = f \right\} = \left\{ \limsup_{n \to \infty} f_n = \liminf_{n \to \infty} f_n \right\} \cap \left\{ \limsup_{n \to \infty} f_n = f \right\} \in \mathfrak{A}$$

Notation:

$$f_n \stackrel{\mu\text{-a.e.}}{\longrightarrow} f_{\cdot}$$

Lemma 1. Let $f, g, f_n \in \mathfrak{L}^p$ for $n \in \mathbb{N}$ such that $f_n \xrightarrow{\mathfrak{L}^p} f$. Then

$$f_n \xrightarrow{\mathfrak{L}^p} g \quad \Leftrightarrow \quad f = g \ \mu\text{-a.e.}$$

Analogously for convergence almost everywhere.

Proof. For convergence in \mathfrak{L}^p : ' \Leftarrow ' follows from Theorem 5.4.(ii). Use

$$||f - g||_p \le ||f - f_n||_p + ||f_n - g||_p$$

to verify ' \Rightarrow '.

For convergence almost everywhere: ' \Leftarrow ' trivially holds. Use

$$\left\{\lim_{n \to \infty} f_n = f\right\} \cap \left\{\lim_{n \to \infty} f_n = g\right\} \subset \{f = g\}$$

to verify ' \Rightarrow '.

Theorem 3 (Fischer-Riesz). Consider a sequence $(f_n)_n$ in \mathfrak{L}^p . Then

- (i) $(f_n)_n$ Cauchy sequence $\Rightarrow \exists f \in \mathfrak{L}^p : f_n \xrightarrow{\mathfrak{L}^p} f$ (completeness),
- (ii) $f_n \xrightarrow{\mathfrak{L}^p} f \Rightarrow \exists$ subsequence $(f_{n_k})_k : f_{n_k} \xrightarrow{\mu \text{-a.e.}} f$.

Proof. Ad (i): Consider a Cauchy sequence $(f_n)_n$ and a subsequence $(f_{n_k})_k$ such that

$$\forall k \in \mathbb{N} \ \forall m \ge n_k : \|f_m - f_{n_k}\|_p \le 2^{-k}$$

For

$$g_k = f_{n_{k+1}} - f_{n_k} \in \mathfrak{L}^p$$

we have

$$\left|\sum_{\ell=1}^{k} |g_{\ell}|\right\|_{p} \le \sum_{\ell=1}^{k} ||g_{\ell}||_{p} \le \sum_{\ell=1}^{k} 2^{-\ell} \le 1.$$

Put $g = \sum_{\ell=1}^{\infty} |g_{\ell}| \in \overline{\mathfrak{Z}}_+$. By Theorem 5.1

$$\int g^{p} d\mu = \int \sup_{k} \left(\sum_{\ell=1}^{k} |g_{\ell}| \right)^{p} d\mu = \sup_{k} \int \left(\sum_{\ell=1}^{k} |g_{\ell}| \right)^{p} d\mu \le 1.$$
(1)

Thus, in particular, $\sum_{\ell=1}^{\infty} |g_{\ell}|$ and $\sum_{\ell=1}^{\infty} g_{\ell}$ converge μ -a.e., see Theorem 5.4.(i). Since

$$f_{n_{k+1}} = \sum_{\ell=1}^{k} g_{\ell} + f_{n_1},$$

we have

$$f = \lim_{k \to \infty} f_{n_k} \ \mu\text{-a.e.}$$

for some $f \in \mathfrak{Z}$. Furthermore,

$$|f - f_{n_k}| \le \sum_{\ell=k}^{\infty} |g_\ell| \le g \ \mu$$
-a.e.,

so that, by Theorem 5.5 and (1),

$$\lim_{k \to \infty} \int |f - f_{n_k}|^p \, d\mu = 0.$$

It follows that

$$\lim_{n \to \infty} \|f - f_n\|_p = 0,$$

too. Finally, by Theorem 2, $f \in \mathfrak{L}^p$. Ad (ii): Assume that

$$f_n \xrightarrow{\mathfrak{L}^p} f.$$

According to the proof of (i) there exists $\widetilde{f} \in \mathfrak{L}^p$ and a subsequence $(f_{n_k})_k$ such that

$$f_{n_k} \xrightarrow{\mu\text{-a.e.}} \widetilde{f} \wedge f_{n_k} \xrightarrow{\mathfrak{L}^p} \widetilde{f}.$$

Use Lemma 1.

