Chapter II

Measure and Integral

1 Classes of Sets

Given: a non-empty set Ω and a class $\mathfrak{A} \subset \mathfrak{P}(\Omega)$ of subsets. Put

$$
\mathfrak{A}^{+}=\left\{\bigcup_{i=1}^{n} A_{i}: n \in \mathbb{N} \wedge A_{1}, \ldots, A_{n} \in \mathfrak{A} \text { pairwise disjoint }\right\} .
$$

Definition 1.

(i) \mathfrak{A} closed w.r.t. intersections or \cap-closed iff $A, B \in \mathfrak{A} \Rightarrow A \cap B \in \mathfrak{A}$.
(ii) \mathfrak{A} closed w.r.t. unions or \cup-closed iff $A, B \in \mathfrak{A} \Rightarrow A \cup B \in \mathfrak{A}$.
(iii) \mathfrak{A} closed w.r.t. complements or ${ }^{c}$-closed iff $A \in \mathfrak{A} \Rightarrow A^{c}:=\Omega \backslash A \in \mathfrak{A}$.
(iv) \mathfrak{A} semi-algebra (in Ω) if
(a) $\Omega \in \mathfrak{A}$,
(b) $\mathfrak{A} \cap$-closed,
(c) $A \in \mathfrak{A} \Rightarrow A^{c} \in \mathfrak{A}^{+}$.
(v) \mathfrak{A} algebra (in Ω) if
(a) $\Omega \in \mathfrak{A}$,
(b) $\mathfrak{A} \cap$-closed,
(c) \mathfrak{A}^{c}-closed.
(vi) $\mathfrak{A} \sigma$-algebra (in Ω) if
(a) $\Omega \in \mathfrak{A}$,
(b) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \Rightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathfrak{A}$,
(c) \mathfrak{A}^{c}-closed.

Remark 1. Let \mathfrak{A} denote a σ-algebra in Ω. Recall that a probability measure P on (Ω, \mathfrak{A}) is a mapping

$$
P: \mathfrak{A} \rightarrow[0,1]
$$

such that $P(\Omega)=1$ and

$$
A_{1}, A_{2}, \ldots \in \mathfrak{A} \text { pairwise disjoint } \Rightarrow P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Moreover, $(\Omega, \mathfrak{A}, P)$ is called a probability space, and $P(A)$ is the probability of the event $A \in \mathfrak{A}$.

Remark 2.

(i) $\mathfrak{A} \sigma$-algebra $\Rightarrow \mathfrak{A}$ algebra $\Rightarrow \mathfrak{A}$ semi-algebra.
(ii) \mathfrak{A} closed w.r.t. intersections $\Rightarrow \mathfrak{A}^{+}$closed w.r.t. intersections.
(iii) \mathfrak{A} algebra and $A_{1}, A_{2} \in \mathfrak{A} \Rightarrow A_{1} \cup A_{2}, A_{1} \backslash A_{2}, A_{1} \triangle A_{2} \in \mathfrak{A}$.
(iv) $\mathfrak{A} \sigma$-algebra and $A_{1}, A_{2}, \cdots \in \mathfrak{A} \Rightarrow \bigcap_{n=1}^{\infty} A_{n} \in \mathfrak{A}$.

Example 1.

(i) Let $\Omega=\mathbb{R}$ and consider the class of intervals

$$
\mathfrak{A}=\{] a, b]: a, b \in \mathbb{R} \wedge a<b\} \cup]-\infty, b]: b \in \mathbb{R}\} \cup] a, \infty[: a \in \mathbb{R}\} \cup\{\mathbb{R}, \emptyset\}
$$

Then \mathfrak{A} is a semi-algebra, but not an algebra.
(ii) $\left\{A \in \mathfrak{P}(\Omega): A\right.$ finite or A^{c} finite $\}$ is an algebra, but not a σ-algebra in general.
(iii) $\left\{A \in \mathfrak{P}(\Omega): A\right.$ countable or A^{c} countable $\}$ is a σ-algebra.
(iv) $\mathfrak{P}(\Omega)$ is the largest σ-algebra in $\Omega,\{\emptyset, \Omega\}$ is the smallest σ-algebra in Ω.

Definition 2.

(i) \mathfrak{A} monotone class (in Ω) if
(a) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \wedge A_{n} \uparrow A^{1} \Rightarrow A \in \mathfrak{A}$,
(b) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \wedge A_{n} \downarrow A^{2} \Rightarrow A \in \mathfrak{A}$.
(ii) \mathfrak{A} Dynkin class (in Ω) if
(a) $\Omega \in \mathfrak{A}$,
(b) $A_{1}, A_{2} \in \mathfrak{A} \wedge A_{1} \subset A_{2} \Rightarrow A_{2} \backslash A_{1} \in \mathfrak{A}$,
(c) $A_{1}, A_{2}, \ldots \in \mathfrak{A}$ pairwise disjoint $\Rightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathfrak{A}$.

Remark 3. $\mathfrak{A} \sigma$-algebra $\Rightarrow \mathfrak{A}$ monotone class and Dynkin class.

[^0]
Theorem 1.

(i) For every algebra \mathfrak{A}

$$
\mathfrak{A} \sigma \text {-algebra } \quad \Leftrightarrow \quad \mathfrak{A} \text { monotone class. }
$$

(ii) For every Dynkin class \mathfrak{A}

$$
\mathfrak{A} \sigma \text {-algebra } \quad \Leftrightarrow \quad \mathfrak{A} \text { closed w.r.t. intersections. }
$$

Proof. Ad (i), ' \Leftarrow ': Let $A_{1}, A_{2}, \ldots \in \mathfrak{A}$ and put $B_{m}=\bigcup_{n=1}^{m} A_{n}$ and $B=\bigcup_{n=1}^{\infty} A_{n}$. Then $B_{m} \uparrow B$. Furthermore, $B_{m} \in \mathfrak{A}$ since \mathfrak{A} is an algebra. Thus $B \in \mathfrak{A}$ since \mathfrak{A} is a monotone class.
Ad (ii), ' \Leftarrow ': For $A \in \mathfrak{A}$ we have $A^{c}=\Omega \backslash A \in \mathfrak{A}$ since \mathfrak{A} is a Dynkin class. For $A, B \in \mathfrak{A}$ we have

$$
A \cup B=A \cup(B \backslash(A \cap B)) \in \mathfrak{A}
$$

since \mathfrak{A} is also closed w.r.t. intersections. Thus, for $A_{1}, A_{2}, \ldots \in \mathfrak{A}$ and B_{m} as previously we get $B_{m} \in \mathfrak{A}$ and

$$
\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{m=1}^{\infty}\left(B_{m} \backslash B_{m-1}\right) \in \mathfrak{A}
$$

where $B_{0}=\emptyset$.
Remark 4. Consider σ-algebras (algebras, monotone classes, Dynkin classes) \mathfrak{A}_{i} for $i \in I \neq \emptyset$. Then $\bigcap_{i \in I} \mathfrak{A}_{i}$ is a σ-algebra (algebra, monotone class, Dynkin class), too.

Given: a class $\mathfrak{E} \subset \mathfrak{P}(\Omega)$.
Definition 3. The σ-algebra generated by \mathfrak{E}

$$
\sigma(\mathfrak{E})=\bigcap\{\mathfrak{A}: \mathfrak{A} \sigma \text {-algebra in } \Omega \wedge \mathfrak{E} \subset \mathfrak{A}\} .
$$

Analogously, $\alpha(\mathfrak{E}), m(\mathfrak{E}), \delta(\mathfrak{E})$ the algebra, monotone class, Dynkin class, respectively, generated by \mathfrak{E}.

Remark 5. For $\gamma \in\{\sigma, \alpha, m, \delta\}$ and $\mathfrak{E}, \mathfrak{E}_{1}, \mathfrak{E}_{2} \subset \mathfrak{P}(\Omega)$
(i) $\gamma(\mathfrak{E})$ is the smallest ' γ-class' that contains \mathfrak{E},
(ii) $\mathfrak{E}_{1} \subset \mathfrak{E}_{2} \Rightarrow \gamma\left(\mathfrak{E}_{1}\right) \subset \gamma\left(\mathfrak{E}_{2}\right)$,
(iii) $\gamma(\gamma(\mathfrak{E}))=\gamma(\mathfrak{E})$.

Example 2. Let $\Omega=\mathbb{N}$ and $\mathfrak{E}=\{\{n\}: n \in \mathbb{N}\}$. Then

$$
\alpha(\mathfrak{E})=\left\{A \in \mathfrak{P}(\Omega): A \text { finite or } A^{c} \text { finite }\right\}=: \mathfrak{A} .
$$

Proof: \mathfrak{A} is an algebra, see Example 1, and $\mathfrak{E} \subset \mathfrak{A}$. Thus $\alpha(\mathfrak{E}) \subset \mathfrak{A}$. On the other hand, for every finite set $A \subset \Omega$ we have $A=\bigcup_{n \in A}\{n\} \in \alpha(\mathfrak{E})$, and for every set $A \subset \Omega$ with finite complement we have $A=\left(A^{c}\right)^{c} \in \alpha(\mathfrak{E})$. Thus $\mathfrak{A} \subset \alpha(\mathfrak{E})$. Moreover,

$$
\sigma(\mathfrak{E})=\mathfrak{P}(\mathbb{N}), \quad m(\mathfrak{E})=\mathfrak{E}, \quad \delta(\mathfrak{E})=\mathfrak{P}(\mathbb{N}) .
$$

Theorem 2. [Monotone class theorem, set version]
(i) \mathfrak{E} closed w.r.t. intersections $\Rightarrow \sigma(\mathfrak{E})=\delta(\mathfrak{E})$.
(ii) \mathfrak{E} algebra $\Rightarrow \sigma(\mathfrak{E})=m(\mathfrak{E})$.

Proof. Ad (i): Remark 3 implies

$$
\delta(\mathfrak{E}) \subset \sigma(\mathfrak{E}) .
$$

We claim that

$$
\begin{equation*}
\delta(\mathfrak{E}) \text { is closed w.r.t. intersections. } \tag{1}
\end{equation*}
$$

Then, by Theorem 1.(ii),

$$
\sigma(\mathfrak{E}) \subset \delta(\mathfrak{E})
$$

Put

$$
\mathfrak{C}_{B}=\{C \subset \Omega: C \cap B \in \delta(\mathfrak{E})\}, \quad B \in \delta(\mathfrak{E}),
$$

so that (1) is equivalent to

$$
\begin{equation*}
\forall B \in \delta(\mathfrak{E}): \delta(\mathfrak{E}) \subset \mathfrak{C}_{B} \tag{2}
\end{equation*}
$$

It is straightforward to verify that

$$
\begin{equation*}
\forall B \in \delta(\mathfrak{E}): \mathfrak{C}_{B} \text { Dynkin class } \tag{3}
\end{equation*}
$$

Moreover, since \mathfrak{E} is closed w.r.t. intersections,

$$
\forall E \in \mathfrak{E}: \mathfrak{E} \subset \mathfrak{C}_{E} .
$$

Therefore

$$
\forall E \in \mathfrak{E}: \delta(\mathfrak{E}) \subset \mathfrak{C}_{E},
$$

i.e., for all $E \in \mathfrak{E}, B \in \delta(\mathfrak{E}), E \cap B \in \delta(\mathfrak{E})$; hence

$$
\forall B \in \delta(\mathfrak{E}): \mathfrak{E} \subset \mathfrak{C}_{B} .
$$

Since \mathfrak{C}_{B} is a Dynkin system, $\delta(B) \subset \mathfrak{C}_{B}$.
Ad (ii): Obviously, $m(\mathfrak{E}) \subset \sigma(\mathfrak{E})$. By Part (ii) of Theorem 1, it is enough to show that $m(\mathfrak{E})$ is an algebra. This amounts to the claim that

$$
\begin{equation*}
m(\mathfrak{E}) \text { is }{ }^{c} \text {-closed and } \cap \text {-closed . } \tag{4}
\end{equation*}
$$

First, the class

$$
\mathfrak{C}:=\left\{A \in m(\mathfrak{E}): A^{c} \in m(\mathfrak{E})\right\}
$$

is monotone, contains \mathfrak{E} by assumption, and thus equals $m(\mathfrak{E})$. Second, in complete analogy to Part (i), for $B \in m(\mathfrak{E})$ it follows that the set

$$
\mathfrak{C}_{B}=\{C \subset \Omega: C \cap B \in m(\mathfrak{E})\}
$$

is a monotone class containing \mathfrak{E} and thus $m(\mathfrak{E})$, so that $m(\mathfrak{E})$ is indeed \cap-closed.

