Chapter 11

Measure and Integral

1 Classes of Sets

Given: a non-empty set 2 and a class 2 C PB(Q) of subsets. Put
AT = {U A;:neNAA,. .., A, € pairwise disjoint}.
i=1

Definition 1.

(i) A closed w.r.t. intersections or N—closed iff A, Be A= ANB e

)
(ii) A closed w.r.t. unions or U-closed iff A, Be A= AUB e
(ili) A closed w.r.t. complements or “~closed iff A e A= A°:=Q\ Aec
(iv) A semi-algebra (in Q) if

(a) Q e,

(b) A N—closed,

(c) Ac A= A e AT,
(v) A algebra (in Q) if

(a) Qe
(b) 2 N—closed,
(c) A “—closed.

(vi) 2 o-algebra (in Q) if

(a) Qe
(b) A, Ag,...eUA= U Ay e,
(c) A “—closed.



Remark 1. Let 2 denote a o-algebra in ). Recall that a probability measure P on
(Q,20) is a mapping
P A —0,1]

such that P(Q2) =1 and

[e.e]

A1, Ag, ... € A pairwise disjoint = P<U Ai) = Z P(A4;).
i=1 i=1

Moreover, (£2,2, P) is called a probability space, and P(A) is the probability of the
event A € 2.

Remark 2.

(i) A o-algebra = 2 algebra = 2 semi-algebra.

(ii) A closed w.r.t. intersections = A" closed w.r.t. intersections.

(iii) A algebra and A;, As € A = A3 U Ay, A1\ Ay, A1 A Ay €2

(iv) A o-algebra and Ay, Ag,--- € A =, A, € 2
Example 1.

(i) Let 2 = R and consider the class of intervals

A={]a,b] : a,b e RANa <b}U{]—00,b]: b€ R}U{Ja,0|: a € R} U{R, 0}.
Then 2 is a semi-algebra, but not an algebra.

(ii)) {A € PB(Q) : A finite or A finite} is an algebra, but not a o-algebra in general.
(iii) {A € P(Q) : A countable or A° countable} is a o-algebra.

(iv) P(Q) is the largest o-algebra in Q, {0, 2} is the smallest o-algebra in €.
Definition 2.

(i) A monotone class (in Q) if

(a) A, Ag,... €ANA, T A = A€,
(b) Ay, As,...€ANA, | A2= Ac

(ii) A Dynkin class (in Q) if

(a) Q e,
(b) Al,AQ S Q‘/\Al C A2 = AQ\A1 S 91,
(c) Ay, A, ... €A pairwise disjoint = J,—, A, € 2.

Remark 3. 2 g-algebra = 2 monotone class and Dynkin class.

Le., Any1 C Ay for allmand A =, Ay

Ne., A, C A, forallnand A=, A,



Theorem 1.
(i) For every algebra 2

A o-algebra < 2 monotone class.

(ii) For every Dynkin class 2

A o-algebra <« A closed w.r.t. intersections.

Proof. Ad (i), ‘<" Let Aj,Ay,... € A and put B, =, A, and B=J _ A
Then B,, T B. Furthermore, B,, € 2 since 2 is an algebra. Thus B € 2 since 2 is a
monotone class.

Ad (ii), ‘«<=" For A € A we have A° = Q\ A € A since A is a Dynkin class. For
A, B € 2 we have
AUB=AU(B\(ANB))eA

since 2 is also closed w.r.t. intersections. Thus, for A;, A, ... € A and B,, as previ-
ously we get B, € A and

U U m \ Bm 1 917
n=1

m=1
where By = (). O

Remark 4. Consider o-algebras (algebras, monotone classes, Dynkin classes) 2; for
i€l#0. Then (,.;%; is a o-algebra (algebra, monotone class, Dynkin class), too.

Given: a class € C PB(Q).
Definition 3. The o-algebra generated by €
o(€) = ﬂ{?l : 2 o-algebra in Q A € C A}.

Analogously, a(€), m(€&), §(&) the algebra, monotone class, Dynkin class, respec-
tively, generated by €.

Remark 5. For v € {0,a,m,d} and &, &, & C P(Q)
(i) v(€) is the smallest ‘y-class’ that contains €&,
(ii) € C & = (&) C (&),
(i) 7(7(€)) = ~(€).
Example 2. Let 2 =N and € = {{n} : n € N}. Then
a(€) = {A € P(Q) : A finite or A finite} =: A

Proof: 2 is an algebra, see Example 1, and € C 2. Thus «(€&) C A. On the other
hand, for every finite set A C Q we have A = {J,.,{n} € a(€), and for every set
A C Q with finite complement we have A = (A°)¢ € o(€&). Thus A C a(€).

Moreover,



Theorem 2. [Monotone class theorem, set version)]
(i) € closed w.r.t. intersections = o (&) = §(&).
(ii) € algebra = o(€&) = m(€).

Proof. Ad (i): Remark 3 implies

i(€) C o(€).

We claim that

d(€) is closed w.r.t. intersections.

Then, by Theorem 1.(ii),
o(€) Ci(€).

Put
Cp={CCQ:CNBeE)},

so that (1) is equivalent to
VB eE):(€E) CCp.
It is straightforward to verify that
VB € §(€) : €5 Dynkin class.
Moreover, since € is closed w.r.t. intersections,
VE € €: € C .

Therefore
VE € €:§(€) C g,

ie., forall F € € B e d(€), ENB € §(€); hence
VBeS(e): € e

Since €p is a Dynkin system, §(B) C €p.

B e §(e),

Ad (ii): Obviously, m(€) C o(€&). By Part (ii) of Theorem 1, it is enough to show

that m(€&) is an algebra. This amounts to the claim that
m(€) is “—closed and N —closed .

First, the class
C:={Aem(€) : Acm(€)}

(4)

is monotone, contains € by assumption, and thus equals m(€&). Second, in complete

analogy to Part (i), for B € m(€) it follows that the set

Cp={CCQ:CNBem(&)}

is a monotone class containing € and thus m(&), so that m(€&) is indeed N—closed. [
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Lemma 1. € semi-algebra = a(€) = 7.