Example 1. Let $(\Omega, \mathfrak{A}, \mu) = ([0, 1], \mathfrak{B}([0, 1]), \lambda_1|_{\mathfrak{B}([0, 1])})$. (By Remark 1.7.(ii) we have $\mathfrak{B}([0, 1]) \subset \mathfrak{B}_1$). Define

$$A_{1} = [0, 1]$$

$$A_{2} = [0, 1/2], \quad A_{3} = [1/2, 1]$$

$$A_{4} = [0, 1/3], \quad A_{5} = [1/3, 2/3], \quad A_{6} = [2/3, 1]$$
etc.

Put $f_n = 1_{A_n}$. Then

$$\lim_{n \to \infty} \|f_n - 0\|_p = \lim_{n \to \infty} \|f_n\|_p = 0$$
(2)

but

 $\{(f_n)_n \text{ converges}\} = \emptyset.$

Remark 2. Define

$$\mathfrak{L}^{\infty} = \mathfrak{L}^{\infty}(\Omega, \mathfrak{A}, P) = \{ f \in \mathfrak{Z} : \exists \, c \in \mathbb{R}_{+} : |f| \leq c \ \mu\text{-a.e.} \}$$

and

$$||f||_{\infty} = \inf\{c \in \mathbb{R}_+ : |f| \le c \ \mu\text{-a.e.}\}, \qquad f \in \mathfrak{L}^{\infty}.$$

 $f \in \mathfrak{L}^{\infty}$ is called *essentially bounded* and $||f||_{\infty}$ is called the *essential supremum of* |f|. Use Theorem 4.1.(iii) to verify that

$$|f| \le ||f||_{\infty} \mu$$
-a.e.

The definitions and results of this section, except (2), extend to the case $p = \infty$, where q = 1 in Theorem 1. In Theorem 3.(ii) we even have $f_n \xrightarrow{\mathfrak{L}^{\infty}} f \Rightarrow f_n \xrightarrow{\mu\text{-a.e.}} f$. **Remark 3.** Put

$$\mathfrak{N}^p = \{ f \in \mathfrak{L}^p : f = 0 \ \mu\text{-a.e.} \}$$

Then the quotient space $L^p = \mathfrak{L}^p/\mathfrak{N}^p$ is a Banach space. In particular, for p = 2, L^2 is a Hilbert space, with semi-inner product on \mathfrak{L}^2 given by

$$\langle f,g\rangle = \int f \cdot g \, d\mu, \qquad f,g \in \mathfrak{L}^2.$$

Theorem 4. If μ is finite and $1 \le p < q \le \infty$ then

$$\mathfrak{L}^q \subset \mathfrak{L}^p$$

and

$$\|f\|_p \le \mu(\Omega)^{1/p-1/q} \cdot \|f\|_q, \qquad f \in \mathfrak{L}^q.$$

Proof. The result trivially holds for $q = \infty$. In the sequel, $q < \infty$. Use $|f|^p \le 1 + |f|^q$ and Theorem 5.4.(iii) to obtain $\mathfrak{L}^q \subset \mathfrak{L}^p$. Put r = q/p and define s by 1/r + 1/s = 1. Theorem 1 yields

$$\int |f|^p d\mu \le \left(\int |f|^{p \cdot r} d\mu\right)^{1/r} \cdot \left(\mu(\Omega)\right)^{1/s}.$$

Example 2. Let $1 \leq p < q \leq \infty$. With respect to the counting measure on $\mathfrak{P}(\mathbb{N})$, $\mathfrak{L}^p \subset \mathfrak{L}^q$. With respect to the Lebesgue measure on \mathfrak{B}_k neither $\mathfrak{L}^q \subset \mathfrak{L}^p$ nor $\mathfrak{L}^p \subset \mathfrak{L}^q$.

7 The Radon-Nikodym-Theorem

Given: a measure space $(\Omega, \mathfrak{A}, \mu)$. Put $\overline{\mathfrak{Z}}_+ = \overline{\mathfrak{Z}}_+(\Omega, \mathfrak{A})$.