Lemma 1. \mathfrak{E} semi-algebra $\Rightarrow \alpha(\mathfrak{E})=\mathfrak{E}^{+}$.
Proof. Clearly $\mathfrak{E E} \subset \mathfrak{E}^{+} \subset \alpha(\mathfrak{E})$. It remains to show that \mathfrak{E}^{+}is an algebra. For

$$
\begin{aligned}
& A=\bigcup_{i=1}^{n} A_{i} \in \mathfrak{E}^{+}, \quad A_{i} \in \mathfrak{E} \text { disjoint, } \\
& B=\bigcup_{i=1}^{n} B_{i} \in \mathfrak{E}^{+}, \quad B_{i} \in \mathfrak{E} \text { disjoint, } \\
& A \cap B=\bigcup_{\substack{i \leq n \\
j \leq m}}\left(A_{i} \cap B_{j}\right), \quad\left(A_{i} \cap B_{j}\right) \in \mathfrak{E} \text { disjoint. }
\end{aligned}
$$

Hence \mathfrak{E}^{+}is \cap-stable. For

$$
A=\bigcup_{i=1}^{n} A_{i} \in \mathfrak{E}^{+}, \quad A_{i} \in \mathfrak{E} \text { disjoint },
$$

with

$$
A_{i}^{c}=\bigcup_{j \leq n_{i}} B_{j}^{i}, \quad B_{j}^{i} \in \mathfrak{E} \text { disjoint }
$$

we have

$$
\begin{aligned}
A^{c} & =\bigcap_{i \leq n} \bigcup_{j \leq n_{i}} B_{j}^{i} \\
& =\bigcup_{\substack{\left(j_{1}, \ldots, j_{n}\right) \\
j_{i} \leq n_{i}}}(\underbrace{\bigcap_{i=1}^{n} B_{j_{i}}^{i}}_{\in \mathfrak{E} \text { disjoint }}) .
\end{aligned}
$$

Hence $A^{c} \in \mathfrak{E}^{+}$, and \mathfrak{E}^{+}is an algebra.
Put

$$
\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}
$$

and equip this with the metric $d(x, y):=|\arctan (x)-\arctan (y)|$. Then $\overline{\mathbb{R}}$ is a complete, compact, separable, order complete metric space. For $a \in \mathfrak{R}$ set

$$
\begin{gathered}
(\pm \infty)+(\pm \infty)=a+(\pm \infty)=(\pm \infty)+a= \pm \infty, \quad a / \pm \infty=0 \\
a \cdot(\pm \infty)=(\pm \infty) \cdot a= \begin{cases} \pm \infty & \text { if } a>0 \\
0 & \text { if } a=0 \\
\mp \infty & \text { if } a<0\end{cases}
\end{gathered}
$$

as well as $-\infty<a<\infty$.
Recall that (Ω, \mathfrak{G}) is a topological space iff $\mathfrak{G} \subset \mathfrak{P}(\Omega)$ satisfies
(i) $\emptyset, \Omega \in \mathfrak{G}$,
(ii) \mathfrak{G} is closed w.r.t. to intersections,
(iii) for every family $\left(G_{i}\right)_{i \in I}$ with $G_{i} \in \mathfrak{G}$ we have $\bigcup_{i \in I} G_{i} \in \mathfrak{G}$.
\mathfrak{G} is the set of open subsets of Ω, and the complements of open sets are the closed subsets of Ω. $K \subset \Omega$ is compact iff for every family $\left(G_{i}\right)_{i \in I}$ with $G_{i} \in \mathfrak{G}$ and

$$
K \subset \bigcup_{i \in I} G_{i}
$$

there is a finite set $I_{0} \subset I$ such that

$$
K \subset \bigcup_{i \in I_{0}} G_{i} .
$$

For $\Omega=\mathbb{R}^{k}$ and $\Omega=\overline{\mathbb{R}}^{k}$, we consider the natural (product) topologies $\mathfrak{G}_{k}, \overline{\mathfrak{G}}_{k}$.
Definition 4. For every topological space (Ω, \mathfrak{G})

$$
\mathfrak{B}(\Omega)=\sigma(\mathfrak{G})
$$

is the Borel- σ-algebra (in Ω w.r.t. \mathfrak{G}). We shorten

$$
\mathfrak{B}=\mathfrak{B}(\mathbb{R}), \quad \overline{\mathfrak{B}}=\mathfrak{B}(\overline{\mathbb{R}}), \quad \mathfrak{B}_{k}=\mathfrak{B}\left(\mathbb{R}^{k}\right), \overline{\mathfrak{B}}_{k}=\mathfrak{B}\left(\overline{\mathbb{R}}^{k}\right),
$$

Remark 6. We have

$$
\begin{aligned}
\mathfrak{B}_{k} & =\sigma\left(\left\{F \subset \mathbb{R}^{k}: F \text { closed }\right\}\right)=\sigma\left(\left\{K \subset \mathbb{R}^{k}: K \text { compact }\right\}\right) \\
& \left.\left.\left.\left.=\sigma(\{]-\infty, a]: a \in \mathbb{R}^{k}\right\}\right)=\sigma(\{]-\infty, a]: a \in \mathbb{Q}^{k}\right\}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\overline{\mathfrak{B}}=\{B \subset \overline{\mathbb{R}}: B \cap \mathbb{R} \in \mathfrak{B}\} \tag{5}
\end{equation*}
$$

One can prove that $\# \mathfrak{B}_{k}=\# \mathbb{R}^{k}$, and thus

$$
\mathfrak{B}_{k} \nsubseteq \mathfrak{P}\left(\mathbb{R}^{k}\right)
$$

see Billingsley (1979, Exercise 2.21).
Definition 5. For any σ-algebra \mathfrak{A} in Ω and $\widetilde{\Omega} \subset \Omega$

$$
\widetilde{\mathfrak{A}}=\{\widetilde{\Omega} \cap A: A \in \mathfrak{A}\}
$$

is the trace- σ-algebra of \mathfrak{A} in $\widetilde{\Omega}$, sometimes denoted by $\widetilde{\Omega} \cap \mathfrak{A}$.

Remark 7.

(i) $\widetilde{\mathfrak{A}}$ is a σ-algebra in $\widetilde{\Omega}$.
(ii) $\widetilde{\mathfrak{A}} \not \subset \mathfrak{A}$ in general, but if $\widetilde{\Omega} \in \mathfrak{A}$, then $\widetilde{\mathfrak{A}}=\{A \in \mathfrak{A}: A \subset \widetilde{\Omega}\}$.
(iii) $\mathfrak{A}=\sigma(\mathfrak{E}) \Rightarrow \tilde{\mathfrak{A}}=\sigma(\{\widetilde{\Omega} \cap E: E \in \mathfrak{E}\})$.
(iv) $\mathfrak{B}_{k}=\mathbb{R}^{k} \cap \overline{\mathfrak{B}}_{k}$, see (5) for $k=1$.
(v) $\left[a, b\left[\cap \mathfrak{B}_{k}=\sigma(\{[a, c[: a \leq c \leq b\})\right.\right.$, see (iii).

2 Measurable Mappings

Definition 1. (Ω, \mathfrak{A}) is called measurable space iff $\Omega \neq \emptyset$ and \mathfrak{A} is a σ-algebra in Ω. Elements $A \in \mathfrak{A}$ are called ($\mathfrak{A}-$) measurable sets.

In the sequel, $\left(\Omega_{i}, \mathfrak{A}_{i}\right)$ are measurable spaces for $i=1,2,3$.
Remark 1. Let $f: \Omega_{1} \rightarrow \Omega_{2}$. For $B \in \mathfrak{A}_{2}$, we set in short

$$
\{f \in B\}=f^{-1}(B)=\left\{\omega \in \Omega_{1}: f(\omega) \in B\right\} \subset \Omega_{1}
$$

(i) $f^{-1}\left(\mathfrak{A}_{2}\right)=\left\{f^{-1}(A): A \in \mathfrak{A}_{2}\right\}$ is a σ-algebra in Ω_{1}.
(ii) $\left\{A \subset \Omega_{2}: f^{-1}(A) \in \mathfrak{A}_{1}\right\}$ is a σ-algebra in Ω_{2}.

Definition 2. $f: \Omega_{1} \rightarrow \Omega_{2}$ is $\mathfrak{A}_{1}-\mathfrak{A}_{2}$-measurable iff $f^{-1}\left(\mathfrak{A}_{2}\right) \subset \mathfrak{A}_{1}$. i.e., iff for all $A \in \mathfrak{A}_{2}$ we have $\{f \in A\} \in \mathfrak{A}_{1}$.

How can we prove measurability of a given mapping?
Theorem 1. If $f: \Omega_{1} \rightarrow \Omega_{2}$ is $\mathfrak{A}_{1}-\mathfrak{A}_{2}$-measurable and $g: \Omega_{2} \rightarrow \Omega_{3}$ is $\mathfrak{A}_{2}-\mathfrak{A}_{3}-$ measurable, then $g \circ f: \Omega_{1} \rightarrow \Omega_{3}$ is $\mathfrak{A}_{1}-\mathfrak{A}_{3}$-measurable.

Proof. (Compare Bemerkung 5.4,(i), Analysis IV)

$$
(g \circ f)^{-1}\left(\mathfrak{A}_{3}\right)=f^{-1}\left(g^{-1}\left(\mathfrak{A}_{3}\right)\right) \subset f^{-1}\left(\mathfrak{A}_{2}\right) \subset \mathfrak{A}_{1} .
$$

Lemma 1. For $f: \Omega_{1} \rightarrow \Omega_{2}$ and $\mathfrak{E} \subset \mathfrak{P}\left(\Omega_{2}\right)$

$$
f^{-1}(\sigma(\mathfrak{E}))=\sigma\left(f^{-1}(\mathfrak{E})\right) .
$$

Proof. By $f^{-1}(\mathfrak{E}) \subset f^{-1}(\sigma(\mathfrak{E}))$ and Remark 1.(i) we get $\sigma\left(f^{-1}(\mathfrak{E})\right) \subset f^{-1}(\sigma(\mathfrak{E}))$.
Let $\mathfrak{F}=\left\{A \subset \Omega_{2}: f^{-1}(A) \in \sigma\left(f^{-1}(\mathfrak{E})\right)\right\}$. Then $\mathfrak{E} \subset \mathfrak{F}$ and \mathfrak{F} is a σ-algebra, see Remark 1.(ii). Thus we get $\sigma(\mathfrak{E}) \subset \mathfrak{F}$, i.e., $f^{-1}(\sigma(\mathfrak{E})) \subset \sigma\left(f^{-1}(\mathfrak{E})\right)$.

Theorem 2. If $\mathfrak{A}_{2}=\sigma(\mathfrak{E})$ with $\mathfrak{E} \subset \mathfrak{P}\left(\Omega_{2}\right)$, then

$$
f \text { is } \mathfrak{A}_{1}-\mathfrak{A}_{2} \text {-measurable } \quad \Leftrightarrow \quad f^{-1}(\mathfrak{E}) \subset \mathfrak{A}_{1} .
$$

Proof. (compare Lemma 5.2, Analysis IV) ' \Rightarrow ' is trivial, $' \Leftarrow$ ': Assume that $f^{-1}(\mathfrak{E}) \subset \mathfrak{A}_{1}$. By Lemma 1 ,

$$
f^{-1}\left(\mathfrak{A}_{2}\right)=f^{-1}(\sigma(\mathfrak{E}))=\sigma\left(f^{-1}(\mathfrak{E})\right) \subset \sigma\left(\mathfrak{A}_{1}\right)=\mathfrak{A}_{1} .
$$

Corollary 1. Let $\left(\Omega_{i}, \mathfrak{G}_{i}\right)$ be topological spaces. Then every continuous $f: \Omega_{1} \rightarrow \Omega_{2}$ is $\mathfrak{B}\left(\Omega_{1}\right)$ - $\mathfrak{B}\left(\Omega_{2}\right)$-measurable.

Proof. (Compare Korollar 5.3, Analysis IV) For continuous f we have

$$
f^{-1}\left(\mathfrak{G}_{2}\right) \subset \mathfrak{G}_{1} \subset \sigma\left(\mathfrak{G}_{1}\right)=\mathfrak{B}\left(\Omega_{1}\right)
$$

Theorem 2 shows the claim.
Given: measurable spaces $\left(\Omega_{i}, \mathfrak{A}_{i}\right)$ for $i \in I \neq \emptyset$, mappings $f_{i}: \Omega \rightarrow \Omega_{i}$ for $i \in I$ and some non-empty set Ω.

Definition 3. The σ-algebra generated by $\left(f_{i}\right)_{i \in I}$ (and $\left.\left(\mathfrak{A}_{i}\right)_{i \in I}\right)$

$$
\sigma\left(\left\{f_{i}: i \in I\right\}\right)=\sigma\left(\bigcup_{i \in I} f_{i}^{-1}\left(\mathfrak{A}_{i}\right)\right)
$$

Moreover, set $\sigma(f)=\sigma(\{f\})$.
Remark 2. $\sigma\left(\left\{f_{i}: i \in I\right\}\right)$ is the smallest σ-algebra \mathfrak{A} in Ω such that all mappings f_{i} are $\mathfrak{A}-\mathfrak{A}_{i}$-measurable.