Proof. Clearly € C € C «(€). It remains to show that €' is an algebra. For

A=JAieer, A e edisjoint,

=1

B=|JBie¢",  Bicé dijoint,
=1
ANB=|J(AinB;), (AinB;) € ¢ disjoint.

i<n
Jj<m

Hence ¢T is N-stable. For

A= UAi € ¢t A; € € disjoint,

i=1

with
A=) B, B e ¢disjoint,
J<n;
we have
A = U B
i<n j<n;
- U ( ﬂ Bi’z‘ ) )
(.71 ----- jn) =1
Ji<n;
ee disjoint

Hence A° € €*, and €7 is an algebra. O
Put

R =R U {—00, 0},

and equip this with the metric d(z,y) := |arctan(z)—arctan(y)|. Then R is a complete,
compact, separable, order complete metric space. For a € fR set

(£00) + (£o0) = a + (£o0) = (£o0) + a = Fo0, a/100 =0,

too ifa>0
a-(£oo) = (+o0)-a=<0 ifa=0
Foo ifa<0

as well as —oo < a < oo.
Recall that (2, ®) is a topological space iff & C P() satisfies

(i) 0,Q € &,



(ii) & is closed w.r.t. to intersections,
(iii) for every family (G;)ic; with G; € & we have |J,., G; € &.

& is the set of open subsets of €2, and the complements of open sets are the closed
subsets of Q. K C  is compact iff for every family (G;);e; with G; € & and

K C U G;
il
there is a finite set Iy C I such that
Kcl|Ja.
i€lp
For Q) =R and Q = Ek, we consider the natural (product) topologies &, &
Definition 4. For every topological space (€2, &)
B(N) =0o(®)

is the Borel-o-algebra (in 2 w.r.t. ). We shorten

B =B([R), B=5B[R), B,=5R")B,=53F

);
Remark 6. We have
B, =c({F CR*: F closed}) = o({K C R¥ : K compact})

= o({]—c0,d] : a € R*}) = o({]~00,d] : a € Q*})

and -
B={BCR:BNRec B} (5)
One can prove that #%B; = #R”, and thus
Br & P(RY)

see Billingsley (1979, Exercise 2.21).
Definition 5. For any o-algebra 2 in €2 and QcQ
A={QNA: AcU}

is the trace-o-algebra of A in ﬁ, sometimes denoted by QNA
Remark 7.

(i) 2 is a o-algebra in €.

(ii) A ¢ A in general, but if Q € A, then A= {A € A: A C Q}.
(i) A=0(¢) = A=c{QNE: E € ¢}).
(iv) B = R* N By, see (5) for k = 1.

)

(v) [a, 0[N By = o({[a,c[:a < c < b}), see (iii).



2 Measurable Mappings

Definition 1. (Q,2l) is called measurable space iff Q # () and 2 is a o-algebra in €.
Elements A € 2 are called (-)measurable sets.

In the sequel, (€2;,%;) are measurable spaces for i = 1,2, 3.

Remark 1. Let f: )y — . For B € 2,, we set in short
{feBy=f"(B)={weh : flweBC
(i) f71(2A) = {f'(A) : A €Ay} is a o-algebra in Q.
(i) {ACQy: f7H(A) € Ay} is a o-algebra in .

Definition 2. f : Q; — Qy is A, -RAy-measurable iff f~1(Ay) C Ay ie., iff for all
A €Ay we have {f € A} € ;.

How can we prove measurability of a given mapping?

Theorem 1. If f : Q) — €y is A;-As-measurable and g : 2y — Q3 is As-As-
measurable, then go f : )y — (3 is A;-A3-measurable.

Proof. (Compare Bemerkung 5.4,(i), Analysis IV)

(gof)™ ' (As) = f (g (A)) C [ (A) C Yy .

Lemma 1. For f: Q) — Q9 and & C P(Qs)

Proof. By f~1(€) C f~!'(0o(€)) and Remark 1.(i) we get o(f~1(&)) C f~1(a(€)).
Let § ={A C Q: f7Y(A) € o(f7'(€))}. Then € C § and § is a o-algebra, see
Remark 1.(ii). Thus we get o(€) C §, i.e., [ (o(€)) C o(f1(€)). O

Theorem 2. If 2, = o(€&) with € C PB(y), then
f is A;-Ay-measurable < f1(&) C A .

Proof. (compare Lemma 5.2, Analysis IV) ‘=’ is trivial,
‘<’:Assume that f~'(€) C 2;. By Lemma 1,

7 () = [7H(0(€)) = o(f71(€)) C o) = .
[l

Corollary 1. Let (€;, ®;) be topological spaces. Then every continuous f : ; — Qy
is B(2;)-B(£22)-measurable.



Proof. (Compare Korollar 5.3, Analysis IV) For continuous f we have
fﬁl<®2) C 051 - O'(@l) = %(Ql)
Theorem 2 shows the claim. O]

Given: measurable spaces (Q;,2;) for i € I # (), mappings f; : Q@ — ; for i € I and
some non-empty set 2.

Definition 3. The o-algebra generated by (f;)icr (and (2;)icr)

o{fiien)=o(Jsr@).

iel
Moreover, set o(f) = o({f})-

Remark 2. o({f; : i € I}) is the smallest o-algebra 2 in Q such that all mappings
fi are A-A;-measurable.

Theorem 3. For every measurable space (Q, 5[) and every mapping ¢ : 2 — Q,
gis -o({f; :i € [})-measurable < Vi€ l: f;og is A-A-measurable.

Proof. Use Lemma 1 to obtain

g oltfiie ) =o(g (Ut @)) =o(Uthion @),
Therefore
g (c({fi:iel})C A < Viel:fog is A-A-measurable.
]

Now we turn to the particular case of functions with values in R or R, and we consider
the Borel o-algebra in R or R, respectively. For any measurable space (€2,2() we use
the following notation

32, 0)={f: Q@ —R: f is A-B-measurable} ,
3.(0.2) = {f € 3(2,2): £ > 0},

3(Q,%) ={f:Q—R: fis A-B-measurable} ,
3,(0.2) = {f 3@ : f >0},

Every function f : Q — R may also be considered as a function with values in R, and
in this case f € 3(Q,2) iff f € 3(Q,2).