Definition 1. For f (quasi-) μ -integrable and $A \in \mathfrak{A}$, the *integral of* f over A is

$$\int_A f \, d\mu = \int \mathbf{1}_A \cdot f \, d\mu$$

(Note: $|1_A \cdot f| \leq |f|$.)

Theorem 1. Let $f \in \overline{\mathfrak{Z}}_+$ and put

$$\nu(A) = \int_A f \, d\mu, \qquad A \in \mathfrak{A}.$$

Then ν is a measure on \mathfrak{A} .

Proof. Clearly $\nu(\emptyset) = 0$ and $\nu \ge 0$. For $A_1, A_2, \ldots \in \mathfrak{A}$ pairwise disjoint

$$\nu\left(\bigcup_{i=1}^{\infty} A_i\right) = \int \sum_{i=1}^{\infty} 1_{A_i} \cdot f \, d\mu = \int \lim_{n \to \infty} \left(\sum_{i=1}^n 1_{A_i} \cdot f\right) d\mu$$
$$= \lim_{n \to \infty} \int \sum_{i=1}^n 1_{A_i} \cdot f \, d\mu = \sum_{i=1}^{\infty} \int 1_{A_i} \cdot f \, d\mu$$
$$= \sum_{i=1}^{\infty} \nu(A_i)$$

follows from Theorem 5.1.

Definition 2. The mapping ν in Theorem 1 is called *measure with* μ -density f, or distribution with density f. Notation: $\nu = f \cdot \mu$ (bad, but common notation: $d\nu = d \cdot d\mu$). If $\int f d\mu = 1$ then f is called *probability density*.

Example 1. The introductory examples of probability spaces were defined by means of probability densities.

(i) Let $(\Omega, \mathfrak{A}, \mu) = (\mathbb{R}^k, \mathfrak{B}_k, \lambda_k)$. For

$$f(x) = (2\pi)^{-k/2} \cdot \exp\left(-\frac{1}{2}\sum_{i=1}^{k} x_i^2\right)$$

we get the k-dimensional standard normal distribution ν . For $B \in \mathfrak{B}_k$ such that $0 < \lambda_k(B) < \infty$ and

$$f = \frac{1}{\lambda_k(B)} \cdot 1_B$$

we get the uniform distribution on B.

(ii) $\Omega = \mathbb{N}, \mathfrak{A} = \mathfrak{P}(\mathbb{N}), \mu$ the counting measure. A mapping $f : \Omega \to \mathfrak{R}_+$ (i.e., a sequence) is in \mathfrak{L}^1 iff it is an absolutely summable sequence (see \ddot{U} bung4.3a)), and for each such f and $A \subseteq \Omega$,

$$\forall A \in \mathfrak{A} : \nu(A) = \int_{A} f \, d\mu = \sum_{n \in A} f(n). \tag{1}$$

Conversely, any measure ν on \mathfrak{A} is a measure with density with respect to μ : Put $f(\omega) := \nu(\{\omega\})$, then ((1)) holds.

Theorem 2. Let $\nu = f \cdot \mu$ with $f \in \overline{\mathfrak{Z}}_+$ and $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$. Then

$$g$$
 (quasi)- ν -integrable \Leftrightarrow $g \cdot f$ (quasi)- μ -integrable,

in which case

$$\int g \, d\nu = \int g \cdot f \, d\mu$$

Proof. First, assume that $g = 1_A$ with $A \in \mathfrak{A}$. Then the statements hold by definition. For $g \in \Sigma_+(\Omega, \mathfrak{A})$ we now use linearity of the integral. For $g \in \overline{\mathfrak{Z}}_+$ we take a sequence $(g_n)_{n \in \mathbb{N}}$ in $\Sigma_+(\Omega, \mathfrak{A})$ such that such that $g_n \uparrow g$. Then $g_n \cdot f \in \overline{\mathfrak{Z}}_+$ and $g_n \cdot f \uparrow g \cdot f$. Hence, by Theorem 5.1 and the previous part of the proof

$$\int g \, d\nu = \lim_{n \to \infty} \int g_n \, d\nu = \lim_{n \to \infty} \int g_n \cdot f \, d\mu = \int g \cdot f \, d\mu.$$

Finally, for $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ we already know that

$$\int g^{\pm} d\nu = \int g^{\pm} \cdot f \, d\mu = \int (g \cdot f)^{\pm} \, d\mu.$$

Use linearity of the integral.