Theorem 3. For every measurable space $(\widetilde{\Omega}, \widetilde{\mathfrak{A}})$ and every mapping $g: \widetilde{\Omega} \rightarrow \Omega$,

$$
g \text { is } \widetilde{\mathfrak{A}}-\sigma\left(\left\{f_{i}: i \in I\right\}\right) \text {-measurable } \quad \Leftrightarrow \quad \forall i \in I: f_{i} \circ g \text { is } \widetilde{\mathfrak{A}}-\mathfrak{A}_{i} \text {-measurable. }
$$

Proof. Use Lemma 1 to obtain

$$
g^{-1}\left(\sigma\left(\left\{f_{i}: i \in I\right\}\right)\right)=\sigma\left(g^{-1}\left(\bigcup_{i \in I} f_{i}^{-1}\left(\mathfrak{A}_{i}\right)\right)\right)=\sigma\left(\bigcup_{i \in I}\left(f_{i} \circ g\right)^{-1}\left(\mathfrak{A}_{i}\right)\right) .
$$

Therefore

$$
g^{-1}\left(\sigma\left(\left\{f_{i}: i \in I\right\}\right)\right) \subset \widetilde{\mathfrak{A}} \quad \Leftrightarrow \quad \forall i \in I: f_{i} \circ g_{i} \text { is } \widetilde{\mathfrak{A}}-\mathfrak{A}_{i} \text {-measurable. }
$$

Now we turn to the particular case of functions with values in \mathbb{R} or $\overline{\mathbb{R}}$, and we consider the Borel σ-algebra in \mathbb{R} or $\overline{\mathbb{R}}$, respectively. For any measurable space (Ω, \mathfrak{A}) we use the following notation

$$
\begin{aligned}
\mathfrak{Z}(\Omega, \mathfrak{A}) & =\{f: \Omega \rightarrow \mathbb{R}: f \text { is } \mathfrak{A} \text { - } \mathfrak{B} \text {-measurable }\}, \\
\mathfrak{Z}_{+}(\Omega, \mathfrak{A}) & =\{f \in \mathfrak{Z}(\Omega, \mathfrak{A}): f \geq 0\}, \\
\overline{\mathfrak{Z}}(\Omega, \mathfrak{A}) & =\{f: \Omega \rightarrow \overline{\mathbb{R}}: f \text { is } \mathfrak{A} \overline{\mathfrak{B}} \text {-measurable }\}, \\
\overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A}) & =\{f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A}): f \geq 0\} .
\end{aligned}
$$

Every function $f: \Omega \rightarrow \mathbb{R}$ may also be considered as a function with values in $\overline{\mathbb{R}}$, and in this case $f \in \mathfrak{Z}(\Omega, \mathfrak{A})$ iff $f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$.

Corollary 2. For $\prec \in\{\leq,<, \geq,>\}$ and $f: \Omega \rightarrow \overline{\mathbb{R}}$,

$$
f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A}) \quad \Leftrightarrow \quad \forall a \in \mathbb{R}:\{f \prec a\} \in \mathfrak{A} .
$$

Proof. (Compare Satz 5.6, Bem.5.7, Analysis IV) For instance, $\overline{\mathfrak{B}}=\sigma(\{[-\infty, a]: a \in \mathbb{R}\})$ and

$$
\{f \leq a\}=f^{-1}([-\infty, a])
$$

and $\overline{\mathfrak{B}}=\sigma(\{[-\infty, a]: a \in \mathbb{R}\})$, see Remark 1.6. It remains to apply Theorem 2.
Theorem 4. For $f, g \in \overline{\mathfrak{J}}(\Omega, \mathfrak{A})$ and $\prec \in\{\leq,<, \geq,>,=, \neq\}$,

$$
\{\omega \in \Omega: f(\omega) \prec g(\omega)\} \in \mathfrak{A} .
$$

Proof. For instance, Corollary 2 yields

$$
\begin{aligned}
\{\omega \in \Omega: f(\omega)<g(\omega)\} & =\bigcup_{q \in \mathbb{Q}}\{f<q<g\} \\
& =\bigcup_{q \in \mathbb{Q}}(\{f<q\} \cap\{g>q\}) \in \mathfrak{A} .
\end{aligned}
$$

Theorem 5. For every sequence $f_{1}, f_{2}, \ldots \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,
(i) $\inf _{n \in \mathbb{N}} f_{n}, \sup _{n \in \mathbb{N}} f_{n} \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,
(ii) $\liminf _{n \rightarrow \infty} f_{n}, \limsup \operatorname{sum}_{n \rightarrow \infty} f_{n} \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,
(iii) if $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges at every point $\omega \in \Omega$, then $\lim _{n \rightarrow \infty} f_{n} \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$.

Proof. (Compare Satz 5.8, 5.9, Analysis IV) For $a \in \mathbb{R}$

$$
\left\{\inf _{n \in \mathbb{N}} f_{n}<a\right\}=\bigcup_{n \in \mathbb{N}}\left\{f_{n}<a\right\}, \quad\left\{\sup _{n \in \mathbb{N}} f_{n} \leq a\right\}=\bigcap_{n \in \mathbb{N}}\left\{f_{n} \leq a\right\}
$$

Hence, Corollary 2 yields (i). Since

$$
\limsup _{n \rightarrow \infty} f_{n}=\inf _{m \in \mathbb{N}} \sup _{n \geq m} f_{n}, \quad \liminf _{n \rightarrow \infty} f_{n}=\sup _{m \in \mathbb{N}} \inf _{n \geq m} f_{n},
$$

we obtain (ii) from (i). Finally, (iii) follows from (ii).
By

$$
f^{+}=\max (0, f), \quad f^{-}=\max (0,-f)
$$

we denote the positive part and the negative part, respectively, of $f: \Omega \rightarrow \overline{\mathbb{R}}$.
Remark 3. For $f \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ we have $f^{+}, f^{-},|f| \in \overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$.
Theorem 6. For $f, g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$,

$$
f \pm g, f \cdot g, f / g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})
$$

provided that these functions are well defined.

Proof. (Compare Folgerung 5.5, Analysis IV) The proof is again based on Corollary 2. For simplicity we only consider the case that f and g are real-valued. Clearly $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ implies $-g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$, too. Furthermore, for every $a \in \mathbb{R}$,

$$
\{f+g<a\}=\bigcup_{q \in \mathbb{Q}}\{f<q\} \cap\{g<a-q\},
$$

and therefore $f \pm g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$. Clearly $f \cdot g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ if f is constant. Moreover, $x \mapsto x^{2}$ defines a \mathfrak{B} - \mathfrak{B}-measurable function, see Corollary 1 , and

$$
f \cdot g=1 / 4 \cdot\left((f+g)^{2}-(f-g)^{2}\right)
$$

We apply Theorem 1 to obtain $f \cdot g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ in general. Finally, it is easy to show that $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ implies $1 / g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$.

Definition 4. $f \in \mathfrak{Z}(\Omega, \mathfrak{A})$ is called simple function if $|f(\Omega)|<\infty$. Put

$$
\begin{aligned}
\Sigma(\Omega, \mathfrak{A}) & =\{f \in \mathfrak{Z}(\Omega, \mathfrak{A}): f \text { simple }\}, \\
\Sigma_{+}(\Omega, \mathfrak{A}) & =\{f \in \Sigma(\Omega, \mathfrak{A}): f \geq 0\} .
\end{aligned}
$$

Remark 4. $f \in \Sigma(\Omega, \mathfrak{A})$ iff

$$
f=\sum_{i=1}^{n} \alpha_{i} \cdot 1_{A_{i}}
$$

with $\alpha_{1}, \ldots \alpha_{n} \in \mathbb{R}$ pairwise different and $A_{1}, \ldots, A_{n} \in \mathfrak{A}$ pairwise disjoint such that $\bigcup_{i=1}^{n} A_{i}=\Omega$.

Theorem 7. (Compare Theorem 5.11, Analysis IV) For every (bounded) function $f \in \overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$ there exists a sequence $f_{1}, f_{2}, \cdots \in \Sigma_{+}(\Omega, \mathfrak{A})$ such that $f_{n} \uparrow f$ (with uniform convergence).

Proof. Let $n \in N$ and put

$$
f_{n}=\sum_{k=1}^{n \cdot 2^{n}} \frac{k-1}{2^{n}} \cdot 1_{A_{n, k}}+n \cdot 1_{B_{n}}
$$

where

$$
A_{n, k}=\left\{(k-1) /\left(2^{n}\right) \leq f<k /\left(2^{n}\right)\right\}, \quad B_{n}=\{f \geq n\} .
$$

Now we consider a mapping $T: \Omega_{1} \rightarrow \Omega_{2}$ and a σ-algebra \mathfrak{A}_{2} in Ω_{2}. We characterize measurability of functions with respect to $\sigma(T)=T^{-1}\left(\mathfrak{A}_{2}\right)$.

Theorem 8 (Factorization Lemma). For every function $f: \Omega_{1} \rightarrow \overline{\mathbb{R}}$

$$
f \in \overline{\mathfrak{Z}}\left(\Omega_{1}, \sigma(T)\right) \quad \Leftrightarrow \quad \exists g \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right): f=g \circ T .
$$

Proof. ' \Leftarrow ' is trivially satisfied. ' \Rightarrow ': First, assume that $f \in \Sigma_{+}\left(\Omega_{1}, \sigma(T)\right)$, i.e.,

$$
f=\sum_{i=1}^{n} \alpha_{i} \cdot 1_{A_{i}}
$$

with pairwise disjoint sets $A_{1}, \ldots, A_{n} \in \sigma(T)$. Take pairwise disjoint sets $B_{1}, \ldots, B_{n} \in$ \mathfrak{A}_{2} such that $A_{i}=T^{-1}\left(B_{i}\right)$ and put

$$
g=\sum_{i=1}^{n} \alpha_{i} \cdot 1_{B_{i}}
$$

Clearly $f=g \circ T$ and $g \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right)$.
Now, assume that $f \in \overline{\mathfrak{Z}}_{+}\left(\Omega_{1}, \sigma(T)\right)$. Take a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\Sigma_{+}\left(\Omega_{1}, \sigma(T)\right)$ according to Theorem 7. We already know that $f_{n}=g_{n} \circ T$ for suitable $g_{n} \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right)$. Hence

$$
f=\sup _{n} f_{n}=\sup _{n}\left(g_{n} \circ T\right)=\left(\sup _{n} g_{n}\right) \circ T=g \circ T
$$

where $g=\sup _{n} g_{n} \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right)$.
In the general case, we already know that

$$
f^{+}=g_{1} \circ T, \quad f^{-}=g_{2} \circ T
$$

for suitable $g_{1}, g_{2} \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right)$. Put

$$
C=\left\{g_{1}=g_{2}=\infty\right\} \in \mathfrak{A}_{2},
$$

and observe that $T\left(\Omega_{1}\right) \cap C=\emptyset$ since $f=f^{+}-f^{-}$. We conclude that $f=g \circ T$ where

$$
g=g_{1} \cdot 1_{D}-g_{2} \cdot 1_{D} \in \overline{\mathfrak{Z}}\left(\Omega_{2}, \mathfrak{A}_{2}\right)
$$

with $D=C^{c}$.
Our method of proof for Theorem 8 is sometimes called algebraic induction.

3 Product Spaces

Example 1. A stochastic model for coin tossing. For a single trial,

$$
\begin{equation*}
\Omega=\{0,1\}, \quad \mathfrak{A}=\mathfrak{P}(\Omega), \quad \forall \omega \in \Omega: P(\{\omega\})=1 / 2 \tag{1}
\end{equation*}
$$

For n 'independent' trials, (1) serves as a building-block,

$$
\Omega_{i}=\{0,1\}, \quad \mathfrak{A}_{i}=\mathfrak{P}\left(\Omega_{i}\right), \quad \forall \omega_{i} \in \Omega_{i}: P_{i}\left(\left\{\omega_{i}\right\}\right)=1 / 2,
$$

and we define

$$
\Omega=\prod_{i=1}^{n} \Omega_{i}, \quad \mathfrak{A}=\mathfrak{P}(\Omega), \quad \forall A \in \mathfrak{A}: P(A)=\frac{|A|}{|\Omega|}
$$

Then

$$
P\left(A_{1} \times \cdots \times A_{n}\right)=P_{1}\left(A_{1}\right) \cdots \cdots P_{n}\left(A_{n}\right)
$$

for all $A_{i} \in \mathfrak{A}_{i}$.
Question: How to model an infinite sequence of trials? To this end,

$$
\Omega=\prod_{i=1}^{\infty} \Omega_{i} .
$$

How to choose a σ-algebra \mathfrak{A} in Ω and a probability measure P on (Ω, \mathfrak{A}) ? A reasonable requirement is

$$
\begin{align*}
& \forall n \in \mathbb{N} \forall A_{i} \in \mathfrak{A}_{i}: \\
& \quad P\left(A_{1} \times \cdots \times A_{n} \times \Omega_{n+1} \times \Omega_{n+2} \ldots\right)=P_{1}\left(A_{1}\right) \cdots P_{n}\left(A_{n}\right) . \tag{2}
\end{align*}
$$

Unfortunately,

$$
\mathfrak{A}=\mathfrak{P}(\Omega)
$$

is too large, since there exists no probability measure on $(\Omega, \mathfrak{P}(\Omega))$ such that (2) holds. The latter fact follows from a theorem by Banach and Kuratowski, which relies on the continuum hypothesis, see Dudley (2002, p. 526). On the other hand,

$$
\begin{equation*}
\mathfrak{A}=\left\{A_{1} \times \cdots \times A_{n} \times \Omega_{n+1} \times \Omega_{n+2} \cdots: n \in \mathbb{N}, A_{i} \in \mathfrak{A}_{i} \text { for } i=1, \ldots, n\right\} \tag{3}
\end{equation*}
$$

is not a σ-algebra.
Given: a non-empty set I and measurable spaces $\left(\Omega_{i}, \mathfrak{A}_{i}\right)$ for $i \in I$. Put

$$
Y=\bigcup_{i \in I} \Omega_{i}
$$

and define

$$
\prod_{i \in I} \Omega_{i}=\left\{\omega \in Y^{I}: \omega(i) \in \Omega_{i} \text { for } i \in I\right\} .
$$

Notation: $\omega=\left(\omega_{i}\right)_{i \in I}$ for $\omega \in \prod_{i \in I} \Omega_{i}$. Moreover, let

$$
\mathfrak{P}_{0}(I)=\{J \subset I: J \text { non-empty, finite }\} .
$$

The following definition is motivated by (3).