Corollary 2. For <€ {<,<,>,>} and f: Q — R,

fe3(QA) < VacR:{f<a}ecA
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Proof. (Compare Satz 5.6, Bem.5.7, Analysis [V) For instance, B = o({[—00,a] : a € R})
and

{f <a}=f"([~00,a))
and B = o({[~0o0,d] : a € R}), see Remark 1.6. It remains to apply Theorem 2. [J

Theorem 4. For f,g € 3(Q,2) and <€ {<, <, >, >, =, #},
{weQ: flw) <g(w)} e
Proof. For instance, Corollary 2 yields

{we: flw) <gw}=J{f<a<g}

q€Q
=JUf<an{g>qh e
q€Q
O
Theorem 5. For every sequence f1, fa,... € 3(,20),
(1) inanN fn7 SupneN fn € 3(97 Ql)v
(ii) liminf, oo fn, limsup, .. fn € 3(Q,A),
(iii) if (f,)nen converges at every point w € €, then lim,, .. f,, € 3(Q2,20).
Proof. (Compare Satz 5.8, 5.9, Analysis [V) For a € R
‘ = <agb = <al.
{;rellgfn < a} U {fn<al, {ilégfn < a} N {fn<a}
neN neN
Hence, Corollary 2 yields (i). Since
limsup f,, = inf sup f,, liminf f, = sup inf f,,
n—oo meN p>m n—oo meN n2m
we obtain (ii) from (i). Finally, (iii) follows from (ii). O

By
[T =max(0, f), f~ =max(0,—f)

we denote the positive part and the negative part, respectively, of f: Q — R.
Remark 3. For f € 3(,2) we have f*, f~,|f] € 3,(Q, ).
Theorem 6. For f,g € 3(2,2),

f£g, f-9. flg€3(Q9),

provided that these functions are well defined.

11



Proof. (Compare Folgerung 5.5, Analysis IV) The proof is again based on Corollary
2. For simplicity we only consider the case that f and g are real-valued. Clearly
g € 3(Q,2) implies —g € 3(Q, ), too. Furthermore, for every a € R,

{(f+g<a}=J{f<atn{g<a—-q},

q€Q

and therefore f £ ¢ € 3(Q,2). Clearly f-g € 3(Q,) if f is constant. Moreover,
x +— 22 defines a B-B-measurable function, see Corollary 1, and

frg=1/4-((f+9?>=(f—9)?

We apply Theorem 1 to obtain f - g € 3(€,2) in general. Finally, it is easy to show
that g € 3(€,2) implies 1/g € 3(Q,2A). ]

Definition 4. f € 3(,2) is called simple function if |f(Q)| < oo. Put

() ={f € 3(Q,2) : f simple},
() ={feX(QA): f>0}.

Remark 4. f € 3(Q,2) iff

f:Zai-lAi
=1

with aq,...a, € R pairwise different and Ay,..., A, € 2 pairwise disjoint such that
Uiy A=

Theorem 7. (Compare Theorem 5.11, Analysis IV) For every (bounded) function
f € 3.(Q, ) there exists a sequence fi, fa,--- € X, (€Q,2) such that f, T f (with
uniform convergence).

Proof. Let n € N and put

k—1
fo=> gn 4w T 1B,

where
A ={(k=1)/(2") < f <k/(2")}, B.={f=n}.
O

Now we consider a mapping 7" : £2; — )5 and a g-algebra 2, in €2;. We characterize
measurability of functions with respect to o(T) = T (2s).

Theorem 8 (Factorization Lemma). For every function f: Q; — R

f€3(,0(T) < 3Jge3(,Ag):f=goT.

12



Proof. ‘<’ is trivially satisfied. ‘=": First, assume that f € ¥, (Qy,0(7)), i.e.,

= Zai <1y,
i=1

with pairwise disjoint sets Ay, ..., A, € o(T'). Take pairwise disjoint sets By, ..., B, €
2, such that A; = T~!(B;) and put

g = ZOQ‘ . 131,.
=1

Clearly f = goT and g € 3(Qq,2s).
Now, assume that f € 3,.(Qy,0(T)). Take a sequence (f,)nen in X4 (2, 0(T)) ac-

cording to Theorem 7. We already know that f,, = g, oT for suitable g, € 3(Q2, 2s).
Hence

f=sup f,=sup(g,oT) = (supgn)oT =goT

where g = sup,, g, € 3(Qa, As).

In the general case, we already know that
ff=goT, [f~=goT
for suitable g1, gs € 3(92,912). Put
C={g1 = g2 =00} €Ay,

and observe that T(Q2;) N C = @ since f = fT — f~. We conclude that f = go T
where

g=0g1-1p—g2-1p € 3(Q, Ay)
with D = C°. ]

Our method of proof for Theorem 8 is sometimes called algebraic induction.
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3 Product Spaces

Example 1. A stochastic model for coin tossing. For a single trial,
Q={0,1}, A=P), YweQ:P{w}) =1/2. (1)
For n ‘independent’ trials, (1) serves as a building-block,
0, ={0,1}, 24, =P(L), VYw; €Q: P({w}) =1/2,

and we define

Then
P(A; x - x Ay) = Py(Ay) -+ - Po(Ay)

for all A; € ;.

Question: How to model an infinite sequence of trials? To this end,

Q= ﬁ 0.
=1

How to choose a o-algebra 2 in  and a probability measure P on (£2,2)? A reason-
able requirement is

VnéeN VAZ € Qll :
P(Alx"'XAnXQTH_lXQn+2...):P1(A1) """ Pn(An) (2)
Unfortunately,
2A=P(Q)
is too large, since there exists no probability measure on (€2, (2)) such that (2) holds.

The latter fact follows from a theorem by Banach and Kuratowski, which relies on
the continuum hypothesis, see Dudley (2002, p. 526). On the other hand,

A={A1 X XAy X Qi1 X Quyo---:neN, A, e, fori=1,....,n} (3)
is not a o-algebra.

Given: a non-empty set I and measurable spaces (€;,%;) for ¢ € I. Put
il
and define
HQi:{wEYI:w(i) € fori e I}
il
Notation: w = (w;)ier for w € [],.; €. Moreover, let

PBo(l) = {J C I :J non-empty, finite}.

The following definition is motivated by (3).
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Definition 1.

(i) Measurable rectangle

A=]T4 % [ @
jedJ i€I\J
with J € Po(/) and A; € A; for j € J. Notation: R class of measurable
rectangles.

