TU Darmstadt
Fachbereich Mathematik
Jakob Creutzig

WS 2006/07 23.11.06

6. Aufgabenblatt zur Vorlesung "'Probability Theory"'

1. – Warming up Pick three of the following problems, and construct measurable spaces and kernels to model the following situations: (Some parameters will be left unspecified)

- (a) You roll a die to determine how often you will flip a coin; in the second stage, count the heads.
- (b) You randomly select a street, then note the sex of the first person you meet.
- (c) You randomly choose a passing car, then count the number of cars passing until a car of the same colour passes by.
- (d) You choose a random point $X = (X_1, \ldots, X_n)$ in \mathbb{R}^d (after some probability measure μ , say) then you choose randomly and uniformly distributed a point from the shifted unit interval with X as center.
- (e) (Cox-Ross-Rubinstein model of stock prices) A stock starts at a fixed value A; further, d, u are fixed numbers with d < 1 < u, and $p \in [0, 1]$ is fixed. Each day, a biased coin (probability of getting head is p) is thrown; if it is 'heads', the new price is u times the old price; if it is 'tails', the new price is d times the old price. (I.e., the first day you'll get either $u \cdot A$ or $d \cdot A$, depending on your coin toss.)

(Always start with identifying a 'reasonable' space.)

2. Consider a measure space $(\Omega, \mathfrak{A}, \mu)$ with a σ -finite measure μ and a function $f \in \overline{\mathfrak{Z}}_+(\Omega, \mathfrak{A})$. Show that

$$\int f\,d\mu = \int_{]0,\infty[} \mu(\{f>x\})\,\lambda_1(dx).$$

(*Hint:* Start with the right hand side, use Fubini.)

- **3.** Consider a queue where, per time step,
- in case of a non-empty queue, the customer at the head of the queue is served and leaves,
- *n* new customers arrive with probability b_n for $n \in \mathbb{N}_0$.

a) Choose an appropriate measurable space to model the lengths of the queue at all times $i \in \mathbb{N}_0$. Define the corresponding transition kernel by means of an infinite-dimensional stochastic matrix $(\overline{K}(k,\ell))_{k,\ell\in\mathbb{N}_0}$, i.e., $\overline{K}(k,\ell) \geq 0$ for $k,\ell\in\mathbb{N}_0$ and $\sum_{\ell=0}^{\infty} \overline{K}(k,\ell) = 1$ for $k\in\mathbb{N}_0$.

b) Suppose that initially the queue is empty. Derive a recursive formula for the probability of length $k \in \mathbb{N}_0$ of the queue at time $i \in \mathbb{N}_0$. Derive a formula for the probability of lengths (k_1, \ldots, k_i) of the queue at times $1, \ldots, i$.

4. (*) The spherical random walk Let $\emptyset \neq D \subseteq \mathbb{R}^2$ be a bounded open set, for $x \in \mathbb{R}^2$, set $d(x, \partial D) := \inf\{|x - y|_2 : y \in \partial D\}.(|\cdot|_2 \text{ denotes})$ Euclidean distance, and $\partial D = \overline{D} \cap \overline{D^c}$. Let μ denote the uniform distribution on the unit circle C (we will construct this in the next week, sorry, but you know what I mean). We describe a random experiment: Fix x in the interior of D, and draw the circle $x + C \cdot d(x, \partial D)$. Select randomly (i.e., uniformly) one point x_1 on this unit circle. Replace x with x_1 , and iterate this procedure, indefinitely (alternately: Until $d(x_n, \partial D) < \varepsilon_0$), creating a random sequence of points x_1, x_2, \ldots

- (a) Make a stochastic model for the randomly built sequence $(x_1, x_2, ...)$ by finding appropriate kernels. Do you need additional assumptions for making the theory run?
- (b) Write a computer program which simulates a spherical random walk for D being the unit sphere¹, for the unit cube, and for a triangle. Stop the process if $d(x_n, D) < 10^{-4}$, select some y 'close' to x_n on ∂D . Try to get, by experiment, a rough idea how the distribution of y looks like; do you, in particular, get a uniform distribution on the unit circle?

Remark: One can show that for suitable D, within the model constructed in (a), the series $(\xi_i)_{i\in\mathbb{N}}$ of random points converges almost surely to a random point η_x on ∂D , depending on the starting point x; moreover, if $f : \partial D \to \mathbb{R}$ is a nice function, then η has a connection to the Dirichlet problem given by f; namely, if u is the solution of

$$\Delta u = 0 \ on \ D, \qquad u = f \ on \ \partial D \ ,$$

then $\mathbb{E} f(\eta_x) = u(x)$.

 $^{^1\}mathrm{don't}$ start at 0