Definition 1.

(i) Measurable rectangle

$$
A=\prod_{j \in J} A_{j} \times \prod_{i \in I \backslash J} \Omega_{i}
$$

with $J \in \mathfrak{P}_{0}(I)$ and $A_{j} \in \mathfrak{A}_{j}$ for $j \in J$. Notation: \mathfrak{R} class of measurable rectangles.
(ii) Product (measurable) space (Ω, \mathfrak{A}) with components $\left(\Omega_{i}, \mathfrak{A}_{i}\right), i \in I$,

$$
\Omega=\prod_{i \in I} \Omega_{i}, \quad \mathfrak{A}=\sigma(\mathfrak{R}) .
$$

Notation: $\mathfrak{A}=\bigotimes_{i \in I} \mathfrak{A}_{i}$, product σ-algebra.
Remark 1. The class \mathfrak{R} is a semi-algebra, but not an algebra in general. See Übung 2.3.

Example 2. Obviously, (2) only makes sense if \mathfrak{A} contains the product σ-algebra $\bigotimes_{i=1}^{n} \mathfrak{A}_{i}$. We will show that there exists a uniquely determined probability measure P on the product space $\left(\prod_{i=1}^{\infty}\{0,1\}, \bigotimes_{i=1}^{\infty} \mathfrak{P}(\{0,1\})\right)$ that satisfies (2), see Remark 4.3.(ii). The corresponding probability space yields a stochastic model for the simple case of gambling, which was mentioned in the introductory Example I.2.

We study several classes of mappings or subsets that generate the product σ-algebra. Moreover, we characterize measurability of mappings that take values in a product space.
Put $\Omega=\prod_{i \in I} \Omega_{i}$. For any $\emptyset \neq S \subset I$ let

$$
\pi_{S}^{I}: \Omega \rightarrow \prod_{i \in S} \Omega_{i}, \quad\left(\omega_{i}\right)_{i \in I} \mapsto\left(\omega_{i}\right)_{i \in S}
$$

denote the projection of Ω onto $\prod_{i \in S} \Omega_{i}$ (restriction of mappings ω). In particular, for $i \in I$ the i-th projection is given by $\pi_{\{i\}}^{I}$. Sometimes we simply write π_{S} instead of π_{S}^{I} and π_{i} instead of $\pi_{\{i\}}$.

Theorem 1.

(i) $\bigotimes_{i \in I} \mathfrak{A}_{i}=\sigma\left(\left\{\pi_{i}: i \in I\right\}\right)$.
(ii) $\forall i \in I: \mathfrak{A}_{i}=\sigma\left(\mathfrak{E}_{i}\right) \quad \Rightarrow \quad \bigotimes_{i \in I} \mathfrak{A}_{i}=\sigma\left(\bigcup_{i \in I} \pi_{i}^{-1}\left(\mathfrak{E}_{i}\right)\right)$.

Proof. Ad (i), ' \supset ': We show that every projection $\pi_{i}: \Omega \rightarrow \Omega_{i}$ is $\left(\bigotimes_{i \in I} \mathfrak{A}_{i}\right)-\mathfrak{A}_{i^{-}}$ measurable. For $A_{i} \in \mathfrak{A}_{i}$

$$
\pi_{i}^{-1}\left(A_{i}\right)=A_{i} \times \prod_{i \in I \backslash\{i\}} \Omega_{i} \in \mathfrak{R} .
$$

Ad (i), ' \subset ': We show that $\mathfrak{R} \subset \sigma\left(\left\{\pi_{i}: i \in I\right\}\right)$. For $J \in \mathfrak{P}_{0}(I)$ and $A_{j} \in \mathfrak{A}_{j}$ with $j \in J$

$$
\prod_{j \in J} A_{j} \times \prod_{i \in I \backslash J} \Omega_{i}=\bigcap_{j \in J} \pi_{j}^{-1}\left(A_{j}\right) .
$$

Ad (ii): By Lemma 2.1 and (i)

$$
\bigotimes_{i \in I} \mathfrak{A}_{i}=\sigma\left(\bigcup_{i \in I} \pi_{i}^{-1}\left(\mathfrak{A}_{i}\right)\right)=\sigma\left(\bigcup_{i \in I} \sigma\left(\pi_{i}^{-1}\left(\mathfrak{E}_{i}\right)\right)\right)=\sigma\left(\bigcup_{i \in I} \pi_{i}^{-1}\left(\mathfrak{E}_{\mathfrak{i}}\right)\right) .
$$

Corollary 1.

(i) For every measurable space $(\widetilde{\Omega}, \widetilde{\mathfrak{A}})$ and every mapping $g: \widetilde{\Omega} \rightarrow \Omega$

$$
g \text { is } \widetilde{\mathfrak{A}}-\bigotimes_{i \in I} \mathfrak{A}_{i} \text {-measurable } \quad \Leftrightarrow \quad \forall i \in I: \pi_{i} \circ g \text { is } \widetilde{\mathfrak{A}}-\mathfrak{A}_{i} \text {-measurable. }
$$

(ii) For every $\emptyset \neq S \subset I$ the projection π_{S}^{I} is $\bigotimes_{i \in I} \mathfrak{A}_{i}-\bigotimes_{i \in S} \mathfrak{A}_{i}$-measurable.

Proof. Ad (i): Follows immediately from Theorem 2.3 and Theorem 1.(i).
Ad (ii): Note that $\pi_{\{i\}}^{S} \circ \pi_{S}^{I}=\pi_{i}^{I}$ and use (i).
Remark 2. From Theorem 1.(i) and Corollary 1 we get

$$
\bigotimes_{i \in I} \mathfrak{A}_{i}=\sigma\left(\left\{\pi_{S}^{I}: S \in \mathfrak{P}_{0}(I)\right\}\right) .
$$

The sets

$$
\left(\pi_{S}^{I}\right)^{-1}(B)=B \times\left(\prod_{i \in I \backslash S} \Omega_{i}\right)
$$

with $S \in \mathfrak{P}_{0}(I)$ and $B \in \bigotimes_{i \in S} \mathfrak{A}_{i}$ are called cylinder sets. Notation: \mathfrak{C} class of cylinder sets. The class \mathfrak{C} is an algebra in Ω, but not a σ-algebra in general. Moreover,

$$
\mathfrak{R} \subset \alpha(\mathfrak{R}) \subset \mathfrak{C} \subset \sigma(\mathfrak{R}),
$$

where equality does not hold in general.

Every product measurable set is countably determined in the following sense.
Theorem 2. For every $A \in \otimes_{i \in I} \mathfrak{A}_{i}$ there exists a non-empty countable set $S \subset I$ and a set $B \in \otimes_{i \in S} \mathfrak{A}_{i}$ such that

$$
A=\left(\pi_{S}^{I}\right)^{-1}(B)
$$

Proof. Put

$$
\tilde{\mathfrak{A}}=\left\{A \in \bigotimes_{i \in I} \mathfrak{A}_{i}: \exists S \subset I \text { non-empty, countable } \exists B \in \bigotimes_{i \in S} \mathfrak{A}_{i}: A=\left(\pi_{S}^{I}\right)^{-1}(B)\right\} .
$$

By definition, $\widetilde{\mathfrak{A}}$ contains every cylinder set and $\widetilde{\mathfrak{A}} \subset \bigotimes_{i \in I} \mathfrak{A}_{i}$. It remains to show that $\widetilde{\mathfrak{A}}$ is a σ-algebra. Obviously, $\Omega \in \widetilde{\mathfrak{A}}$, and if $A=\left(\pi_{S}^{I}\right)^{-1}(B), A^{c}=\left(\pi_{S}^{I}\right)^{-1}\left(B^{c}\right)$. Finally, if $A_{n}=\left(\pi_{S_{n}}^{I}\right)^{-1}\left(B_{n}\right)$, we define $S=\bigcup_{n} S_{n}$ and $\widetilde{B}_{n}=\left(\pi_{S_{n}}^{S}\right)^{-1}\left(B_{n}\right)=B_{n} \times \prod_{i \in S \backslash B_{n}} \in$ $\bigotimes_{i \in S} \mathfrak{A}_{i}$ (see Corollary 1, (ii)); then

$$
\bigcap_{n} A_{n}=\bigcap_{n}\left(\pi_{S}^{I}\right)^{-1}\left(\widetilde{B}_{n}\right)=\left(\left(\pi^{I}\right)_{S}\right)^{-1}\left(\bigcap_{n} \widetilde{B}_{n}\right)
$$

hence $\bigcap_{n} A_{n} \in \widetilde{\mathfrak{A}}$.
Now we study products of Borel- σ-algebras.

Theorem 3.

$$
\mathfrak{B}_{k}=\bigotimes_{i=1}^{k} \mathfrak{B}, \quad \overline{\mathfrak{B}}_{k}=\bigotimes_{i=1}^{k} \overline{\mathfrak{B}} .
$$

Proof. By Remark 16,

$$
\left.\left.B_{k}=\sigma\left(\left\{\prod_{i=1}^{k}\right]-\infty, a_{i}\right]: a_{i} \in \mathbb{R} \text { for } i=1, \ldots, k\right\}\right) \subset \bigotimes_{i=1}^{k} \mathfrak{B}
$$

On the other hand, $\pi_{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is continuous, hence it remains to apply Corollary 2.1 and Theorem 1.(i). Analogously, $\overline{\mathfrak{B}}_{k}=\bigotimes_{i=1}^{k} \overline{\mathfrak{B}}$ follows.

Remark 3. Consider a measurable space ($\widetilde{\Omega}, \widetilde{\mathfrak{A}})$ and a mapping

$$
f=\left(f_{1}, \ldots, f_{k}\right): \widetilde{\Omega} \rightarrow \overline{\mathbb{R}}^{k}
$$

Then, according to Theorem 3, f is $\widetilde{\mathfrak{A}}-\overline{\mathfrak{B}}_{k}$-measurable iff all functions f_{i} are $\widetilde{\mathfrak{A}}-\overline{\mathfrak{B}}-$ measurable.

4 Construction of (Probability) Measures

Given: $\Omega \neq \emptyset$ and $\emptyset \neq \mathfrak{A} \subset \mathfrak{P}(\Omega)$.
Definition 1. $\mu: \mathfrak{A} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is called
(i) additive if:

$$
A, B \in \mathfrak{A} \wedge A \cap B=\emptyset \wedge A \cup B \in \mathfrak{A} \quad \Rightarrow \quad \mu(A \cup B)=\mu(A)+\mu(B)
$$

(ii) σ-additive if

$$
A_{1}, A_{2}, \ldots \in \mathfrak{A} \text { pairwise disjoint } \wedge \bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A} \Rightarrow \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

(iii) content (on \mathfrak{A}) if

$$
\mathfrak{A} \text { algebra } \wedge \quad \mu \text { additive } \wedge \mu(\emptyset)=0
$$

(iv) pre-measure (on \mathfrak{A}) if
\mathfrak{A} semi-algebra $\quad \wedge \mu \sigma$-additive $\quad \wedge \mu(\emptyset)=0$,
(v) measure (on \mathfrak{A}) if

$$
\mathfrak{A} \sigma \text {-algebra } \wedge \quad \mu \text { pre-measure }
$$

(vi) probability measure (on \mathfrak{A}) if

$$
\mu \text { measure } \quad \wedge \quad \mu(\Omega)=1
$$

Definition 2. $(\Omega, \mathfrak{A}, \mu)$ is called a
(i) measure space, if μ is a measure on the σ-algebra \mathfrak{A} in Ω,
(ii) probability space, if μ is a probability measure on the σ-algebra \mathfrak{A} in Ω.

Example 1.

(i) k-dimensional Lebesgue pre-measure λ_{k}, e.g., on cartesian products of intervals.
(ii) For any semi-algebra \mathfrak{A} in Ω and $\omega \in \Omega$

$$
\delta_{\omega}(A)=1_{A}(\omega), \quad A \in \mathfrak{A},
$$

defines a pre-measure. If \mathfrak{A} is a σ-algebra, then δ_{ω} is called the Dirac measure at the point ω.
More generally: take sequences $\left(\omega_{n}\right)_{n \in \mathbb{R}}$ in Ω and $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R}_{+}such that $\sum_{n=1}^{\infty} \alpha_{n}=1$. Then

$$
\mu(A)=\sum_{n=1}^{\infty} \alpha_{n} \cdot 1_{A}\left(\omega_{n}\right), \quad A \in \mathfrak{A}
$$

defines a discrete probability measure on any σ-algebra \mathfrak{A} in Ω. Note that $\mu=$ $\sum_{n=1}^{\infty} \alpha_{n} \cdot \varepsilon_{\omega_{n}}$.
(iii) Counting measure on a σ-algebra \mathfrak{A}

$$
\mu(A)=|A|, \quad A \in \mathfrak{A}
$$

Uniform distribution in the case $|\Omega|<\infty$ and $\mathfrak{A}=\mathfrak{P}(\Omega)$

$$
\mu(A)=\frac{|A|}{|\Omega|}, \quad A \subset \Omega
$$

(iv) On the algebra $\mathfrak{A}=\left\{A \subset \Omega: A\right.$ finite or A^{c} finite $\}$ let

$$
\mu(A)= \begin{cases}0 & \text { if }|A|<\infty \\ \infty & \text { if }|A|=\infty\end{cases}
$$

Then μ is a content but not a pre-measure in general.
(v) For the semi-algebra of measurable rectangles in Example 3.1 and $A_{i} \subset\{0,1\}$

$$
\mu\left(A_{1} \times \cdots \times A_{n} \times \Omega_{n+1} \times \cdots\right)=\frac{\left|A_{1} \times \ldots \times A_{n}\right|}{\left|\{0,1\}^{n}\right|}
$$

is well defined and yields a pre-measure μ with $\mu\left(\{0,1\}^{\mathbb{N}}\right)=1$.
Remark 1. For every content μ on \mathfrak{A} and $A, B \in \mathfrak{A}$
(i) $A \subset B \Rightarrow \mu(A) \leq \mu(A \cap B)+\mu\left(A^{c} \cap B\right)=\mu(B)$ (monotonicity),
(ii) $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B \backslash A)+\mu(A \cap B)=\mu(A)+\mu(B)$,
(iii) $A \subset B \wedge \mu(A)<\infty \Rightarrow \mu(B \backslash A)=\mu(B)-\mu(A)$,
(iv) $\mu(A)<\infty \wedge \mu(B)<\infty \Rightarrow|\mu(A)-\mu(B)| \leq \mu(A \Delta B)$,
(v) $\mu(A \cup B)=\mu(A)+\mu\left(B \cap A^{c}\right) \leq \mu(A)+\mu(B)($ subadditivity $)$.