(ii) Product (measurable) space (Q,2) with components (£2;,2;), 1 € I,

Q=[] A=sR).

il

Notation: 2 = )., 2;, product o-algebra.

il

Remark 1. The class fR is a semi-algebra, but not an algebra in general. See Ubung
2.3.

Example 2. Obviously, (2) only makes sense if 2 contains the product o-algebra
X, A;. We will show that there exists a uniquely determined probability measure
P on the product space ([[;2,{0,1}, @i, B({0,1})) that satisfies (2), see Remark
4.3.(ii). The corresponding probability space yields a stochastic model for the simple
case of gambling, which was mentioned in the introductory Example 1.2.

We study several classes of mappings or subsets that generate the product o-algebra.
Moreover, we characterize measurability of mappings that take values in a product
space.

Put Q =]]..; Q. Forany 0 # S C I let

icl
ﬂfg Q) — H Qi,  (wi)ier — (Wi)ies
icS

denote the projection of €2 onto [], o€ (restriction of mappings w). In particular,
for ¢ € I the i-th projection is given by wfi}. Sometimes we simply write g instead

of 75 and m; instead of ;.

15



Theorem 1.
(i) Qe i =0c({m:iel}).
(11) V’LEIQQ:O'(QEZ) = ®ie[ﬂi:a<UieIW;1(ei))'

Proof. Ad (i), ‘D’: We show that every projection m; : Q — ; is (®iel %)—Qli—
measurable. For A; € A,

i A) =4 x J] en
iel\{i}

Ad (i), ‘C’: We show that B C o({m; : i € I}). For J € Po(I) and A; € A; with

jeJ
T4 > I] 2= (7" (4.

jed i€I\J jeJ

Ad (ii): By Lemma 2.1 and (i)

Qi =o(Ur @) =o(Jotr (@) = o(Un ().

iel iel iel iel
O
Corollary 1.
(i) For every measurable space (ﬁ, ‘:)1) and every mapping ¢ : Q-0
g is §l—® 2;-measurable & Viel:mogis ﬁ—ﬁi—measurable.
iel
(ii) For every § # S C I the projection 7§ is ®),c; A~ g Ai-measurable.
Proof. Ad (i): Follows immediately from Theorem 2.3 and Theorem 1.(i).
Ad (ii): Note that 7T{SZ.} orl =zl and use (i). O

Remark 2. From Theorem 1.(i) and Corollary 1 we get
R = o({xh: 5 € Fol(D)}).
i€l

The sets

(=&~ (B) =B x (I] %)

i€l\S

with S € Po(I) and B € ), A, are called cylinder sets. Notation: € class of cylinder
sets. The class € is an algebra in €2, but not a g-algebra in general. Moreover,

R C a(R) C€Co(R),
where equality does not hold in general.
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Every product measurable set is countably determined in the following sense.

Theorem 2. For every A € ®;.;2; there exists a non-empty countable set S C I and
a set B € ®;cs%; such that )
A= () (B)

Proof. Put

A= {A € ®le : 3.5 C I non-empty, countable 3B € ®§2ll A= (ﬂé)_l (B)}

el €S

By definition, 2 contains every cylinder set and A C &, c; . It remains to show that
A is a o-algebra. Obviously, Q2 € 2, and if A = (71)~Y(B), A° = (x4)~}(B°). Finally,
if A, = (7} )7Y(B,), we define § =, S, and B, = (75,)" (B,) = By % [[;cs\p, €
X);cs Ui (see Corollary 1, (ii)); then

N A =5 (Ba) = (")) (ﬂ En) ,

hence (N, A, € A, O
Now we study products of Borel-o-algebras.

Theorem 3.

Proof. By Remark 16,
k k
B, :0<{H]—oo,ai] ca; € R for i = 1,...,k}> C ®‘B.
i=1 i=1

On the other hand, m; : R¥ — R is continuous, hence it remains to apply Corollary
2.1 and Theorem 1.(i). Analogously, B, = ®le B follows. O

Remark 3. Consider a measurable space (ﬁ, 51) and a mapping
= =k
=0 ) Q=R

Then, according to Theorem 3, f is ﬁ—%k—measurable iff all functions f; are A-B-
measurable.
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4 Construction of (Probability) Measures

Given: Q # () and () # 2 C P(Q).
Definition 1. p: 2 — R, U {oo} is called

(i) additive if:

ABeANANB=0NAUBeAd = u(AUB)=pu(A) + u(B),
(ii) o-additive if
Ay, Ay, ... € 2 pairwise disjoint A U Aed = u(U Ai> = ZM(AZ-),
i=1 i=1 i=1
(ili) content (on A) if
2A algebra A g additive A u(0) =0,
(iv) pre-measure (on ) if

2 semi-algebra A p o-additive A p(0) =0,

(v) measure (on ) if
20 o-algebra A pu pre-measure,

(vi) probability measure (on ) if
pu measure A p(Q2) = 1.

Definition 2. (Q,2(, 1) is called a

(i) measure space, if i is a measure on the o-algebra 2 in €,

(ii) probability space, if u is a probability measure on the o-algebra 2 in €.
Example 1.

(i) k—dimensional Lebesgque pre-measure A\, e.g., on cartesian products of intervals.
(ii) For any semi-algebra 2 in €2 and w € Q

dw(A) = 1a(w), Aei,

defines a pre-measure. If 2 is a o-algebra, then ¢, is called the Dirac measure
at the point w.

More generally: take sequences (wp)ner in € and (a,)nen in Ry such that
> o, =1. Then

pA) =300 Talw),  Ae
n=1

defines a discrete probability measure on any g-algebra 2 in €). Note that p =

Yoy Euy -

18



(iii) Counting measure on a o-algebra 2
u(A) = [A], Aedl
Uniform distribution in the case [Q| < oo and 2 = ()

_ 4]

N(A) = @,

A C Q.