Remark 1.

$$f, g \in \overline{\mathfrak{Z}}_+ \land f = g \ \mu\text{-a.e.} \quad \Rightarrow \quad f \cdot \mu = g \cdot \mu.$$

Theorem 3 (Uniqueness of densities). Let $f, g \in \overline{\mathfrak{Z}}_+$ such that $f \cdot \mu = g \cdot \mu$. Then

- (i) $f \mu$ -integrable $\Rightarrow f = g \mu$ -a.e.,
- (ii) $\mu \sigma$ -finite $\Rightarrow f = g \mu$ -a.e.

Proof. Ad (i): It suffices to verify the claim: If f, g μ -integrable and

$$\forall A \in \mathfrak{A} : \int_A f \, d\mu \le \int_A g \, d\mu \quad \Rightarrow \quad f \le g \ \mu\text{-a.e.}$$

To this end, take $A = \{f > g\}$. By assumption,

$$-\infty < \int_A f \, d\mu \le \int_A g \, d\mu < \infty$$

and therefore $\int_A (f-g) d\mu \leq 0$. However,

$$1_A \cdot (f - g) \ge 0,$$

hence $\int_A (f-g) d\mu \ge 0$. Thus

$$\int 1_A \cdot (f - g) \, d\mu = 0.$$

Theorem 5.3 implies $1_A \cdot (f - g) = 0$ μ -a.e., and by definition of A we get $\mu(A) = 0$. Ad (ii): Assume first that μ is finite. Since for all $k \in \mathbb{N}$,

$$\infty \cdot \mu(\{f = \infty\} \setminus \{g \ge k\}) = \int_{\{f = \infty\} \setminus \{g \ge k\}} f \mathrm{d}\mu = \int_{\{f = \infty\} \setminus \{g \ge k\}} g \mathrm{d}\mu \le k\mu(\Omega) ,$$

we have that $\mu(\{f = \infty\} \setminus \{g \ge k\}) = 0$, and by σ -continuity from below, $\mu(\{f = \infty \setminus \{g = \infty\}\}) = 0$. By symmetry, we conclude

$$\mu(\{f=\infty\}\Delta\{g=\infty\})=0$$

Set $A_0 = \{f = \infty\} \cup \{g = \infty\}$, $A_1 = A_0^c$; then $\mathbf{1}_{A_0} f = \mathbf{1}_{A_0} g \mu$ -a.e., and we claim that

$$\mathbf{1}_{A_1} f = \mathbf{1}_{A_1} g \quad \mu \text{-a.e.}$$
 (2)

Since

$$A_1 \cap \{f > g\} = \bigcap_{n \in \mathbb{N}} \underbrace{\{n > f > g + 1/n\}}_{=:C_n},$$

we just have to show $\mu(C_n) = 0$. But

$$\int \mathbf{1}_{C_n} g \mathrm{d}\mu = \int \mathbf{1}_{C_n} f \mathrm{d}\mu \ge \int \mathbf{1}_{C_n} (g+1/n) = \int \mathbf{1}_{C_n} g \mathrm{d}\mu + \mu(B_n)/n \; .$$

Since further

$$\int \mathbf{1}_{C_n} g \mathrm{d}\mu = \int \mathbf{1}_{C_n} f \mathrm{d}\mu \le n \cdot \mu(\Omega) < \infty ,$$

this entails $\mu(C_n) = 0$, and hence $\mu(A_1 \cap \{f > g\}) = 0$; by symmetry, also $\mu(A_1 \cap \{g > f\}) = 0$, i.e., (2) follows.