Theorem 1. Consider the following properties for a content μ on \mathfrak{A} :
(i) μ pre-measure,
(ii) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \wedge \bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A} \Rightarrow \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)(\sigma$-subadditivity $)$,
(iii) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \wedge A_{n} \uparrow A \in \mathfrak{A} \Rightarrow \lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)$ (σ-continuity from below),
(iv) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \wedge A_{n} \downarrow A \in \mathfrak{A} \wedge \mu\left(A_{1}\right)<\infty \Rightarrow \lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)(\sigma-$ continuity from above),
(v) $A_{1}, A_{2}, \ldots \in \mathfrak{A} \wedge A_{n} \downarrow \emptyset \wedge \mu\left(A_{1}\right)<\infty \Rightarrow \lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0(\sigma$-continuity at $\emptyset)$.

Then

$$
(\mathrm{i}) \Leftrightarrow(\mathrm{ii}) \Leftrightarrow(\mathrm{iii}) \Rightarrow(\mathrm{iv}) \Leftrightarrow(\mathrm{v}) .
$$

If $\mu(\Omega)<\infty$, then (iii) \Leftrightarrow (iv).

Proof. '(i) $\Rightarrow(\mathrm{ii})^{\prime}$: Put $B_{m}=\bigcup_{i=1}^{m} A_{i}$ and $B_{0}=\emptyset$. Then

$$
\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{m=1}^{\infty}\left(B_{m} \backslash B_{m-1}\right)
$$

with pairwise disjoint sets $B_{m} \backslash B_{m-1} \in \mathfrak{A}$. Clearly $B_{m} \backslash B_{m-1} \subset A_{m}$. Hence, by Remark 1.(i),

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{m=1}^{\infty} \mu\left(B_{m} \backslash B_{m-1}\right) \leq \sum_{m=1}^{\infty} \mu\left(A_{m}\right) .
$$

'(ii) \Rightarrow (i)': Let $A_{1}, A_{2}, \ldots \in \mathfrak{A}$ be pairwise disjoint with $\bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A}$. Then

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \geq \mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

and therefore

$$
\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \leq \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)
$$

The reverse estimate holds by assumption.
'(i) \Rightarrow (iii)': Put $A_{0}=\emptyset$ and $B_{m}=A_{m} \backslash A_{m-1}$. Then

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{m=1}^{\infty} \mu\left(B_{m}\right)=\lim _{n \rightarrow \infty} \sum_{m=1}^{n} \mu\left(B_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{m=1}^{n} B_{m}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

'(iii) \Rightarrow (i)': Let $A_{1}, A_{2}, \ldots \in \mathfrak{A}$ be pairwise disjoint with $\bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A}$, and put $B_{m}=\bigcup_{i=1}^{m} A_{i}$. Then $B_{m} \uparrow \bigcup_{i=1}^{\infty} A_{i}$ and

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{m \rightarrow \infty} \mu\left(B_{m}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

'(iv) \Rightarrow (v)' trivially holds.
'(v) \Rightarrow (iv)': Use $B_{n}=A_{n} \backslash A \downarrow \emptyset$.
${ }^{\prime}(\mathrm{i})^{\prime} \Rightarrow(\mathrm{v})$ ': Note that $\mu\left(A_{1}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i} \backslash A_{i+1}\right)$. Hence

$$
0=\lim _{k \rightarrow \infty} \sum_{i=k}^{\infty} \mu\left(A_{i} \backslash A_{i+1}\right)=\lim _{k \rightarrow \infty} \mu\left(A_{k}\right) .
$$

'(iv) $\wedge \mu(\Omega)<\infty \Rightarrow$ (iii)': Clearly $A_{n} \uparrow A$ implies $A_{n}^{c} \downarrow A^{c}$. Thus

$$
\mu(A)=\mu(\Omega)-\mu\left(A^{c}\right)=\lim _{n \rightarrow \infty}\left(\mu(\Omega)-\mu\left(A_{n}^{c}\right)\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Theorem 2 (Extension: semi-algebra \rightsquigarrow algebra). For every semi-algebra \mathfrak{A} and every additive mapping $\mu: \mathfrak{A} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ with $\mu(\emptyset)=0$

$$
\underset{1}{\exists} \widehat{\mu} \text { content on } \alpha(\mathfrak{A}):\left.\quad \widehat{\mu}\right|_{\mathfrak{A}}=\mu .
$$

Moreover, if μ is σ-additive then $\widehat{\mu}$ is σ-additive, too.

Proof. We have $\alpha(\mathfrak{A})=\mathfrak{A}^{+}$, see Lemma 1.1. Necessarily

$$
\begin{equation*}
\widehat{\mu}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right) \tag{1}
\end{equation*}
$$

for $A_{1}, \ldots, A_{n} \in \mathfrak{A}$ pairwise disjoint. Use (1) to obtain a well-defined extension of μ onto $\alpha(\mathfrak{A})$. It easily follows that μ is additive or even σ-additive.

Example 2. For the semi-algebra \mathfrak{A} in Example 1.(v) $\alpha(\mathfrak{A})$ is the algebra of cylinder sets, and

$$
\widehat{\mu}\left(A \times \Omega_{n+1} \times \cdots\right)=\frac{|A|}{\left|\{0,1\}^{n}\right|}, \quad A \subset\{0,1\}^{n}
$$

Let μ be a pre-measure on \mathfrak{A}. The outer measure generated by μ is

$$
\mu^{*}(A):=\inf \left\{\sum_{i=1}^{\infty} \mu\left(A_{i}\right): A_{i} \in \mathfrak{A}, A \subseteq \bigcup_{i=1} \infty A_{i}\right\}
$$

It is straightforward that $\mu^{*}(\emptyset=0)$ and that μ^{*} is monotone and σ-subadditive.
Theorem 3 (Extension: algebra $\rightsquigarrow \sigma$-algebra, Carathéodory). For every premeasure μ on an algebra \mathfrak{A},
(a) the class

$$
\mathfrak{A}_{\mu^{*}}:=\left\{A \subseteq \Omega: \mu^{*}(B)=\mu^{*}(A \cap B)+\mu^{*}\left(A^{c} \cap B\right) \forall B \subseteq \Omega\right\}
$$

is a σ-algebra, and μ^{*} is a measure on $\mathfrak{A}_{\mu^{*}}$.
(b) $\mathfrak{A} \subseteq \mathfrak{A}_{\mu^{*}}$, and $\mu=\mu^{*}$ on \mathfrak{A}. In particular, there exists a measure μ^{*} on $\sigma(\mathfrak{A})$ extending μ.

Proof. We will start with part (b), i.e., we show that
(i) $\left.\mu^{*}\right|_{\mathfrak{A}}=\mu$,
(ii) $\forall A \in \mathfrak{A} \forall B \in \mathfrak{P}(\Omega): \quad \mu^{*}(B)=\mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)$.
$\operatorname{Ad}(\mathrm{i}):$ For $A \in \mathfrak{A}$

$$
\mu^{*}(A) \leq \mu(A)+\sum_{i=2}^{\infty} \mu(\emptyset)=\mu(A)
$$

and for $A_{i} \in \mathfrak{A}$ with $A \subset \bigcup_{i=1}^{\infty} A_{i}$

$$
\mu(A)=\mu\left(\bigcup_{i=1}^{\infty}\left(A_{i} \cap A\right)\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i} \cap A\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

follows from Theorem 1.(ii).

Ad (ii): ' \leq ' holds due to sub-additivity of μ^{*}; if

$$
B \subseteq \bigcup_{i=1}^{\infty} A_{i}
$$

with $A_{i} \in \mathfrak{A}$, then $A_{i} \cap A, A_{i} \cap A^{c} \in \mathfrak{A}$ and

$$
B \cap A \subseteq \bigcup_{i=1}^{\infty} A_{i} \cap A, \quad B \cap A^{c} \subseteq \bigcup_{i=1}^{\infty} A_{i} \cap A^{c}
$$

This directly implies ' \geq '.

Now we prove (a); to this end, we claim first that
(iii) $\mathfrak{A}_{\mu^{*}}$ is \cap-closed, $\forall A_{1}, A_{2} \in \mathfrak{A}_{\mu^{*}} \forall B \in \mathfrak{P}(\Omega): \quad \mu^{*}(B)=\mu^{*}\left(B \cap\left(A_{1} \cap A_{2}\right)\right)+$ $\mu^{*}\left(B \cap\left(A_{1} \cap A_{2}\right)^{c}\right)$.
(iv) $\mathfrak{A}_{\mu^{*}}{ }^{c}$-closed,
i.e., \mathfrak{A} is an algebra.

Ad (iii): We have

$$
\begin{aligned}
\mu^{*}(B) & =\mu^{*}\left(B \cap A_{1}\right)+\mu^{*}\left(B \cap A_{1}^{c}\right) \\
& =\mu^{*}\left(B \cap A_{1} \cap A_{2}\right)+\mu^{*}\left(B \cap A_{1} \cap A_{2}^{c}\right)+\mu^{*}\left(B \cap A_{1}^{c}\right)
\end{aligned}
$$

and

$$
\mu^{*}\left(B \cap\left(A_{1} \cap A_{2}\right)^{c}\right)=\mu^{*}\left(B \cap A_{1}^{c} \cup B \cap A_{2}^{c}\right)=\mu^{*}\left(B \cap A_{2}^{c} \cap A_{1}\right)+\mu^{*}\left(B \cap A_{1}^{c}\right) .
$$

Ad (iv): Obvious.
Next we claim that μ^{*} is additive on \mathfrak{A}^{*}, and even more,
(v) $\forall A_{1}, A_{2} \in \mathfrak{A}_{\mu^{*}}$ disjoint $\forall B \in \mathfrak{P}(\Omega): \quad \mu^{*}\left(B \cap\left(A_{1} \cup A_{2}\right)\right)=\mu^{*}\left(B \cap A_{1}\right)+\mu^{*}(B \cap$ A_{2}).

In fact, since $A_{1} \cap A_{2}=\emptyset$,

$$
\mu^{*}\left(B \cap\left(A_{1} \cup A_{2}\right)\right)=\mu^{*}\left(B \cap A_{1}\right)+\mu^{*}\left(B \cap A_{2} \cap A_{1}^{c}\right)=\mu^{*}\left(B \cap A_{1}\right)+\mu^{*}\left(B \cap A_{2}\right) .
$$

At last, we claim that \mathfrak{A}^{*} is a Dynkin class and μ^{*} is σ-additive on \mathfrak{A}^{*}, i.e.,
(vi) $\forall A_{1}, A_{2}, \ldots \in \mathfrak{A}_{\mu^{*}}$ pairwise disjoint

$$
\bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A}_{\mu^{*}} \quad \wedge \quad \mu^{*}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)
$$

Let $B \in \mathfrak{P}(\Omega)$. By (iv), (v), and monotonicity of μ^{*}

$$
\begin{aligned}
\mu^{*}(B) & =\mu^{*}\left(B \cap \bigcup_{i=1}^{n} A_{i}\right)+\mu^{*}\left(B \cap\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}\right) \\
& \geq \sum_{i=1}^{n} \mu^{*}\left(B \cap A_{i}\right)+\mu^{*}\left(B \cap\left(\bigcup_{i=1}^{\infty} A_{i}\right)^{c}\right) .
\end{aligned}
$$

Use σ-subadditivity of μ^{*} to get

$$
\begin{aligned}
\mu^{*}(B) & \geq \sum_{i=1}^{\infty} \mu^{*}\left(B \cap A_{i}\right)+\mu^{*}\left(B \cap\left(\bigcup_{i=1}^{\infty} A_{i}\right)^{c}\right) \\
& \geq \mu^{*}\left(B \cap \bigcup_{i=1}^{\infty} A_{i}\right)+\mu^{*}\left(B \cap\left(\bigcup_{i=1}^{\infty} A_{i}\right)^{c}\right) \\
& \geq \mu^{*}(B) .
\end{aligned}
$$

Hence $\bigcup_{i=1}^{\infty} A_{i} \in \mathfrak{A}_{\mu^{*}}$. Take $B=\bigcup_{i=1}^{\infty} A_{i}$ to obtain σ-additivity of $\left.\mu^{*}\right|_{\mathscr{R}_{\mu^{*}}}$. Conclusions:

- $\mathfrak{A}_{\mu^{*}}$ is a Dynkin class and \cap-closed ((iv), (vi)), and hence a σ-algebra, see Theorem 1.1.(ii),
- $\mathfrak{A} \subset \mathfrak{A}_{\mu^{*}}$ by (ii), hence $\sigma(\mathfrak{A}) \subset \mathfrak{A}_{\mu^{*}}$.
- $\left.\mu^{*}\right|_{\mathfrak{A}_{\mu^{*}}}$ is a measure with $\left.\mu^{*}\right|_{\mathfrak{A}}=\mu$, see (vi) and (i).