(iv) On the algebra A = {A C Q : A finite or A° finite} let
0 if|Al<oo
uay =47
oo if |[A] = 0.
Then p is a content but not a pre-measure in general.
(v) For the semi-algebra of measurable rectangles in Example 3.1 and A; C {0,1}

AL x o x A
1{0,1}" |

is well defined and yields a pre-measure p with 4 ({0, 1}N) =1

(A X X Ay X Qg X0

Remark 1. For every content  on 2 and A, B €

=
=
=
A
8
>
=
=
A
8
Y
=
|
=
=
N
=
N
>
=

Theorem 1. Consider the following properties for a content p on 2A:
(i) p pre-measure,
(i) A1, Ag,... e AANUZ A e A= pu(U2, A) <3002, 1(Ay) (o-subadditivity),

(ili) Ay, Agy... € ANA, T A e A = limy oo pu(A,) = p(A) (o-continuity from
below),

(iv) A1, Ao € ANA, | A€ AN p(A) < oo = limy o u(A4,) = p(A) (o-

continuity from above),

(v) Aj,Ag, .. € ANA, | DA p(Ar) < 0o = limy, o p(Ay) = 0 (o-continuity at 0).

Then
(i) & (i) < (iii) = (iv) < (v).
If p(€2) < oo, then (iii) < (iv).
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Proof. ‘(i) = (ii): Put B, = J*, A; and By = (). Then

o0

U U m \ Bmfl)

with pairwise disjoint sets B, \ Bn_1 € 2. Clearly B,, \ B,_1 C A,,. Hence, by

Remark 1.(i),
u(U Az) =) u(Bn\ Bna) <> (A

‘(ii) = (i) Let Ay, Ay, ... € A be pairwise disjoint with [ J;°, A; € A. Then

w(Ua) = () = > aa
and therefore
> <u((J4).

The reverse estimate holds by assumption.
‘(i) = (iii): Put A9 =0 and B,, = A, \ A—1. Then

(G ) ZM = T}E{}Oiﬂ(Bm) = ggngou(o Bm> = lim p(A,).

m=1

‘(iii) = (i): Let A;, Ag,... € A be pairwise disjoint with (J;-; A; € 2, and put
B, =", A;. Then B,, 1,2, A; and

() = Jim w5 =3

‘(iv) = (v)’ trivially holds.
‘(v) = (iv): Use B, = A, \ A | 0.
‘(i) = (v): Note that pu(A;) = oo, pu(A; \ Airq). Hence

0= ]}LT{}OX;M(Ai \ Aig) = lim p(Ay).

“(iv) A pu(Q) < oo = (iii)”: Clearly A, T A implies A¢ | A°. Thus
p(A) = (@) = p(A9) = Tim (u(Q2) = p(A7)) = lim p(Ay).

]

Theorem 2 (Extension: semi-algebra ~~ algebra). For every semi-algebra 2
and every additive mapping u : A — R, U {oo} with u(0) =0

%Iﬁ content on a(A) 1 i = 1

Moreover, if p is o-additive then j is o-additive, too.
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Proof. We have a(2() = A, see Lemma 1.1. Necessarily

ﬁ(C) 4;) = iu(/m (1)

for Ay, ..., A, € A pairwise disjoint. Use (1) to obtain a well-defined extension of
onto (). It easily follows that p is additive or even o-additive. O

Example 2. For the semi-algebra 2( in Example 1.(v) (%) is the algebra of cylinder
sets, and

~ A n
M(AXQN‘FlX..'):W’ AC{O,].} .

Let © be a pre-measure on 2. The outer measure generated by p is
(*(A) == inf {Zu(Ai) C A eAAC UooAz} :
i=1 =1
It is straightforward that p*(@ = 0) and that p* is monotone and o—subadditive.

Theorem 3 (Extension: algebra ~» g-algebra, Carathéodory). For every pre-
measure /4 on an algebra 2,

(a) the class
A, = {A CQ : u*(B) = (ANB) + p*(A°N BB C Q}

is a o—algebra, and p* is a measure on 2A,-.

— [

Proof. We will start with part (b), i.e., we show that

(i) VA€AVB € R(Q):  p*(B) = " (BN A) + (B N A°).

Ad (i): For A €

e}

w(A) < p(A) + > ) = u(A),

i—2
and for A; € A with A C 2, 4

[e.9] (e 9]

p(4) = p(JAin ) <3 a0 ) <3 (A

=1 i=1 i=1

follows from Theorem 1.(ii).
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Ad (ii): ‘<’ holds due to sub-additivity of u*; if

BQU&
i=1
with A; € A, then A, N A, A; N A° € A and
BnAcC|JAinA,  BnAc|JAna®,
i=1 i=1
This directly implies ‘>’.

Now we prove (a); to this end, we claim first that

(iii) A~ is N—closed, VA;, Ay € A VB € P(Q) :  p*(B) = p (BN (A1 NAy)) +

(iv) A, “—closed,

i.e., A is an algebra.

Ad (iii): We have

pr(B) = p (BN A+ (BN AS)
=p (BNA; NA)+p (BNA NAS) + p* (BN AS)

and
P (BN (A1 NA)) =p"(BNATUBNAS) = (BNASNA) + w' (BN AY).

Ad (iv): Obvious.

Next we claim that p* is additive on 2*, and even more,

(v) VA1, Ay € A,- disjoint VB € P(Q) : p*(BN(A1UAY)) = p*(BNAy)+p* (BN
Ay).

In fact, since A; N Ay = 0,

At last, we claim that 2* is a Dynkin class and p* is o—additive on 2*, i.e.,

(vi) VA, Ay, ... € AU, pairwise disjoint

e, M(G A7) = S (A,
1=1 i=1 i=1
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Let B € B(Q2). By (iv), (v), and monotonicity of p*

-

@
Il
—_

w*(B) :u*(BanJAz) +u*(Bm<

=1

zip*(BﬂAi)—l-u*(Bﬂ(

i=1

)

3
=

N~—~

—

-
Il
—

Use o-subadditivity of u* to get

t—)&
E
Vv
gk
t%
C
D)
=
+
t*
—
Sy
D)
~—
3
=
~—
N

s
I
—
-
Il
—

IV
t*
S
D
G
=
N
+
t*
—
Sy
D)
—
(G
=
N
—

-.
Il
—
.
Il
—

Hence |JZ, Ai € ,~. Take B = (J;Z, A; to obtain o-additivity of p*|g..

Conclusions:

e 2, is a Dynkin class and N-closed ((iv), (vi)), and hence a o-algebra, see
Theorem 1.1.(ii),

e A C A by (ii), hence o(A) C A -
® "]y, is a measure with p*[y = p, see (vi) and (i).
0

Remark 2. The extension from Theorem 3 is non-unique, in general. For instance,
on 2 = R, the pre-measure

0 ifA=10

. )
oo otherwise

,u(A):oo-#A:{ A€ a(3y)

on the algebra generated by intervals (see Ex.1) has the extensions ui(A) = #A
(counting measure) and ps(A) = 0o - #A to B.

