25. Oktober 2006

2. Übungsblatt

GRUPPENÜBUNGEN

Aufgabe G1: (Wenn Pythagoras das geahnt hätte ...)

Wann gilt für zwei Vektoren x und y in einem Hilbertraum der "Satz des Pythagoras" $||x+y||^2 = ||x||^2 + ||y||^2$?

Aufgaben G2: (Nicht alle Räume sind Hilberträume)

a) Es Sei ${\mathcal H}$ ein Prä-Hilbertraum. Verifizieren Sie die Parallelogrammidentität

$$\parallel x+y\parallel^2 + \parallel x-y\parallel^2 = 2(\parallel x\parallel^2 + \parallel y\parallel^2)$$
 für alle $x,y\in\mathcal{H}$.

Geben Sie im Spezialfall $\mathcal{H} = \mathbb{R}^2$ und $\parallel x \parallel^2 := x_1^2 + x_2^2$ eine geometrische Deutung.

b) Folgern Sie aus a), dass die Maximumnorm

$$|| f ||_{\infty} := \max_{x \in [0,1]} |f(x)|$$

auf dem Raum C([0,1]) nicht von einem Skalarprodukt abgeleitet werden kann.

c) Zeigen Sie: Für $1 \leq p \leq \infty$, $p \neq 2$, und $n \geq 2$ ist $(\mathbb{C}^n$, $\|\cdot\|_p)$ kein Hilbertraum.

Aufgaben G3: $(\ell^p$ - Räume)

Wir wollen zeigen, dass $(\ell^p(\mathbb{N}), \|\cdot\|_p)$ für $1 \leq p \leq \infty$ ein Banachraum ist. Wir beginnen mit dem Fall: $1 \leq p < \infty$.

- (a) Sei $(x^{(k)})_{k\in\mathbb{N}}\subset \ell^p(\mathbb{N})$ eine Cauchy-Folge in $\ell^p(\mathbb{N})$. Zeigen Sie, dass eine Folge $y=(y_n)_{n\in\mathbb{N}}$ existiert, so dass $\lim_{k\to\infty}x_n^{(k)}=y_n$ ist für alle $n\in\mathbb{N}$.
- (b) Weisen Sie nach, dass $||x^{(k)} y||_p$ gegen Null konvergiert für $k \to \infty$. (Hinweis: Sei $\left(\sum_{n=0}^{M} |x_n^{(k)} - x_n^{(l)}|^p\right)^{1/p} < \epsilon$ für $M \in \mathbb{N}$. Was lässt sich dann über $\left(\sum_{n=0}^{M} |y_n - x_n^{(l)}|^p\right)^{1/p}$ sagen?)
- (c) Zeigen Sie, dass $y \in \ell^p(\mathbb{N})$ ist.
- (d) Weisen Sie nach, dass auch $(\ell^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$ ein Banachraum ist.

HAUSÜBUNGEN

Aufgabe H1: (7 Punkte)

Es sei M eine offene Teilmenge des \mathbb{R}^n . Für $0 < \alpha < 1$ sei $C^{\alpha}(M)$ die Menge aller auf M erklärten beschränkten und stetigen reellen Funktionen f mit

$$\|f\|'_{\alpha} := \sup_{\substack{x,y \in M \\ x \neq y}} \frac{|f(x) - f(y)|}{\|x - y\|_{2}^{\alpha}} < \infty .$$

a) Zeigen Sie, dass $C^{\alpha}(M)$ einen Banachraum mit der Norm

$$|| f ||_{\alpha} := || f ||_{0} + || f ||'_{\alpha}, || f ||_{0} := \sup_{x \in M} |f(x)|$$

bildet.

- b) Ist auch durch $||f||'_{\alpha}$ eine Norm auf $C^{\alpha}(M)$ erklärt?
- c) Zeigen Sie, dass auch $||f||_0$ eine Norm auf $C^{\alpha}(M)$ ist. Ist $C^{\alpha}(M)$ vollständig bezüglich der Norm $||f||_0$?
- d) Verifizieren Sie im Fall n=1, M=]0,1[die Inklusion

$$C^{\beta}(M) \subsetneq C^{\alpha}(M)$$
 für $0 \leq \alpha < \beta < 1$.

Hierbei bedeutet $C^0(M) = C(M)$ die Menge der auf M beschränkten und stetigen Funktionen.

Bemerkung: $C^{\alpha}(M)$ wird als der Raum der auf M hölderstetigen Funktionen mit dem Hölder-Exponenten α bezeichnet; die Normen $\parallel f \parallel_{\alpha}$ heißen Hölder-Normen.