TU Darmstadt
Fachbereich Mathematik
Jakob Creutzig

6. Aufgabenblatt zur Vorlesung "Probability Theory",

1. - Warming up Pick three of the following problems, and construct measurable spaces and kernels to model the following situations: (Some parameters will be left unspecified)
(a) You roll a die to determine how often you will flip a coin; in the second stage, count the heads.
(b) You randomly select a street, then note the sex of the first person you meet.
(c) You randomly choose a passing car, then count the number of cars passing until a car of the same colour passes by.
(d) You choose a random point $X=\left(X_{1}, \ldots, X_{n}\right)$ in \mathbb{R}^{d} (after some probability measure μ, say) then you choose randomly and uniformly distributed a point from the shifted unit interval with X as center.
(e) (Cox-Ross-Rubinstein model of stock prices) A stock starts at a fixed value A; further, d, u are fixed numbers with $d<1<u$, and $p \in[0,1]$ is fixed. Each day, a biased coin (probability of getting head is p) is thrown; if it is 'heads', the new price is u times the old price; if it is 'tails', the new price is d times the old price. (I.e., the first day you'll get either $u \cdot A$ or $d \cdot A$, depending on your coin toss.)
(Always start with identifying a 'reasonable' space.)
2. Consider a measure space $(\Omega, \mathfrak{A}, \mu)$ with a σ-finite measure μ and a function $f \in \overline{\mathfrak{Z}}_{+}(\Omega, \mathfrak{A})$. Show that

$$
\int f d \mu=\int_{] 0, \infty[} \mu(\{f>x\}) \lambda_{1}(d x)
$$

(Hint: Start with the right hand side, use Fubini.)
3. Consider a queue where, per time step,

- in case of a non-empty queue, the customer at the head of the queue is served and leaves,
- n new customers arrive with probability b_{n} for $n \in \mathbb{N}_{0}$.
a) Choose an appropriate measurable space to model the lengths of the queue at all times $i \in \mathbb{N}_{0}$. Define the corresponding transition kernel by means of an infinite-dimensional stochastic matrix $(\bar{K}(k, \ell))_{k, \ell \in \mathbb{N}_{0}}$, i.e., $\bar{K}(k, \ell) \geq 0$ for $k, \ell \in \mathbb{N}_{0}$ and $\sum_{\ell=0}^{\infty} \bar{K}(k, \ell)=1$ for $k \in \mathbb{N}_{0}$.
b) Suppose that initially the queue is empty. Derive a recursive formula for the probability of length $k \in \mathbb{N}_{0}$ of the queue at time $i \in \mathbb{N}_{0}$. Derive a formula for the probability of lengths $\left(k_{1}, \ldots, k_{i}\right)$ of the queue at times $1, \ldots, i$.

4. (*) The spherical random walk Let $\emptyset \neq D \subseteq \mathbb{R}^{2}$ be a bounded open set, for $x \in \mathbb{R}^{2}$, set $d(x, \partial D):=\inf \left\{|x-y|_{2}: y \in \partial D\right\} .\left(|\cdot|_{2}\right.$ denotes Euclidean distance, and $\partial D=\bar{D} \cap \overline{D^{c}}$. Let μ denote the uniform distribution on the unit circle C (we will construct this in the next week, sorry, but you know what I mean). We describe a random experiment: Fix x in the interior of D, and draw the circle $x+C \cdot d(x, \partial D)$. Select randomly (i.e., uniformly) one point x_{1} on this unit circle. Replace x with x_{1}, and iterate this procedure, indefinitely (alternately: Until $\left.d\left(x_{n}, \partial D\right)<\varepsilon_{0}\right)$, creating a random sequence of points x_{1}, x_{2}, \ldots
(a) Make a stochastic model for the randomly built sequence $\left(x_{1}, x_{2}, \ldots\right)$ by finding appropriate kernels. Do you need additional assumptions for making the theory run?
(b) Write a computer program which simulates a spherical random walk for D being the unit sphere ${ }^{1}$, for the unit cube, and for a triangle. Stop the process if $d\left(x_{n}, D\right)<10^{-4}$, select some y 'close' to x_{n} on ∂D. Try to get, by experiment, a rough idea how the distribution of y looks like; do you, in particular, get a uniform distribution on the unit circle?

Remark: One can show that for suitable D, within the model constructed in (a), the series $\left(\xi_{i}\right)_{i \in \mathbb{N}}$ of random points converges almost surely to a random point η_{x} on ∂D, depending on the starting point x; moreover, if $f: \partial D \rightarrow \mathbb{R}$ is a nice function, then η has a connection to the Dirichlet problem given by f; namely, if u is the solution of

$$
\Delta u=0 \text { on } D, \quad u=f \text { on } \partial D,
$$

then $\mathbb{E} f\left(\eta_{x}\right)=u(x)$.

[^0]
[^0]: ${ }^{1}$ don't start at 0