Definition 3. p: 2 — R, U {oo} is called

(i) o-finite, if

3By, By, ... € A pairwise disjoint : Q= U BiAVieN: u(B;) < oo,
i=1

(ii) finite, if Q € A and p(N2) < oco.

Theorem 4 (Uniqueness). 2y be N—closed, py, ps be measures on A = (). If
s, is o—finite and pq|o, = p2|ay, then uy = po.
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Proof. Take B; according to Definition 3, with 2l instead of 2, and put
D, ={AcU: (AN B;) = u (AN By)}.
Obviously, ®; is a Dynkin class and 2y C ©;. Theorem 1.2.(i) yields
D, CA=0(Ap) =0(A) CD;.

Thus A =9, and for A € 2,
p(A) = ZM(A NB;) = Zﬂz(A N B;) = p2(A).
=1 =1

O

Corollary 1. For every semi-algebra 2l and every pre-measure p on 2 that is o-finite
%I,u* measure on o(2A) 1 pF|o = L.

Proof. Use Theorems 2, 3, and 4. O]

Remark 3. Applications of Corollary 1:

(i) For Q = R¥ and the Lebesgue pre-measure \, on J; we get the Lebesgue measure
on B;. Notation for the latter: \,.

(ii) In Example 1.(v) there exists a uniquely determined probability measure P on

X, B({0,1}) such that

Ay x - x A,
P(Alx...xAnx{O,l}x...):| 1|{01}n| |

for Ay,..., A, C {0,1}. We will study the general construction of product
measures in Section 8.
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5 Integration

For the proofs, see Analysis IV or Elstrodt (1996, Kap. VI).

Fixed in this section: A measure space (€2, 2, ). Notation:

o ¥, =X%.(02,2) (nonnegative simple functions),
e 3, =3,(2,2) (nonnegative A-B-measurable functions),

Definition 1. Integral Let f € X,
F=> a1y, aeRAE.
i=1

Then define its Integral w.r.t. p as

/fd,u: Z%'M(Ai) .
i=1
Lemma 1. The mapping [ -dp: Xy — Ry is
(i) positive-linear: [(af + Bg)du=a [ fdu+p [gdu, f,g € Xy, o, € Ry,
(ii) monotone: f < g= [ fdu < [ gdu (monotonicity).

Definition 2. Integral of f € 3, w.r.t. u

/fdu=sup{/gdu:962+/\g§f}-

Theorem 1 (Monotone convergence, Beppo Levi). (e.g., Thm.6.4, Analysis IV,
SS06) Let f, € 3. such that

VneN: fy < fori.
Then
/Supfndﬂ_sup/fnd:u‘

Remark 1. For every f € 3, there exists a sequence of functions f,, € ¥, such that
fn T f, see Theorem 2.7.

Example 1. Consider
1
fn = 1[O,n]
n
on (R, \;). Then

/fn A\ = 1, lim f, = 0.

Lemma 2. The mapping [-du : 34 — M is still positive-linear and monotone.
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Theorem 2 (Fatou’s Lemma). (See, e.g., Lemma 6.6, Ananlysis IV, SS06) For
every sequence (f,), in 3,

/lim inf f,, dp < lim inf/fn dp.

Proof. For g, = infy>, fr we have g, € 3+ and ¢, T liminf,, f,,. By Theorem 1 and
Lemma 1.(iii)

/liminffn dp = lim /gn dp < liminf/fn dp.

Theorem 3. Let f € 3+. Then

[ ran=0eutis > op o
Definition 3. A property II holds p-almost everywhere (u-a.e., a.e.), if
JA €A : {w e Q:1I does not hold for w} C AA pu(A) =0.
In case of a probability measure we say: p-almost surely, p-a.s., with probability one.

Notation: 3 = 3(£, ) is the class of A-B-measurable functions.

Definition 4. f € 3 quasi-p-integrable if

/f+d,u<oo \Y% /f_d,u<oo.

In this case: integral of f (w.r.t. )

/fduz/f+du—/fdu~

/f+du<oo A /fdu<oo.

f € 3 p-integrable if

Theorem 4.

(i) f peintegrable = u({|f] = oo}) = 0,

(ii) f p-integrable A g € 3 A f = g p-a.e. = g p-integrable A [ fdu = [ gdpu.
(iii) equivalent properties for f € 3:

(a) f p-integrable,
(b) |f| p-integrable,
(c) 3¢ : g p-integrable A | f| < g p-a.e.,
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(iv) for f and g p-integrable and ¢ € R

(a) f+g well-defined p-a.e. and p-integrable with [(f+g)du = [ fdu+ [ gdp,
(b) ¢- f p-integrable with [(c¢f)du=c- [ fdpu,
(c) f<gpae = [fdu< [gdp.

Theorem 5 (Dominated convergence, Lebesgue). Assume that

(i) f, € 3 for n € N,
(ii) Jg p-integrable Vn € N: |f,| < g p-a.e.,

(iii) f € 3 such that lim, .o f, = f p-a.e.

[ ran=tin [ fuau

Jn=mn"1j0,1/n|

Then f is p-integrable and

Example 2. Consider

on (R,%B, ;). Then
[ =1, lim f,, = 0.
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6 LP-Spaces

Given: a measure space (2,2, 1) and 1 < p < oo. Put 3 = 3(02,2).
Definition 1.
ooy ={res: /|f|pdu < oo},

In particular, for p = 1: integrable functions and £ = £', and for p = 2: square-

integrable functions. Put
1/p
= flsran) " rew

Theorem 1 (Holder inequality). Let 1 < p,q < oo such that 1/p+1/¢ = 1 and
let fe£P ge £ Then

[17-gldu <1171, gl
In particular, for p = ¢ = 2: Cauchy-Schwarz inequality.
Proof. See Analysis III or Elstrodt (1996, §VI.1) as well as Theorem 5.3. O
Theorem 2. £? is a vector space and || - ||, is a semi-norm on £°. Furthermore,
Ifl,=0 & f=0pac
Proof. See Analysis III or Elstrodt (1996, §VI1.2). O

Definition 2. Let f, f,, € £° for n € N. (f,,)n converges to f in £F (in mean of order
p) if

Jim [|f — full, = 0.
In particular, for p = 1: convergence in mean, and for p = 2: mean-square conver-
gence. Notation:

Ju = f.
Remark 1. Let f, f, € 3 for n € N. Recall (define) that (f,), converges to f u-a.e.
if
(A% =0
for
A= { lim f, = f} = {limsupfn = liminffn} N {limsupfn = f} e 2.
Notation:
oy

Lemma 1. Let f, g, f, € £° for n € N such that f, =, f. Then

2P
fn—9 < [f=gpupae

Analogously for convergence almost everywhere.
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Proof. For convergence in £°: ‘<=’ follows from Theorem 5.4.(ii). Use

1f = glly < Nf = fallp + [1fn = gll

to verify ‘=".

