B. Kümmerer

07. Dezember 2006

8. Übungsblatt

GRUPPENÜBUNGEN

Aufgabe G1: (Unbeschränkter Operator)

Zeigen Sie, dass für $x \in [0,1]$ die lineare Abbildung $\delta_x : (\mathcal{C}([0,1]), \|\cdot\|_2) \to \mathbb{C}, \ f \mapsto f(x)$ nicht stetig ist.

Aufgaben G2:

Sei $S: l^2(\mathbb{N}) \to l^2(\mathbb{N})$ der Rechtsshift, d.h., $(Sf)(n): \begin{cases} 0 & n=0 \\ f(n-1) & , n \geq 1 \end{cases}$. Berechnen Sie S^* .

Aufgaben G3: (M+N)

Seien M und N abgeschlossene lineare Unterräume eines Hilbertraums $\mathcal{H}.$

Zeigen Sie: Verzichtet man auf die Bedingung $M \perp N$, dann ist M + N im allgemeinen nicht abgeschlossen. Betrachten Sie dazu das folgende Beispiel.

Sei $\mathcal{H} = \ell^2(\mathbb{N})$. Ferner sei $e_k \in \ell^2(\mathbb{N})$, die Folge mit

$$e_k(n) = \begin{cases} 1 & \text{für } n = k, \\ 0 & \text{sonst.} \end{cases}$$

Sei M die abgeschlossene lineare Hülle von $\{e_{2k-1} \in \ell^2(\mathbb{N}) : k \in \mathbb{N}\}$ und N die abgeschlossene lineare Hülle von $\{z_k \in \ell^2(\mathbb{N}) : k \in \mathbb{N}\}$ mit

$$z_k = e_{2k-1} + \frac{1}{k} e_{2k}.$$

Zeigen Sie, dass $y = \sum_{n=1}^{\infty} \frac{1}{n} e_{2n}$ Grenzwert einer Folge $(y_n)_{n \in \mathbb{N}} \subset M + N$ ist, und weisen Sie nach, dass $y \notin M + N$ ist.

Hinweis: Jedes Element z aus N lässt sich eindeutig schreiben als $z = \sum_{k=1}^{\infty} \lambda_k z_k$, wobei $(\lambda_k)_{k \in \mathbb{N}}$ eine Folge in $\ell^2(\mathbb{N})$ ist.

Aufgaben G4: (Rang-1-Operatoren)

- (a) Sei \mathcal{H} ein Hilbertraum, $x, y \in \mathcal{H}$ und $T_{x,y}$ der Operator $\mathcal{H} \ni z \mapsto \langle z, x \rangle y$. Berechnen Sie die Adjungierte des Operators.
- (b) (i) Sei $T \in \mathcal{L}(\mathcal{H})$ mit dim Im T = 1. Zeigen Sie: Es existieren $x, y \in \mathcal{H}$ mit $T = T_{x,y}$.
 - ii) Sei nun $T \in \mathcal{L}(\mathcal{H})$ mit dim Im $T < \infty$. Zeigen Sie, dass ein $n \in \mathbb{N}$ und $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathcal{H}$ existieren mit $T = \sum_{i=1}^n T_{x_i, y_i}$.

Anmerkung: $T_{x,y}$ bezeichnet man auch als Rang-1-Operator. In der Quantenmechanik schreibt man dafür $|y\rangle\langle x|$.

Aufgaben G5: (Riesz-Frechet)

Sei $0 \neq a \in \mathbb{R}$ eine Konstante. Für jedes $f \in \mathcal{C}([0,1])$ sei Φ die Lösung der Differentialgleichung

$$y'(t) + ay(t) = f(t)$$
, $y(0) = 0$.

- (a) Zeigen Sie, dass die Abbildung $\varphi: \mathcal{C}([0,1],\|\cdot\|_2) \to \mathbb{R}$, $f \to \int_0^1 \Phi(t) dt$ ein stetiges lineares Funktional ist.
- (b) Bestimmen Sie eine Funktion $g \in L^2([0,1])$, so dass $\varphi(f) = \langle f, g \rangle$ ist.

