TU Darmstadt Fachbereich Mathematik

5. Aufgabenblatt zur Vorlesung 'Probability Theory'

In the sequel, (Ω, \mathfrak{A}) is a measure space.

1. (warming up) Let μ, ν, κ be σ-finite measures on (Ω, \mathfrak{A}).
(i) Show that, if $\mu \ll \nu$ and $\nu \ll \kappa$, then $\mu \ll \kappa$. Further, if $\mu=f \cdot \nu$ and $\nu=g \cdot \kappa$, find the κ-density of μ.
(ii) Give an example of probability measures μ, ν such that $\mu \ll \nu \ll \mu$, but $\mu \neq \nu$.
(iii) Find the μ_{1}-density of μ_{2} :
(a) $\mu_{2}=\lambda_{1}$ (Lebesgue measure),

$$
\left.\left.\mu_{1}(A)=1 / 2 \cdot \lambda_{1}(A \cap]-\infty, 0\right]\right)+2 \cdot \lambda_{1}(A \cap[0, \infty[)
$$

(b)

$$
\begin{array}{ll}
& \mu_{i}(A)=\int_{A \cap[0, \infty[} e^{-\alpha_{i} x} \mathrm{~d} x, \\
\left(\alpha_{1}, \alpha_{2}>0 \text { fixed }\right) .
\end{array}
$$

2. In this exercise, we study Lebesgue's Decomposition Theorem:

Let μ, ν be σ-finite measures on (Ω, \mathfrak{A}). Then there exist σ-finite measures μ_{a}, μ_{s} such that $\mu=\mu_{a}+\mu_{s}, \mu_{a} \ll \nu$ and $\mu_{s}\left(N^{c}\right)=0$ for some $N \in \mathfrak{A}$ with $\nu(N)=0$.

This means that we can dissect μ in a part which is absolutely continuous w.r.t. ν, and a part which 'lives' only on a set of ν-measure zero.
(i) Since $\mu, \nu \ll \mu+\nu$, we can find densities p, q :

$$
\mu=p \cdot(\mu+\nu), \quad \nu=q \cdot(\mu+\nu) .
$$

Denote

$$
f:=\mathbb{1}_{\{q>0\}} \cdot p / q, \quad N:=\{q=0\}
$$

Show that

$$
\begin{equation*}
\mu(A)=\mu(A \cap N)+\int_{A} f \mathrm{~d} \nu \quad \forall A \in \mathfrak{A} \tag{1}
\end{equation*}
$$

Why does this imply Lebesgue's Decomposition Theorem?
(ii) (*) Show that the decomposition is essentially unique, i.e., if you can find $\left(f_{1}, N_{1}\right)$ and $\left(f_{2}, N_{2}\right)$ with the property (1), then $f_{1}=f_{2} \nu$-a.e., and $\mu\left(N_{1} \Delta N_{2}\right)=0$.
(Hint: Prove first that $\int_{A} g_{1} \mathrm{~d} \nu=\int_{A} g_{2} \mathrm{~d} \nu$ for $g_{i}:=f_{i} \cdot \mathbb{1}_{N_{1}^{c} \cap N_{2}^{c}}$, and apply Theorem 2.8.3.)
(iii) Find the Lebesgue decomposition of μ with respect to ν :
(a) $\mu=\operatorname{Pois}(\lambda)$ (Poisson distribution), $\nu=B(n, p)$ (binomial distribution),
(b) $\mu=C a u(1)$ (Cauchy distribution, μ hat Lebesgue density $f(x)=$ $\left.\frac{1}{\pi\left(1+x^{2}\right)}\right), \nu=\operatorname{Exp}(\lambda)$ (exponential distribution, Lebesgue density $\left.g(x)=\mathbb{1}_{x \geq 0} \lambda e^{-\lambda x}\right)$.
$\left.{ }^{*}\right)$ Can you formulate a general rule for obtaining the Lebesgue decomposition in such cases?
3. On the space $\mathcal{M}=\mathcal{M}(\Omega, \mathfrak{A})$ of all measures over (Ω, \mathfrak{A}), consider the relation

$$
\mu \sim \nu \quad: \Leftrightarrow \quad \mu \ll \nu \ll \mu .
$$

(i) Show that this is an equivalence relation.
(ii) Is it possible to define addition and positive scalar multiplication on the factor space \mathcal{M} / \sim of equivalence classes by setting

$$
a[\mu]_{\sim}+b[\nu]_{\sim}:=[a \mu+b \nu]_{\sim}, \quad \mu, \nu \in \mathcal{M}, a, b \geq 0 ?
$$

(iii) Prove or disprove: $\mu \sim \nu$ if and only if there is a measurable $p: \Omega \rightarrow] 0, \infty$] (strictly positive!) such that $\mu=p \cdot \nu$.