Let now μ be just σ -finite, and let $B_n \in \mathfrak{A}$ be disjoint such that $\mu(B_n) < \infty$, $\bigcup_n B_n = \Omega$. Set $\mu_n(A) := \mu(A \cap B_n)$. Then μ_n are measures, and for all $A \in \mathfrak{A}$,

$$\mu(A) = \sum_{n} \mu_n(A)$$

Moreover, $f \cdot \mu_n = g \cdot \mu_n$, and by the first part we know that

$$f = g \qquad \mu_n - \text{-a.e.}, \quad \forall n \in \mathbb{N} .$$

But then

$$\mu(\{f \text{ not} = g\}) = \sum_{n} \mu_n(\{f \neq g\}) = 0.$$

Remark 2. Let $(\Omega, \mathfrak{A}, \mu) = (\mathbb{R}^k, \mathfrak{B}_k, \lambda_k)$ and $x \in \mathbb{R}^k$. There is no density $f \in \overline{\mathfrak{Z}}_+$ w.r.t. λ_k such that $\delta_x = f \cdot \lambda_k$ (recall δ_x the Dirac point measure). This follows from $\varepsilon_x(\{x\}) = 1$ and

$$(f \cdot \lambda_k)(\{x\}) = \int_{\{x\}} f \, d\lambda_k = 0$$

Definition 3. A measure ν on \mathfrak{A} is absolutely continuous w.r.t. μ if

$$\forall A \in \mathfrak{A} : \mu(A) = 0 \Rightarrow \nu(A) = 0.$$

Notation: $\nu \ll \mu$.

Remark 3.

- (i) $\nu = f \cdot \mu \Rightarrow \nu \ll \mu$.
- (ii) In Remark 2 neither $\varepsilon_x \ll \lambda_1$ nor $\lambda_1 \ll \varepsilon_x$.
- (iii) Let μ denote the counting measure on \mathfrak{A} . Then $\nu \ll \mu$ for every measure ν on \mathfrak{A} .
- (iv) Let μ denote the counting measure on \mathfrak{B}_1 . Then there is no density $f \in \overline{\mathfrak{Z}}_+$ such that $\lambda_1 = f \cdot \mu$.

Lemma 1. Let $f_n \xrightarrow{\mathfrak{L}^p} f$ and $A \in \mathfrak{A}$. If p = 1 or $\mu(A) < \infty$ then

$$\int_A f_n \, d\mu \to \int_A f \, d\mu$$

Proof. For p = 1, this follows from

$$\left|\int_{A} f_n \, d\mu - \int_{A} f \, d\mu\right| \le \int_{A} |f_n - f| \, \mathrm{d}\mu \to 0 ;$$

if $\mu(A) < \infty$ and p > 1 set 1/q = 1 - 1/p; then by Theorem 6.1,

$$\int \mathbf{1}_A \cdot |f_n - f| \, \mathrm{d}\mu \leq \underbrace{\left(\int \mathbf{1}_A^q\right)^{1/q}}_{=\mu(A)^{1/q} < \infty} \cdot \underbrace{\left(\int |f - f_n|^p\right)^{1/p}}_{\to 0} \, .$$

Theorem 4 (Radon, Nikodym). For every σ -finite measure μ and every measure ν on \mathfrak{A} we have

$$\nu \ll \mu \quad \Rightarrow \quad \exists f \in \mathfrak{Z}_+ : \nu = f \cdot \mu.$$

Proof. We will prove this only for finite measures (since we need it only for finite measures).

Step 1: We assume the stronger condition

$$\forall A \in \mathfrak{A} : \nu(A) \le \mu(A) \land \mu(\Omega) < \infty.$$

A class $\mathfrak{U} = \{A_1, \ldots, A_n\}$ is called a (finite measurable) partition of Ω iff $A_1, \ldots, A_n \in \mathfrak{A}$ are pairwise disjoint and $\bigcup_{i=1}^n A_i = \Omega$. The set of all partitions is partially ordered by

$$\mathfrak{U} \sqsubset \mathfrak{V} \quad \text{iff} \quad \forall A \in \mathfrak{U} \exists B \in \mathfrak{V} : A \subset B$$

The infimum of two partitions is given by

$$\mathfrak{U} \land \mathfrak{V} = \{A \cap B : A \in \mathfrak{U}, B \in \mathfrak{V}\}.$$