Remark 2. The extension from Theorem 3 is non-unique, in general. For instance, on $\Omega=\mathbb{R}$, the pre-measure

$$
\mu(A)=\infty \cdot \# A=\left\{\begin{array}{ll}
0 & \text { if } A=\emptyset \\
\infty & \text { otherwise }
\end{array}, \quad A \in \alpha\left(\mathfrak{J}_{1}\right)\right.
$$

on the algebra generated by intervals (see Ex.1) has the extensions $\mu_{1}(A)=\# A$ (counting measure) and $\mu_{2}(A)=\infty \cdot \# A$ to \mathfrak{B}.

Definition 3. $\mu: \mathfrak{A} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ is called
(i) σ-finite, if

$$
\exists B_{1}, B_{2}, \ldots \in \mathfrak{A} \text { pairwise disjoint : } \quad \Omega=\bigcup_{i=1}^{\infty} B_{i} \wedge \forall i \in \mathbb{N}: \mu\left(B_{i}\right)<\infty
$$

(ii) finite, if $\Omega \in \mathfrak{A}$ and $\mu(\Omega)<\infty$.

Theorem 4 (Uniqueness). \mathfrak{A}_{0} be \cap-closed, μ_{1}, μ_{2} be measures on $\mathfrak{A}=\sigma\left(\mathfrak{A}_{0}\right)$. If $\left.\mu_{1}\right|_{\mathfrak{A}_{0}}$ is σ-finite and $\left.\mu_{1}\right|_{\mathscr{A}_{0}}=\left.\mu_{2}\right|_{\mathfrak{A}_{0}}$, then $\mu_{1}=\mu_{2}$.

Proof. Take B_{i} according to Definition 3, with \mathfrak{A}_{0} instead of \mathfrak{A}, and put

$$
\mathfrak{D}_{i}=\left\{A \in \mathfrak{A}: \mu_{1}\left(A \cap B_{i}\right)=\mu_{2}\left(A \cap B_{i}\right)\right\} .
$$

Obviously, \mathfrak{D}_{i} is a Dynkin class and $\mathfrak{A}_{0} \subset \mathfrak{D}_{i}$. Theorem 1.2.(i) yields

$$
\mathfrak{D}_{i} \subset \mathfrak{A}=\sigma\left(\mathfrak{A}_{0}\right)=\delta\left(\mathfrak{A}_{0}\right) \subset \mathfrak{D}_{i} .
$$

Thus $\mathfrak{A}=\mathfrak{D}_{i}$ and for $A \in \mathfrak{A}$,

$$
\mu_{1}(A)=\sum_{i=1}^{\infty} \mu_{1}\left(A \cap B_{i}\right)=\sum_{i=1}^{\infty} \mu_{2}\left(A \cap B_{i}\right)=\mu_{2}(A) .
$$

Corollary 1. For every semi-algebra \mathfrak{A} and every pre-measure μ on \mathfrak{A} that is σ-finite

$$
\underset{1}{\exists} \mu^{*} \text { measure on } \sigma(\mathfrak{A}):\left.\quad \mu^{*}\right|_{\mathfrak{A}}=\mu .
$$

Proof. Use Theorems 2, 3, and 4.
Remark 3. Applications of Corollary 1:
(i) For $\Omega=\mathbb{R}^{k}$ and the Lebesgue pre-measure λ_{k} on \mathfrak{J}_{k} we get the Lebesgue measure on \mathfrak{B}_{k}. Notation for the latter: λ_{k}.
(ii) In Example 1.(v) there exists a uniquely determined probability measure P on $\bigotimes_{i=1}^{\infty} \mathfrak{P}(\{0,1\})$ such that

$$
P\left(A_{1} \times \cdots \times A_{n} \times\{0,1\} \times \ldots\right)=\frac{\left|A_{1} \times \cdots \times A_{n}\right|}{\left|\{0,1\}^{n}\right|}
$$

for $A_{1}, \ldots, A_{n} \subset\{0,1\}$. We will study the general construction of product measures in Section 8.

5 Integration

For the proofs, see Analysis IV or Elstrodt (1996, Kap. VI).
Fixed in this section: A measure space $(\Omega, \mathfrak{A}, \mu)$. Notation:

- $\Sigma_{+}=\Sigma_{+}(\Omega, \mathfrak{A})$ (nonnegative simple functions),
- $\overline{\mathfrak{Z}}_{+}=\overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$ (nonnegative $\mathfrak{A}-\overline{\mathfrak{B}}$-measurable functions),

Definition 1. Integral Let $f \in \Sigma_{+}$,

$$
f=\sum_{i=1}^{n} \alpha_{i} \cdot 1_{A_{i}}, \quad \alpha_{i} \in \mathfrak{R}, A_{i} \in \mathfrak{A}
$$

Then define its Integral w.r.t. μ as

$$
\int f d \mu=\sum_{i=1}^{n} \alpha_{i} \cdot \mu\left(A_{i}\right)
$$

Lemma 1. The mapping $\int \cdot \mathrm{d} \mu: \Sigma_{+} \rightarrow \mathfrak{R}_{+}$is
(i) positive-linear: $\int(\alpha f+\beta g) d \mu=\alpha \int f d \mu+\beta \int g d \mu, f, g \in \Sigma_{+}, \alpha, \beta \in \mathfrak{R}_{+}$,
(ii) monotone: $f \leq g \Rightarrow \int f d \mu \leq \int g d \mu$ (monotonicity).

Definition 2. Integral of $f \in \overline{\mathfrak{Z}}_{+}$w.r.t. μ

$$
\int f d \mu=\sup \left\{\int g d \mu: g \in \Sigma_{+} \wedge g \leq f\right\}
$$

Theorem 1 (Monotone convergence, Beppo Levi). (e.g., Thm.6.4, Analysis IV, SS06) Let $f_{n} \in \overline{\mathfrak{Z}}_{+}$such that

$$
\forall n \in \mathbb{N}: f_{n} \leq f_{n+1}
$$

Then

$$
\int \sup _{n} f_{n} d \mu=\sup _{n} \int f_{n} d \mu .
$$

Remark 1. For every $f \in \overline{\mathfrak{Z}}_{+}$there exists a sequence of functions $f_{n} \in \Sigma_{+}$such that $f_{n} \uparrow f$, see Theorem 2.7.

Example 1. Consider

$$
f_{n}=\frac{1}{n} \cdot 1_{[0, n]}
$$

on $\left(\mathbb{R}, \mathfrak{B}, \lambda_{1}\right)$. Then

$$
\int f_{n} d \lambda_{1}=1, \quad \lim _{n \rightarrow \infty} f_{n}=0
$$

Lemma 2. The mapping $\int \cdot \mathrm{d} \mu: \mathfrak{Z}_{+} \rightarrow \overline{\mathfrak{R}}_{+}$is still positive-linear and monotone.

Theorem 2 (Fatou's Lemma). (See, e.g., Lemma 6.6, Ananlysis IV, SS06) For every sequence $\left(f_{n}\right)_{n}$ in $\overline{\mathfrak{Z}}_{+}$

$$
\int \liminf _{n \rightarrow \infty} f_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Proof. For $g_{n}=\inf _{k \geq n} f_{k}$ we have $g_{n} \in \overline{\mathfrak{Z}}_{+}$and $g_{n} \uparrow \liminf _{n} f_{n}$. By Theorem 1 and Lemma 1.(iii)

$$
\int \liminf _{n} f_{n} d \mu=\lim _{n \rightarrow \infty} \int g_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Theorem 3. Let $f \in \overline{\mathfrak{Z}}_{+}$. Then

$$
\int f d \mu=0 \Leftrightarrow \mu(\{f>0\})=0 .
$$

Definition 3. A property Π holds μ-almost everywhere (μ-a.e., a.e.), if

$$
\exists A \in \mathfrak{A}:\{\omega \in \Omega: \Pi \text { does not hold for } \omega\} \subset A \wedge \mu(A)=0
$$

In case of a probability measure we say: μ-almost surely, μ-a.s., with probability one.
Notation: $\overline{\mathfrak{Z}}=\overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ is the class of $\mathfrak{A}-\overline{\mathfrak{B}}$-measurable functions.
Definition 4. $f \in \overline{\mathfrak{Z}}$ quasi- μ-integrable if

$$
\int f_{+} d \mu<\infty \quad \vee \quad \int f_{-} d \mu<\infty
$$

In this case: integral of f (w.r.t. μ)

$$
\int f d \mu=\int f_{+} d \mu-\int f_{-} d \mu
$$

$f \in \overline{\mathfrak{Z}} \mu$-integrable if

$$
\int f_{+} d \mu<\infty \wedge \int f_{-} d \mu<\infty
$$

Theorem 4.

(i) $f \mu$-integrable $\Rightarrow \mu(\{|f|=\infty\})=0$,
(ii) $f \mu$-integrable $\wedge g \in \overline{\mathfrak{Z}} \wedge f=g \mu$-a.e. $\Rightarrow g \mu$-integrable $\wedge \int f d \mu=\int g d \mu$.
(iii) equivalent properties for $f \in \overline{\mathfrak{Z}}$:
(a) $f \mu$-integrable,
(b) $|f| \mu$-integrable,
(c) $\exists g: g \mu$-integrable $\wedge|f| \leq g \mu$-a.e.,
(iv) for f and $g \mu$-integrable and $c \in \mathbb{R}$
(a) $f+g$ well-defined μ-a.e. and μ-integrable with $\int(f+g) d \mu=\int f d \mu+\int g d \mu$,
(b) $c \cdot f \mu$-integrable with $\int(c f) d \mu=c \cdot \int f d \mu$,
(c) $f \leq g \mu$-a.e. $\Rightarrow \int f d \mu \leq \int g d \mu$.

Theorem 5 (Dominated convergence, Lebesgue). Assume that
(i) $f_{n} \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$,
(ii) $\exists g \mu$-integrable $\forall n \in \mathbb{N}:\left|f_{n}\right| \leq g \mu$-a.e.,
(iii) $f \in \overline{\mathfrak{J}}$ such that $\lim _{n \rightarrow \infty} f_{n}=f \mu$-a.e.

Then f is μ-integrable and

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

Example 2. Consider

$$
f_{n}=n \cdot 1_{[0,1 / n[}
$$

on $\left(\mathbb{R}, \mathfrak{B}, \lambda_{1}\right)$. Then

$$
\int f_{n} d \lambda_{1}=1, \quad \quad \lim _{n \rightarrow \infty} f_{n}=0
$$

$6 \quad \mathfrak{L}^{p}$-Spaces

Given: a measure space $(\Omega, \mathfrak{A}, \mu)$ and $1 \leq p<\infty$. Put $\mathfrak{Z}=\mathfrak{Z}(\Omega, \mathfrak{A})$.

Definition 1.

$$
\mathfrak{L}^{p}=\mathfrak{L}^{p}(\Omega, \mathfrak{A}, \mu)=\left\{f \in \mathfrak{Z}: \int|f|^{p} d \mu<\infty\right\} .
$$

In particular, for $p=1$: integrable functions and $\mathfrak{L}=\mathfrak{L}^{1}$, and for $p=2$: squareintegrable functions. Put

$$
\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}, \quad f \in \mathfrak{L}^{p}
$$

Theorem 1 (Hölder inequality). Let $1<p, q<\infty$ such that $1 / p+1 / q=1$ and let $f \in \mathfrak{L}^{p}, g \in \mathfrak{L}^{q}$. Then

$$
\int|f \cdot g| d \mu \leq\|f\|_{p} \cdot\|g\|_{q}
$$

In particular, for $p=q=2$: Cauchy-Schwarz inequality.
Proof. See Analysis III or Elstrodt (1996, §VI.1) as well as Theorem 5.3.
Theorem 2. \mathfrak{L}^{p} is a vector space and $\|\cdot\|_{p}$ is a semi-norm on \mathfrak{L}^{p}. Furthermore,

$$
\|f\|_{p}=0 \quad \Leftrightarrow \quad f=0 \mu \text {-a.e. }
$$

Proof. See Analysis III or Elstrodt (1996, §VI.2).
Definition 2. Let $f, f_{n} \in \mathfrak{L}^{p}$ for $n \in \mathbb{N}$. $\left(f_{n}\right)_{n}$ converges to f in \mathfrak{L}^{p} (in mean of order p) if

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{p}=0
$$

In particular, for $p=1$: convergence in mean, and for $p=2$: mean-square convergence. Notation:

$$
f_{n} \xrightarrow{\mathfrak{L}^{p}} f .
$$

Remark 1. Let $f, f_{n} \in \overline{\mathfrak{Z}}$ for $n \in \mathbb{N}$. Recall (define) that $\left(f_{n}\right)_{n}$ converges to $f \mu$-a.e. if

$$
\mu\left(A^{c}\right)=0
$$

for

$$
A=\left\{\lim _{n \rightarrow \infty} f_{n}=f\right\}=\left\{\limsup _{n \rightarrow \infty} f_{n}=\liminf _{n \rightarrow \infty} f_{n}\right\} \cap\left\{\limsup _{n \rightarrow \infty} f_{n}=f\right\} \in \mathfrak{A}
$$

Notation:

$$
f_{n} \xrightarrow{\mu \text {-a.e. }} f .
$$

Lemma 1. Let $f, g, f_{n} \in \mathfrak{L}^{p}$ for $n \in \mathbb{N}$ such that $f_{n} \xrightarrow{\mathfrak{P}^{p}} f$. Then

$$
f_{n} \xrightarrow{\mathfrak{L}^{p}} g \quad \Leftrightarrow \quad f=g \mu \text {-a.e. }
$$

Analogously for convergence almost everywhere.

