TU Darmstadt
Fachbereich Mathematik
Jakob Creutzig

11. Aufgabenblatt zur Vorlesung "'Probability Theory",

1. - warming up Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of r.v. , and let $\mathfrak{A}_{n}=\sigma\left(X_{n}\right)$. Which of the following events are terminal events? Which can you write with the help of sets of the form $\overline{\lim }, \underline{l i m}$?
2. $\left\{X_{n}\right.$ is monotonely increasing $\}$;
3. $\left\{X_{n} \leq 1 / n \forall n \in \mathbb{N}\right\}$;
4. $\left\{\varlimsup_{n} n X_{n}>1\right\}$;
5. $\left\{X_{n} \rightarrow 0\right\}$;
6. $\left\{X_{n} \geq \max \left\{X_{1}, \ldots, X_{n}\right\}\right.$ infinitely often $\}$;
7. $\left\{X_{2 n} \geq \max \left\{X_{n}, \ldots, X_{2 n}\right\}\right.$ infinitely often $\}$.
8.
9. Assume that $A_{n} \uparrow A$ and show that $\lim _{n} A_{n}=\varlimsup_{n} A_{n}=A$.
10. Let us write $A_{n} \rightarrow A$ iff $\underline{\lim }_{n} A_{n}=A=\varlimsup_{\lim }^{n} A_{n}$. Formulate and prove a sandwich lemma.
11. Verify the facts that are stated in Remark IV.1.2..
12. Prove or disprove:

$$
\frac{\lim }{n}\left(A_{n} \cap B_{n}\right)=\left(\frac{\lim }{n} A_{n}\right) \cap\left(\frac{\lim _{n}}{} B_{n}\right), \quad \frac{\lim }{n}\left(A_{n} \cup B_{n}\right)=\left(\underline{l i m}_{n} A_{n}\right) \cup\left(\underline{l i m}_{n} B_{n}\right) .
$$

3. Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be i.i.d. with $X_{1} \in \mathfrak{L}^{2}$. Put $S_{n}=\sum_{i=1}^{n} X_{i}$.
4. Show that

$$
\frac{1}{n-1} \cdot \sum_{i=1}^{n}\left(X_{i}-S_{n} / n\right)^{2} \xrightarrow{P-\text { a.s. }} \operatorname{Var}\left(X_{1}\right),
$$

i.e., the sample variance converges almost surely to the population variance. (Use the Strong Law of Large Numbers.)
2. Assume that $\mathbb{E} X_{1}=0$, and set $a_{n}=n(\log n)^{1 / 2+\delta}$. Prove that a.s. we have $\overline{\lim }_{n}\left|X_{n}\right| / a_{n}=0$. (Use Borell-Cantelli and Chebyshev's inequality to show that a.s., $\left\{\left|X_{n}\right| \geq \varepsilon a_{n}\right\}$ does not happen infinitely often.)
4. The SLLN yields an idea called the Monte Carlo Method of direct simulation. Let $a \in \mathbb{R}$ be an unknown number; if one can construct a r.v. X such that $\mathbb{E} X=a$, then n independent simulations X_{1}, \ldots, X_{n} of X will satisfy $\frac{1}{n} S_{n}:=\frac{1}{n} \sum_{i \leq n} X_{i} \rightarrow a$ almost surely. (Interestingly, it is often much easier to find and simulate such an X than to compute a directly.)

1. Calculate the variance of the error of this method, $\mathbb{E}\left(S_{n} / n-a\right)^{2}$.
2. As a special case, consider a function $f:[0,1]^{d} \rightarrow \mathbb{R}$ and set $a=$ $\int_{[0,1]^{d}} f(x) d x$. Let U be uniformly distributed on $[0,1]^{d}$. Prove that $X:=f(U)$ satisfies

$$
\mathbb{E} X=a, \quad \operatorname{Var}(X) \leq \int_{[0,1]^{d}} f^{2}(x) d x
$$

and study the corresponding direct simulation method.
3. Perform numerical experiments for the method studied above. (Use uniformly distributed random numbers from $[0,1]$ that are available on your computer.) Consider, in particular, test functions

$$
f(x)=\exp \left(-\sum_{j=1}^{d} c_{j} \cdot\left|x_{j}-w_{j}\right|\right)
$$

with constants $c_{j}>0$ and $0<w_{j}<1$