For any partition \mathfrak{U} we define

$$f_{\mathfrak{U}} = \sum_{A \in \mathfrak{U}} \alpha_A \cdot \mathbf{1}_A$$

with

$$\alpha_A = \begin{cases} \nu(A)/\mu(A) & \text{if } \mu(A) > 0\\ 0 & \text{otherwise.} \end{cases}$$

Clearly $f_{\mathfrak{U}} \in \Sigma_+(\Omega, \sigma(\mathfrak{U})) \subset \Sigma_+(\Omega, \mathfrak{A}), \ \sigma(\mathfrak{U}) = \mathfrak{U}^+ \cup \{\emptyset\}$, and

$$\forall A \in \sigma(\mathfrak{U}) : \nu(A) = \int_A f_{\mathfrak{U}} d\mu.$$

(Thus we have $\nu|_{\sigma(\mathfrak{U})} = f_{\mathfrak{U}} \cdot \mu|_{\sigma(\mathfrak{U})}$.) Let $\mathfrak{U} \sqsubset \mathfrak{V}$ and $A \in \mathfrak{V}$. Then

$$\nu(A) = \int_A f_{\mathfrak{V}} d\mu = \int_A f_{\mathfrak{U}} d\mu$$

since $A \in \sigma(\mathfrak{U})$. Hence

$$\int_{A} f_{\mathfrak{V}}^2 d\mu = \int_{A} f_{\mathfrak{V}} \cdot f_{\mathfrak{U}} d\mu,$$

since $f_{\mathfrak{V}}|_A$ is constant, and therefore

$$0 \leq \int (f_{\mathfrak{U}} - f_{\mathfrak{V}})^2 d\mu = \int f_{\mathfrak{U}}^2 d\mu - \int f_{\mathfrak{V}}^2 d\mu.$$
(3)

Put

$$\beta = \sup\left\{\int f_{\mathfrak{U}}^2 d\mu : \mathfrak{U} \text{ partition}\right\},\$$

and note that $0 \leq \beta \leq \mu(\Omega) < \infty$, since $f_{\mathfrak{U}} \leq 1$. Consider a sequence of functions $f_n = f_{\mathfrak{U}_n}$ such that

$$\lim_{n \to \infty} \int f_n^2 \, d\mu = \beta.$$

Due to (3) we may assume that $\mathfrak{U}_{n+1} \sqsubset \mathfrak{U}_n$. Then, by (3), $(f_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathfrak{L}^2 , so that there exists $f \in \mathfrak{L}^2$ with

$$\lim_{n \to \infty} \|f_n - f\|_2 = 0 \quad \land \quad 0 \le f \le 1 \ \mu\text{-a.e.},$$

see Theorem 6.3.

We claim that $\nu = f \cdot \mu$. Let $A \in \mathfrak{A}$. Put

$$\widetilde{\mathfrak{U}}_n = \mathfrak{U}_n \wedge \{A, A^c\}$$

and

$$\widetilde{f}_n = f_{\widetilde{\mathfrak{U}}_n}$$

Then

$$\nu(A) = \int_A \widetilde{f_n} \, d\mu = \int_A f_n \, d\mu + \int_A (\widetilde{f_n} - f_n) \, d\mu,$$

and (3) yields $\lim_{n\to\infty} \|\widetilde{f}_n - f_n\|_2 = 0$. It remains to apply Lemma 1. **Step 2:** We assume only that μ, ν are finite, and $\nu \ll \nu$. Then $\mu, \nu \leq \mu + \nu =: \tau$; by Step 1, we have densities $g, h: \Omega \to [0, 1]$ with $\mu = g \cdot \tau, \nu = h \cdot \tau$. Since

$$\mu(\{g=0\}) = \int_{\{g=0\}} d\mu = \int_{\{g=0\}} g d\tau = 0$$

and $\nu \ll \mu$, $\nu(\{g = 0\}) = 0$. The function

$$f(x) := \begin{cases} h(x)/g(x), & g(x) \neq 0, \\ 0, & g(x) = 0, \end{cases}$$

is now a density for ν :

$$\nu(A) = \int_{A \cap \{g \neq 0\}} \underbrace{h}_{=fg} \, \mathrm{d}\tau = \int_{A \cap \{g \neq 0\}} f \, \mathrm{d}\mu = \int_A f \, \mathrm{d}\mu \; .$$