Proof. For convergence in \mathfrak{L}^{p} : ' \Leftarrow ' follows from Theorem 5.4.(ii). Use

$$
\|f-g\|_{p} \leq\left\|f-f_{n}\right\|_{p}+\left\|f_{n}-g\right\|_{p}
$$

to verify ' \Rightarrow '.
For convergence almost everywhere: ' \Leftarrow ' trivially holds. Use

$$
\left\{\lim _{n \rightarrow \infty} f_{n}=f\right\} \cap\left\{\lim _{n \rightarrow \infty} f_{n}=g\right\} \subset\{f=g\}
$$

to verify ' \Rightarrow '

Theorem 3 (Fischer-Riesz). Consider a sequence $\left(f_{n}\right)_{n}$ in \mathfrak{L}^{p}. Then
(i) $\left(f_{n}\right)_{n}$ Cauchy sequence $\Rightarrow \exists f \in \mathfrak{L}^{p}: f_{n} \xrightarrow{\mathfrak{L}^{p}} f$ (completeness),
(ii) $f_{n} \xrightarrow{\mathfrak{R}^{p}} f \Rightarrow \exists$ subsequence $\left(f_{n_{k}}\right)_{k}: f_{n_{k}} \xrightarrow{\mu \text {-a.e. }} f$.

Proof. Ad (i): Consider a Cauchy sequence $\left(f_{n}\right)_{n}$ and a subsequence $\left(f_{n_{k}}\right)_{k}$ such that

$$
\forall k \in \mathbb{N} \forall m \geq n_{k}:\left\|f_{m}-f_{n_{k}}\right\|_{p} \leq 2^{-k}
$$

For

$$
g_{k}=f_{n_{k+1}}-f_{n_{k}} \in \mathfrak{L}^{p}
$$

we have

$$
\left\|\sum_{\ell=1}^{k}\left|g_{\ell}\right|\right\|_{p} \leq \sum_{\ell=1}^{k}\left\|g_{\ell}\right\|_{p} \leq \sum_{\ell=1}^{k} 2^{-\ell} \leq 1 .
$$

Put $g=\sum_{\ell=1}^{\infty}\left|g_{\ell}\right| \in \overline{\bar{J}}_{+}$. By Theorem 5.1

$$
\begin{equation*}
\int g^{p} d \mu=\int \sup _{k}\left(\sum_{\ell=1}^{k}\left|g_{\ell}\right|\right)^{p} d \mu=\sup _{k} \int\left(\sum_{\ell=1}^{k}\left|g_{\ell}\right|\right)^{p} d \mu \leq 1 . \tag{1}
\end{equation*}
$$

Thus, in particular, $\sum_{\ell=1}^{\infty}\left|g_{\ell}\right|$ and $\sum_{\ell=1}^{\infty} g_{\ell}$ converge μ-a.e., see Theorem 5.4.(i). Since

$$
f_{n_{k+1}}=\sum_{\ell=1}^{k} g_{\ell}+f_{n_{1}}
$$

we have

$$
f=\lim _{k \rightarrow \infty} f_{n_{k}} \mu \text {-a.e. }
$$

for some $f \in \mathfrak{Z}$. Furthermore,

$$
\left|f-f_{n_{k}}\right| \leq \sum_{\ell=k}^{\infty}\left|g_{\ell}\right| \leq g \mu \text {-a.e. }
$$

so that, by Theorem 5.5 and (1),

$$
\lim _{k \rightarrow \infty} \int\left|f-f_{n_{k}}\right|^{p} d \mu=0 .
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{p}=0
$$

too. Finally, by Theorem $2, f \in \mathfrak{L}^{p}$.
Ad (ii): Assume that

$$
f_{n} \xrightarrow{\mathfrak{S}^{p}} f .
$$

According to the proof of (i) there exists $\tilde{f} \in \mathfrak{L}^{p}$ and a subsequence $\left(f_{n_{k}}\right)_{k}$ such that

$$
f_{n_{k}} \xrightarrow{\mu \text {-a.e. }} \tilde{f} \wedge f_{n_{k}} \xrightarrow{\mathfrak{L}^{p}} \tilde{f} .
$$

Use Lemma 1.

Example 1. Let $(\Omega, \mathfrak{A}, \mu)=\left([0,1], \mathfrak{B}([0,1]),\left.\lambda_{1}\right|_{\mathfrak{B}([0,1])}\right)$. (By Remark 1.7.(ii) we have $\left.\mathfrak{B}([0,1]) \subset \mathfrak{B}_{1}\right)$. Define

$$
\begin{gathered}
A_{1}=[0,1] \\
A_{2}=[0,1 / 2], \quad A_{3}=[1 / 2,1] \\
A_{4}=[0,1 / 3], \quad A_{5}=[1 / 3,2 / 3], \quad A_{6}=[2 / 3,1] \\
\text { etc. }
\end{gathered}
$$

Put $f_{n}=1_{A_{n}}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{n}-0\right\|_{p}=\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=0 \tag{2}
\end{equation*}
$$

but

$$
\left\{\left(f_{n}\right)_{n} \text { converges }\right\}=\emptyset
$$

Remark 2. Define

$$
\mathfrak{L}^{\infty}=\mathfrak{L}^{\infty}(\Omega, \mathfrak{A}, P)=\left\{f \in \mathfrak{Z}: \exists c \in \mathbb{R}_{+}:|f| \leq c \mu \text {-a.e. }\right\}
$$

and

$$
\|f\|_{\infty}=\inf \left\{c \in \mathbb{R}_{+}:|f| \leq c \mu \text {-a.e. }\right\}, \quad f \in \mathfrak{L}^{\infty}
$$

$f \in \mathfrak{L}^{\infty}$ is called essentially bounded and $\|f\|_{\infty}$ is called the essential supremum of $|f|$. Use Theorem 4.1.(iii) to verify that

$$
|f| \leq\|f\|_{\infty} \mu \text {-a.e. }
$$

The definitions and results of this section, except (2), extend to the case $p=\infty$, where $q=1$ in Theorem 1. In Theorem 3.(ii) we even have $f_{n} \xrightarrow{\mathfrak{L}^{\infty}} f \Rightarrow f_{n} \xrightarrow{\mu \text {-a.e. }} f$.
Remark 3. Put

$$
\mathfrak{N}^{p}=\left\{f \in \mathfrak{L}^{p}: f=0 \mu \text {-a.e. }\right\}
$$

Then the quotient space $L^{p}=\mathfrak{L}^{p} / \mathfrak{N}^{p}$ is a Banach space. In particular, for $p=2, L^{2}$ is a Hilbert space, with semi-inner product on \mathfrak{L}^{2} given by

$$
\langle f, g\rangle=\int f \cdot g d \mu, \quad f, g \in \mathfrak{L}^{2}
$$

Theorem 4. If μ is finite and $1 \leq p<q \leq \infty$ then

$$
\mathfrak{L}^{q} \subset \mathfrak{L}^{p}
$$

and

$$
\|f\|_{p} \leq \mu(\Omega)^{1 / p-1 / q} \cdot\|f\|_{q}, \quad f \in \mathfrak{L}^{q}
$$

Proof. The result trivially holds for $q=\infty$.In the sequel, $q<\infty$. Use $|f|^{p} \leq 1+|f|^{q}$ and Theorem 5.4.(iii) to obtain $\mathfrak{L}^{q} \subset \mathfrak{L}^{p}$. Put $r=q / p$ and define s by $1 / r+1 / s=1$. Theorem 1 yields

$$
\int|f|^{p} d \mu \leq\left(\int|f|^{p \cdot r} d \mu\right)^{1 / r} \cdot(\mu(\Omega))^{1 / s}
$$

Example 2. Let $1 \leq p<q \leq \infty$. With respect to the counting measure on $\mathfrak{P}(\mathbb{N})$, $\mathfrak{L}^{p} \subset \mathfrak{L}^{q}$. With respect to the Lebesgue measure on \mathfrak{B}_{k} neither $\mathfrak{L}^{q} \subset \mathfrak{L}^{p}$ nor $\mathfrak{L}^{p} \subset \mathfrak{L}^{q}$.

7 The Radon-Nikodym-Theorem

Given: a measure space $(\Omega, \mathfrak{A}, \mu)$. Put $\overline{\mathfrak{Z}}_{+}=\overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$.
Definition 1. For f (quasi-) μ-integrable and $A \in \mathfrak{A}$, the integral of f over A is

$$
\int_{A} f d \mu=\int 1_{A} \cdot f d \mu
$$

(Note: $\left|1_{A} \cdot f\right| \leq|f|$.)
Theorem 1. Let $f \in \overline{\mathfrak{Z}}_{+}$and put

$$
\nu(A)=\int_{A} f d \mu, \quad A \in \mathfrak{A}
$$

Then ν is a measure on \mathfrak{A}.
Proof. Clearly $\nu(\emptyset)=0$ and $\nu \geq 0$. For $A_{1}, A_{2}, \ldots \in \mathfrak{A}$ pairwise disjoint

$$
\begin{aligned}
\nu\left(\bigcup_{i=1}^{\infty} A_{i}\right) & =\int \sum_{i=1}^{\infty} 1_{A_{i}} \cdot f d \mu=\int \lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} 1_{A_{i}} \cdot f\right) d \mu \\
& =\lim _{n \rightarrow \infty} \int \sum_{i=1}^{n} 1_{A_{i}} \cdot f d \mu=\sum_{i=1}^{\infty} \int 1_{A_{i}} \cdot f d \mu \\
& =\sum_{i=1}^{\infty} \nu\left(A_{i}\right)
\end{aligned}
$$

follows from Theorem 5.1.
Definition 2. The mapping ν in Theorem 1 is called measure with μ-density f, or distribution with density f. Notation: $\nu=f \cdot \mu$ (bad, but common notation: $\mathrm{d} \nu=d \cdot \mathrm{~d} \mu)$. If $\int f d \mu=1$ then f is called probability density.

Example 1. The introductory examples of probability spaces were defined by means of probability densities.
(i) Let $(\Omega, \mathfrak{A}, \mu)=\left(\mathbb{R}^{k}, \mathfrak{B}_{k}, \lambda_{k}\right)$. For

$$
f(x)=(2 \pi)^{-k / 2} \cdot \exp \left(-\frac{1}{2} \sum_{i=1}^{k} x_{i}^{2}\right)
$$

we get the k-dimensional standard normal distribution ν.
For $B \in \mathfrak{B}_{k}$ such that $0<\lambda_{k}(B)<\infty$ and

$$
f=\frac{1}{\lambda_{k}(B)} \cdot 1_{B}
$$

we get the uniform distribution on B.
(ii) $\Omega=\mathbb{N}, \mathfrak{A}=\mathfrak{P}(\mathbb{N}), \mu$ the counting measure. A mapping $f: \Omega \rightarrow \mathfrak{R}_{+}$(i.e., a sequence) is in \mathfrak{L}^{1} iff it is an absolutely summable sequence (see Übung4.3a)), and for each such f and $A \subseteq \Omega$,

$$
\begin{equation*}
\forall A \in \mathfrak{A}: \nu(A)=\int_{A} f d \mu=\sum_{n \in A} f(n) . \tag{1}
\end{equation*}
$$

Conversely, any measure ν on \mathfrak{A} is a measure with density with respect to μ : Put $f(\omega):=\nu(\{\omega\})$, then ((1)) holds.

Theorem 2. Let $\nu=f \cdot \mu$ with $f \in \overline{\mathfrak{Z}}_{+}$and $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$. Then

$$
g \text { (quasi) }-\nu \text {-integrable } \Leftrightarrow g \cdot f \text { (quasi)- } \mu \text {-integrable, }
$$

in which case

$$
\int g d \nu=\int g \cdot f d \mu
$$

Proof. First, assume that $g=1_{A}$ with $A \in \mathfrak{A}$. Then the statements hold by definition. For $g \in \Sigma_{+}(\Omega, \mathfrak{A})$ we now use linearity of the integral. For $g \in \overline{\mathfrak{Z}}_{+}$we take a sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ in $\Sigma_{+}(\Omega, \mathfrak{A})$ such that such that $g_{n} \uparrow g$. Then $g_{n} \cdot f \in \overline{\mathfrak{Z}}_{+}$and $g_{n} \cdot f \uparrow g \cdot f$. Hence, by Theorem 5.1 and the previous part of the proof

$$
\int g d \nu=\lim _{n \rightarrow \infty} \int g_{n} d \nu=\lim _{n \rightarrow \infty} \int g_{n} \cdot f d \mu=\int g \cdot f d \mu
$$

Finally, for $g \in \overline{\mathfrak{Z}}(\Omega, \mathfrak{A})$ we already know that

$$
\int g^{ \pm} d \nu=\int g^{ \pm} \cdot f d \mu=\int(g \cdot f)^{ \pm} d \mu
$$

Use linearity of the integral.

