TU Darmstadt	
Fachbereich Mathematik	WS 2004/05 10.11.06
Jakob Creutzig	

4. Aufgabenblatt zur Vorlesung "'Probability Theory"'

1. (Warming up) a) Consider a probability measure P on $(\mathbb{R}, \mathcal{B})$ and define the cumulative distribution function (cdf) $F : \mathbb{R} \to [0, 1]$ by $F(x) = P(]-\infty, x]$). Show that

- (i) F is non-decreasing,
- (ii) F is right continuous,
- (iii) $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$,
- (iv) for all $x \in \mathbb{R}$, $\lim_{y \downarrow x} F(y) \lim_{y \uparrow x} F(y) = P(\{x\})$. In particular, F is continuous at x iff $P(\{x\}) = 0$.

b) Consider a function $F : \mathbb{R} \to [0, 1]$ that satisfies (i)–(iii). Sketch the proof of the following fact: There exists a uniquely determined probability measure P on $(\mathbb{R}, \mathcal{B})$ such that $F(x) = P(]-\infty, x]$ for every $x \in \mathbb{R}$.

2. Consider the stochastic model (Ω, \mathcal{A}, P) for coin tossing with an infinite sequence of trials, see Remark II.4.3.(ii).

a) Show that $\{\omega\} \in \mathcal{A}$ and $P(\{\omega\}) = 0$ for every $\omega \in \Omega$.

b) Let S_1, \ldots, S_n denote pairwise disjoint sets in $\mathcal{P}_0(\mathbb{N})$ and let $A_j \in \mathcal{P}(\{0,1\}^{S_j})$. Show that

$$P\Big(\bigcap_{j=1}^{n} \pi_{S_j}^{-1}(A_j)\Big) = \prod_{j=1}^{n} P(\pi_{S_j}^{-1}(A_j)).$$

c)(*) Let $S_j = \{1\}$ and $S_j = \{\binom{j}{2} + 1, \dots, \binom{j+1}{2}\}$ for $j \ge 2$. Show that $0 < P(\{\omega \in \Omega : \forall \ j \in \mathbb{N} \exists \ i \in S_j : \ w_i = 0\}) < 1.$

(*Hint:* Use b) and σ -continuity to write the probability as an infinite product, use $x = \exp(\log x), x > 0$ to express this by an infinite sum, and use $c_1 x \le \log(1+x) \le c_2 x$ for $x \in [-1,1]$.)

3. Consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$, where μ is the counting measure.

a) Let $f : \mathbb{N} \to \mathbb{R}$. Show that

 $\sum_{n \ge 1} f(n) \text{ converges absolutely} \quad \text{iff} \quad f \text{ is } \mu \text{-integrable.}$

In this case

$$\int f \ d\mu = \sum_{n \ge 1} f(n).$$

b) Formulate the 'dominated convergence theorem' in this particular situation.

4. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. Show that if $f \in \mathcal{L}^1(\Omega, \mathcal{A}, \mu)$, then for each $\varepsilon > 0$ there is a $\delta > 0$ such that $\mu(A) < \delta$ implies $\int_A |f| \ d\mu < \varepsilon$. (*Hint:* Indirect proof, use Lebesgue's theorem.)