For convergence almost everywhere: ‘<=’ trivially holds. Use
{lim f, = f}n{lim f =g} C{f =g}

to verify ‘=".
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Theorem 3 (Fischer-Riesz). Consider a sequence (f,), in £°. Then

(i) (fn)n Cauchy sequence = 3 f € £°: f, 2y (completeness),
(ii) fn i f = Jsubsequence (fy, )k : fu, s
Proof. Ad (i): Consider a Cauchy sequence (f,), and a subsequence ( f,,, )x such that
VEENYm >ng: || fm— Fall, <27

For
gk = fnk+1 - fnk € £°

we have

k k k
IS 10d] <D lael, <> 2 <1
=1 L =1

Put g =372, |g¢| € 3.. By Theorem 5.1

/gpdu = /s%p(gm!)pdu = Sl;p/(g\gd)pdu <1 (1)

Thus, in particular, > ,°, |g¢| and )" ,°, g¢ converge p-a.e., see Theorem 5.4.(i). Since

k
fnk+1 - Zgﬁ+fn17
(=1

we have
= klim [, p-ae.
for some f € 3. Furthermore,
\f = fue] < Z lge| < g p-ace.,
=k

so that, by Theorem 5.5 and (1),
i [1f = =0,

It follows that

Tim [1f = full, = 0.
too. Finally, by Theorem 2, f € £P.
Ad (ii): Assume that

op

According to the proof of (i) there exists f € £¢ and a subsequence ( fn, )k such that
-a.e. £ 7

Use Lemma 1. [
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Example 1. Let (Q, 2, 1) = ([0, 1], B([0, 1]), M]2(o,1)))- (By Remark 1.7.(ii) we have
B(]0,1]) C B). Define
Ay =10,1]
Ay =10,1/2], Az=][1/2,1]
Ac=10,1/3), As=11/3,2/3], As=[2/3,1]
etc.

Put f, =14,. Then

T [[f, — 0, = lim [[f]l, =0 )
but

{(fn)n converges} = 0.

Remark 2. Define

£ =22 A P)={fe3:FceR;:|f] <cp-ae}

and
Iflloo = inf{c € Ry : |f| < ¢ pra.e.}, fe L=

f € £ is called essentially bounded and || f|| is called the essential supremum of
|f|- Use Theorem 4.1.(iii) to verify that

I < 1 lleo p-ace.

The definitions and results of this section, except (2), extend to the case p = oo,

where ¢ = 1 in Theorem 1. In Theorem 3.(ii) we even have f, i f=f,=

Remark 3. Put
N ={fell: f=0paec}

Then the quotient space LP = £P /9P is a Banach space. In particular, for p = 2, L?
is a Hilbert space, with semi-inner product on £2 given by

Theorem 4. If p is finite and 1 < p < g < oo then
gicger

and

1£1lp < s (@)MPH | £y, feLt

Proof. The result trivially holds for ¢ = oo.In the sequel, ¢ < oo. Use |f|P < 1+ |f]?
and Theorem 5.4.(iii) to obtain £¢ C £F. Put r = ¢/p and define s by 1/r +1/s = 1.

Theorem 1 yields
1/r
Juvaes (firrean) ey

Example 2. Letl < p < ¢ < co. With respect to the counting measure on PB(N),
£P C £4. With respect to the Lebesgue measure on 98, neither £¢ C £P nor £P C £9.

[]
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7 The Radon-Nikodym-Theorem

Given: a measure space (€, 2, u). Put 3, = 3,.(Q,2).

Definition 1. For f (quasi-)u-integrable and A € 2, the integral of f over A is

/Afduz/lA-fdu-
(Note: 14~ f] < |f].)

Theorem 1. Let f € 3, and put

V(A):/fd,u, A e
A
Then v is a measure on 2.

Proof. Clearly v() =0 and v > 0. For Aj, As, ... € 2 pairwise disjoint
y(UAZ) = /ZlAi -fdp:/ lim (ZlAi f) dp
i=1 i=1 i=1
—tim [t fau= Y [ s
i=1 i=1

oo

v(A;)

=1

follows from Theorem 5.1. OJ

Definition 2. The mapping v in Theorem 1 is called measure with p-density f,
or distribution with density f. Notation: v = f - pu (bad, but common notation:

dv=d-dp). If [ fdp =1 then f is called probability density.

Example 1. The introductory examples of probability spaces were defined by means
of probability densities.

(i) Let (Q,2, p) = (R, By, \y). For
f(@) = (2m) 2 exp (—4 0L, a2)

we get the k-dimensional standard normal distribution v.

For B € B such that 0 < A\x(B) < oo and

we get the uniform distribution on B.
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(ii)) 2 = N, A = P(N), u the counting measure. A mapping f : Q — R, (ie, a
sequence) is in £! iff it is an absolutely summable sequence (see Ubung4.3a)),
and for each such f and A C (),

VAEQL:V(A):/Afd,u:Zf(n). (1)

neA

Conversely, any measure v on 2 is a measure with density with respect to pu:
Put f(w) :=v({w}), then ((1)) holds.