HAUSÜBUNGEN

Aufgabe H1:

(Schwache Lösungen von partiellen Differentialgleichungen)(5 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ ein offenes beschränktes Gebiet mit glattem Rand.

Ferner sei $\mathcal{C}_0^{\infty}(\Omega) := \{ f \in \mathcal{C}^{\infty}(\Omega) : \text{Träger von } f \text{ ist kompakt} \}$ der Raum der unendlich oft differenzierbaren reellwertigen Funktionen mit kompaktem Träger. Wir definieren auf $\mathcal{C}_0^{\infty}(\Omega)$ eine Norm via

$$||f||_{H_0^{1,2}}^2 := ||f||_2^2 + \sum_{k=1}^n ||\frac{\partial}{\partial x_k} f||_2^2.$$

- (a) Zeigen Sie, dass $\mathcal{C}_0^\infty(\Omega)$ mit $\|\cdot\|_{H_0^{1,2}}$ ein Prä-Hilbertraum ist. Anmerkung: Die Vervollständigung von $(\mathcal{C}_0^\infty(\Omega), \|\cdot\|_{H_0^{1,2}})$ ist ein sogenannter Sobolev-Raum, den man mit $H_0^{1,2}(\Omega)$ bezeichnet.
- (b) Wir bezeichnen mit $M_n(\mathbb{R})$ den Raum aller $n \times n$ -Matrizen mit reellen Einträgen. Sei c > 0 eine positive Konstante und K eine Abbildung $K : \Omega \to M_n(\mathbb{R})$ mit der Eigenschaft:
 - (i) Für alle $1 \leq i, j \leq n$ ist die Abbildung $\Omega \ni x \mapsto K(x)_{ij}$ ein Element von $\mathcal{C}^1(\overline{\Omega})$.
 - (ii) $c||u||_{H_0^{1,2}}^2 \leq \int_{\Omega} \langle K(x) \operatorname{grad} u(x), \operatorname{grad} u(x) \rangle_{\mathbb{R}^n} dx$. $(\langle \cdot, \cdot \rangle_{\mathbb{R}^n} \text{ bezeichnet das Skalarprodukt in } \mathbb{R}^n)$

Wir betrachten eine sogenannte elliptische partielle Differentialgleichung

$$\operatorname{div}(K(x)\operatorname{grad} u(x)) = f(x) \qquad x \in \Omega,$$

$$u(x) = 0 \qquad x \in \partial\Omega,$$

wobei $f \in \mathcal{C}(\overline{\Omega})$ und $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ ist.

Bildet man das L^2 -Skalarprodukt mit einer Funktion $v \in \mathcal{C}_0^{\infty}(\Omega)$, so erhält man

$$\langle \operatorname{div}(K \operatorname{grad} u), v \rangle_{L^2(\Omega)} = \langle f, v \rangle_{L^2(\Omega)}$$

Zeigen Sie, dass diese Gleichung äquivalent zur Gleichung

$$\int_{\Omega} \langle K(x) \operatorname{grad} u, \operatorname{grad} v \rangle_{\mathbb{R}^n} dx = -\langle f, v \rangle_{L^2(\Omega)} \qquad (*)$$

ist.

(Hinweis: Für ein Vektorfeld w und eine skalare Funktion g gilt: div $(g \cdot w) = \langle \operatorname{grad} g, w \rangle + g$ div w. Verwenden Sie einen Ihnen wohlbekannten Satz aus der Integrationstheorie)

Zeigen Sie anschließend, dass es eine eindeutig bestimmte Funktion $u \in H_0^{1,2}(\Omega)$ gibt, die für alle $v \in \mathcal{C}_0^{\infty}(\Omega)$ die Gleichung (*) erfüllt.

(Hinweis: Verwenden Sie den Satz von Lax-Milgram.

Die Ungleichung $x_1 + \cdots + x_n \le n^{1/2} (x_1^2 + \cdots + x_n^2)^{1/2}$ mit $x_i \in \mathbb{R}$ kann hilfreich sein. Wie heißt diese Ungleichung?)

Anmerkung: Die Lösung $u \in H_0^{1,2}(\Omega)$ bezeichnet man als schwache Lösung der Differentialgleichung (bzw. des Dirichlet-Problems).