Remark 1.

$$
f, g \in \overline{\mathfrak{Z}}_{+} \wedge f=g \mu \text {-a.e. } \quad \Rightarrow \quad f \cdot \mu=g \cdot \mu .
$$

Theorem 3 (Uniqueness of densities). Let $f, g \in \overline{\mathfrak{Z}}_{+}$such that $f \cdot \mu=g \cdot \mu$. Then
(i) $f \mu$-integrable $\Rightarrow f=g \mu$-a.e.,
(ii) $\mu \sigma$-finite $\Rightarrow f=g \mu$-a.e.

Proof. Ad (i): It suffices to verify the claim: If $f, g \mu$-integrable and

$$
\forall A \in \mathfrak{A}: \int_{A} f d \mu \leq \int_{A} g d \mu \Rightarrow f \leq g \mu \text {-a.e. }
$$

To this end, take $A=\{f>g\}$. By assumption,

$$
-\infty<\int_{A} f d \mu \leq \int_{A} g d \mu<\infty
$$

and therefore $\int_{A}(f-g) d \mu \leq 0$. However,

$$
1_{A} \cdot(f-g) \geq 0,
$$

hence $\int_{A}(f-g) d \mu \geq 0$. Thus

$$
\int 1_{A} \cdot(f-g) d \mu=0
$$

Theorem 5.3 implies $1_{A} \cdot(f-g)=0 \mu$-a.e., and by definition of A we get $\mu(A)=0$. Ad (ii): Assume first that μ is finite. Since for all $k \in \mathbb{N}$,

$$
\infty \cdot \mu(\{f=\infty\} \backslash\{g \geq k\})=\int_{\{f=\infty\} \backslash\{g \geq k\}} f \mathrm{~d} \mu=\int_{\{f=\infty\} \backslash\{g \geq k\}} g \mathrm{~d} \mu \leq k \mu(\Omega)
$$

we have that $\mu(\{f=\infty\} \backslash\{g \geq k\})=0$, and by σ-continuity from below, $\mu(\{f=$ $\infty \backslash\{g=\infty\}\})=0$. By symmetry, we conclude

$$
\mu(\{f=\infty\} \Delta\{g=\infty\})=0
$$

Set $A_{0}=\{f=\infty\} \cup\{g=\infty\}, A_{1}=A_{0}^{c}$; then $\mathbf{1}_{A_{0}} f=\mathbf{1}_{A_{0}} g \mu-$ a.e., and we claim that

$$
\begin{equation*}
\mathbf{1}_{A_{1}} f=\mathbf{1}_{A_{1}} g \quad \mu \text {-a.e. . } \tag{2}
\end{equation*}
$$

Since

$$
A_{1} \cap\{f>g\}=\bigcap_{n \in \mathbb{N}} \underbrace{\{n>f>g+1 / n\}}_{=: C_{n}},
$$

we just have to show $\mu\left(C_{n}\right)=0$. But

$$
\int \mathbf{1}_{C_{n}} g \mathrm{~d} \mu=\int \mathbf{1}_{C_{n}} f \mathrm{~d} \mu \geq \int \mathbf{1}_{C_{n}}(g+1 / n)=\int \mathbf{1}_{C_{n}} g \mathrm{~d} \mu+\mu\left(B_{n}\right) / n
$$

Since further

$$
\int \mathbf{1}_{C_{n}} g \mathrm{~d} \mu=\int \mathbf{1}_{C_{n}} f \mathrm{~d} \mu \leq n \cdot \mu(\Omega)<\infty
$$

this entails $\mu\left(C_{n}\right)=0$, and hence $\mu\left(A_{1} \cap\{f>g\}\right)=0$; by symmetry, also $\mu\left(A_{1} \cap\{g>\right.$ $f\})=0$, i.e., (2) follows.
Let now μ be just σ-finite, and let $B_{n} \in \mathfrak{A}$ be disjoint such that $\mu\left(B_{n}\right)<\infty, \bigcup_{n} B_{n}=$ Ω. Set $\mu_{n}(A):=\mu\left(A \cap B_{n}\right)$. Then μ_{n} are measures, and for all $A \in \mathfrak{A}$,

$$
\mu(A)=\sum_{n} \mu_{n}(A) .
$$

Moreover, $f \cdot \mu_{n}=g \cdot \mu_{n}$, and by the first part we know that

$$
f=g \quad \mu_{n}-\text {-a.e., } \quad \forall n \in \mathbb{N} .
$$

But then

$$
\mu(\{f \text { not }=g\})=\sum_{n} \mu_{n}(\{f \neq g\})=0 .
$$

Remark 2. Let $(\Omega, \mathfrak{A}, \mu)=\left(\mathbb{R}^{k}, \mathfrak{B}_{k}, \lambda_{k}\right)$ and $x \in \mathbb{R}^{k}$. There is no density $f \in \overline{\mathfrak{Z}}_{+}$ w.r.t. λ_{k} such that $\delta_{x}=f \cdot \lambda_{k}$ (recall δ_{x} the Dirac point measure). This follows from $\varepsilon_{x}(\{x\})=1$ and

$$
\left(f \cdot \lambda_{k}\right)(\{x\})=\int_{\{x\}} f d \lambda_{k}=0
$$

Definition 3. A measure ν on \mathfrak{A} is absolutely continuous w.r.t. μ if

$$
\forall A \in \mathfrak{A}: \mu(A)=0 \Rightarrow \nu(A)=0 .
$$

Notation: $\nu \ll \mu$.

Remark 3.

(i) $\nu=f \cdot \mu \Rightarrow \nu \ll \mu$.
(ii) In Remark 2 neither $\varepsilon_{x} \ll \lambda_{1}$ nor $\lambda_{1} \ll \varepsilon_{x}$.
(iii) Let μ denote the counting measure on \mathfrak{A}. Then $\nu \ll \mu$ for every measure ν on \mathfrak{A}.
(iv) Let μ denote the counting measure on \mathfrak{B}_{1}. Then there is no density $f \in \overline{\mathfrak{Z}}_{+}$such that $\lambda_{1}=f \cdot \mu$.

Lemma 1. Let $f_{n} \xrightarrow{\mathfrak{L}^{p}} f$ and $A \in \mathfrak{A}$. If $p=1$ or $\mu(A)<\infty$ then

$$
\int_{A} f_{n} d \mu \rightarrow \int_{A} f d \mu
$$

Proof. For $p=1$, this follows from

$$
\left|\int_{A} f_{n} d \mu-\int_{A} f d \mu\right| \leq \int_{A}\left|f_{n}-f\right| \mathrm{d} \mu \rightarrow 0
$$

if $\mu(A)<\infty$ and $p>1$ set $1 / q=1-1 / p$; then by Theorem 6.1,

$$
\int \mathbf{1}_{A} \cdot\left|f_{n}-f\right| \mathrm{d} \mu \leq \underbrace{\left(\int \mathbf{1}_{A}^{q}\right)^{1 / q}}_{=\mu(A)^{1 / q}<\infty} \cdot \underbrace{\left(\int\left|f-f_{n}\right|^{p}\right)^{1 / p}}_{\rightarrow 0}
$$

Theorem 4 (Radon, Nikodym). For every σ-finite measure μ and every measure ν on \mathfrak{A} we have

$$
\nu \ll \mu \quad \Rightarrow \quad \exists f \in \overline{\mathfrak{Z}}_{+}: \nu=f \cdot \mu .
$$

Proof. We will prove this only for finite measures (since we need it only for finite measures).
Step 1: We assume the stronger condition

$$
\forall A \in \mathfrak{A}: \nu(A) \leq \mu(A) \wedge \mu(\Omega)<\infty
$$

A class $\mathfrak{U}=\left\{A_{1}, \ldots, A_{n}\right\}$ is called a (finite measurable) partition of Ω iff $A_{1}, \ldots, A_{n} \in$ \mathfrak{A} are pairwise disjoint and $\bigcup_{i=1}^{n} A_{i}=\Omega$. The set of all partitions is partially ordered by

$$
\mathfrak{U} \sqsubset \mathfrak{V} \quad \text { iff } \quad \forall A \in \mathfrak{U} \exists B \in \mathfrak{V}: A \subset B .
$$

The infimum of two partitions is given by

$$
\mathfrak{U} \wedge \mathfrak{V}=\{A \cap B: A \in \mathfrak{U}, B \in \mathfrak{V}\} .
$$

For any partition \mathfrak{U} we define

$$
f_{\mathfrak{U}}=\sum_{A \in \mathfrak{U}} \alpha_{A} \cdot 1_{A}
$$

with

$$
\alpha_{A}= \begin{cases}\nu(A) / \mu(A) & \text { if } \mu(A)>0 \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $f_{\mathfrak{U}} \in \Sigma_{+}(\Omega, \sigma(\mathfrak{U})) \subset \Sigma_{+}(\Omega, \mathfrak{A}), \sigma(\mathfrak{U})=\mathfrak{U}^{+} \cup\{\emptyset\}$, and

$$
\forall A \in \sigma(\mathfrak{U}): \nu(A)=\int_{A} f_{\mathfrak{U}} d \mu .
$$

(Thus we have $\left.\nu\right|_{\sigma(\mathfrak{U l})}=\left.f_{\mathfrak{U}} \cdot \mu\right|_{\sigma(\mathfrak{l l}}$.) Let $\mathfrak{U} \sqsubset \mathfrak{V}$ and $A \in \mathfrak{V}$. Then

$$
\nu(A)=\int_{A} f_{\mathfrak{V}} d \mu=\int_{A} f_{\mathfrak{U}} d \mu,
$$

since $A \in \sigma(\mathfrak{U})$. Hence

$$
\int_{A} f_{\mathfrak{V}}^{2} d \mu=\int_{A} f_{\mathfrak{V}} \cdot f_{\mathfrak{U}} d \mu
$$

since $\left.f_{\mathfrak{V}}\right|_{A}$ is constant, and therefore

$$
\begin{equation*}
0 \leq \int\left(f_{\mathfrak{U}}-f_{\mathfrak{V}}\right)^{2} d \mu=\int f_{\mathfrak{U}}^{2} d \mu-\int f_{\mathfrak{V}}^{2} d \mu . \tag{3}
\end{equation*}
$$

Put

$$
\beta=\sup \left\{\int f_{\mathfrak{U}}^{2} d \mu: \mathfrak{U} \text { partition }\right\}
$$

and note that $0 \leq \beta \leq \mu(\Omega)<\infty$, since $f_{\mathfrak{U}} \leq 1$. Consider a sequence of functions $f_{n}=f_{\mathfrak{U}_{n}}$ such that

$$
\lim _{n \rightarrow \infty} \int f_{n}^{2} d \mu=\beta
$$

Due to (3) we may assume that $\mathfrak{U}_{n+1} \sqsubset \mathfrak{U}_{n}$. Then, by (3), $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathfrak{L}^{2}, so that there exists $f \in \mathfrak{L}^{2}$ with

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{2}=0 \quad \wedge \quad 0 \leq f \leq 1 \mu \text {-a.e. }
$$

see Theorem 6.3.
We claim that $\nu=f \cdot \mu$. Let $A \in \mathfrak{A}$. Put

$$
\widetilde{\mathfrak{U}}_{n}=\mathfrak{U}_{n} \wedge\left\{A, A^{c}\right\}
$$

and

$$
\widetilde{f}_{n}=f_{\tilde{\mathfrak{U}}_{n}}
$$

Then

$$
\nu(A)=\int_{A} \widetilde{f}_{n} d \mu=\int_{A} f_{n} d \mu+\int_{A}\left(\widetilde{f}_{n}-f_{n}\right) d \mu
$$

and (3) yields $\lim _{n \rightarrow \infty}\left\|\widetilde{f}_{n}-f_{n}\right\|_{2}=0$. It remains to apply Lemma 1.
Step 2: We assume only that μ, ν are finite, and $\nu \ll \nu$. Then $\mu, \nu \leq \mu+\nu=: \tau$; by Step 1, we have densities $g, h: \Omega \rightarrow[0,1]$ with $\mu=g \cdot \tau, \nu=h \cdot \tau$. Since

$$
\mu(\{g=0\})=\int_{\{g=0\}} \mathrm{d} \mu=\int_{\{g=0\}} g \mathrm{~d} \tau=0
$$

and $\nu \ll \mu, \nu(\{g=0\})=0$. The function

$$
f(x):= \begin{cases}h(x) / g(x), & g(x) \neq 0 \\ 0, & g(x)=0\end{cases}
$$

is now a density for ν :

$$
\nu(A)=\int_{A \cap\{g \neq 0\}} \underbrace{h}_{=f g} \mathrm{~d} \tau=\int_{A \cap\{g \neq 0\}} f \mathrm{~d} \mu=\int_{A} f \mathrm{~d} \mu .
$$

[^0]: ${ }^{1}$ I.e., $A_{n} \subseteq A_{n+1}$ for all n and $A=\bigcup_{n} A_{n}$
 ${ }^{2}$ I.e., $A_{n+1} \subseteq A_{n}$ for all n and $A=\bigcap_{n} A_{n}$