Theorem 2. Let v = f -y with f € 3, and g € 3(Q,2). Then

g (quasi)-v-integrable < ¢ - f (quasi)-p-integrable,

Joav=[g-sdn

Proof. First, assume that g = 14 with A € . Then the statements hold by definition.
For g € ¥, (Q, ) we now use linearity of the integral. For g € 3, we take a sequence
(gn)nen in X4 (€, 2A) such that such that g, T ¢g. Then g, - f €3, and g, f T g- f.
Hence, by Theorem 5.1 and the previous part of the proof

/gdyzlim gndz/:lim/gn'fd,u:/g-fd,u.

Finally, for g € 3(2,2) we already know that

/gidvz/gi-fdﬂz/(g-f)idu-

Use linearity of the integral. O

in which case

Remark 1.
f.g€3 Nf=guae = f-u=g-p.

Theorem 3 (Uniqueness of densities). Let f, g € 3, such that f-u = g-pu. Then

(i) f p-integrable = f = g p-a.e.,
(ii) p o-finite = f = g p-a.e.

Proof. Ad (i): It suffices to verify the claim: If f, g u-integrable and

VAEQ[:/fduS/gdu = f<gpae.
A A

To this end, take A = {f > g}. By assumption,

—oo</fd,u§/gd,u<oo
A A
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and therefore [,(f — g)du < 0. However,

hence [,(f —g)du > 0. Thus

/1A-(f—g)du=0-

Theorem 5.3 implies 14 - (f — g) = 0 p-a.e., and by definition of A we get u(A) = 0.
Ad (ii): Assume first that u is finite. Since for all k € N,

oo-u({f=00}\{92k})=/

Fdyu = / gdpt < k()
{f=c0}\{g>k} {f=0c0}\{g>k}

we have that p({f = oo} \ {g > k}) = 0, and by o—continuity from below, u({f =
o0 \ {g = o0}}) = 0. By symmetry, we conclude

p{f = 00jAfg = 00}) = 0.
Set Ag ={f = o0} U{g = o0}, A = A§; then 1,,f = 14,9 p—a.e., and we claim that
14, f =149 pae.. (2)

Since

An{f>gb=({n>F>g+1/n}.

neN =C,

we just have to show u(C,) =0. But

/1cngdu=/lcnfdu2 /lcn(ngl/n) - /1cngdu+u(Bn)/n-

Since further
/1cngdu = /1cnfdu <n-u(Q2) <oo,

this entails u(C,,) = 0, and hence p(A;N{f > g}) = 0; by symmetry, also u(A;N{g >
f1) =0, ie., (2) follows.

Let now p be just o—finite, and let B,, € 2 be disjoint such that u(B,) < oo, |, B, =
Q. Set p,(A) ;== p(AN B,). Then p, are measures, and for all A € 2,

u(A4) = 3 pa(A)
Moreover, f - j, = g - jin, and by the first part we know that

f=g fy — —a.e., VneN.

But then

p{f ot = g}) = m({f #9}) =0
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Remark 2. Let (2,2, 1) = (R*, By, \x) and x € R¥. There is no density f € 3,
w.r.t. Ay such that 0, = f - A\ (recall §, the Dirac point measure). This follows from
e:({z}) =1 and

(f - M) ({z}) = { }fd/\k: =0.

Definition 3. A measure v on % is absolutely continuous w.r.t. p if
VAeA: u(Ad)=0=rv(A4) =0.
Notation: v < p.

Remark 3.

D v=f-pu=rv<pu.

)
(ii) In Remark 2 neither £, < A1 nor \; < &,.
(iii) Let p denote the counting measure on 2. Then v < p for every measure v on 2.
)

(iv) Let p denote the counting measure on 9%5;. Then there is no density f € 3, such
that \y = f - pu.

Lemma 1. Let f, =, fand Ae A If p=1or u(A) < co then

/Afndu—>/Afdu-

Proof. For p =1, this follows from

[ [ b= 1

if u(A) < oo and p > 1set 1/¢ =1— 1/p; then by Theorem 6.1,

Jractsnans (fa)" (fi-00)"
~~ 7N :r() d

=p(A)t/1<oc0

[]

Theorem 4 (Radon, Nikodym). For every o-finite measure p and every measure
v on 2 we have
vy = 3Ifediv=f[f-p

Proof. We will prove this only for finite measures (since we need it only for finite
measures).

Step 1: We assume the stronger condition

VAeA:v(A) < pu(A) Ap(f) < co.
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Aclass U = {A;,..., A} is called a (finite measurable) partition of Q iff A;,... A, €
2 are pairwise disjoint and | J;_, A; = Q. The set of all partitions is partially ordered
by

UCYy iff VAcUIBeYV:ACB.

The infimum of two partitions is given by
UND={ANB:Acu BecU}.

For any partition 4 we define

fu=) aa-la

with
. {V(A)/M(A) if u(4) > 0

0 otherwise.

Clearly fy € X,(Q,0(4)) C X, (Q,2A), o(th) = Ut U {0}, and
Aco cv(A) = :
VA€o v(A) = [ fud

(Thus we have v|,gy = fu - tt|o.) Let U T U and A € B. Then

V(A):/AfmdMZ/Afud#,

/Af%dli:/Afsn'fudM?

since fog|a is constant, and therefore

since A € (). Hence

0< [(fu= fofdu= [ fidu~ [ Fhdn 3)

£ = sup {/ fﬁ du = U partition} ,

and note that 0 < 8 < u(Q) < oo, since fy < 1. Consider a sequence of functions
fn = fu, such that

lim [ f2du= 3.

n—oo

Due to (3) we may assume that $,,q7 T 4,. Then, by (3), (fn)nen is a Cauchy
sequence in £2, so that there exists f € £2 with

lim ||f, — fla=0 A 0<f<1p-ae,

see Theorem 6.3.
We claim that v = f - p. Let A € 2. Put

U, = U, A {A, A}
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and

Jo = fq -
Then
o) = [ Fodu= [ o [ (= f)an

(
A
and (3) yields lim, o || fn — full2 = 0. It remains to apply Lemma 1.
Step 2: We assume only that p, v are finite, and v < v. Then p,v < p+v =:7; by
Step 1, we have densities g, h : Q — [0,1] with p =g -7, v =h - 7. Since

u({gzo})Z/{gO} duz/{go}ngZO

and v < p, v({g = 0}) = 0. The function

_ [h@)/g(), g(z) £0,
o {O, g(z) =0

is now a density for v:

V(A):/ h dT:/ fd,u:/fdu.
Anfg#0} 25, An{g£0} A
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