Zimpl User Guide
 (Zuse Institute Mathematical Programming Language)

Thorsten Koch

for Version 2.03
15. February 2005

Contents

1 Preface 2
2 Introduction 3
3 Invocation 4
4 Format 5
4.1 Expressions 5
4.2 Sets 7
4.3 Parameters 9
4.4 Variables 10
4.5 Objective 11
4.6 Constraints 11
4.7 Details on sum and forall 11
4.8 Details on if in constraints 12
4.9 Initializing sets and parameters from a file 12
4.10 Function definitions 13
4.11 Extended constraints 14
4.12 Extended functions 14
4.13 The do print and do check commands 14
5 Modeling examples 16
5.1 The diet problem 16
5.2 The traveling salesman problem 17
5.3 The capacitated facility location problem 18
5.4 The n-queens problem 20
6 Error messages 24

Abstract

Zimpl is a little language to translate the mathematical model of a problem into a linear or (mixed-)integer mathematical program expressed in LP or mps file format which can be read and (hopefully) solved by a LP or MIP solver.

1 Preface

May the source be with you, Luke!

Many of the things in Zimpl (and a lot more) can be found in the excellent book about the modeling language ampl from Robert Fourer, David N. Gay and Brian W. Kernighan [FGKo3]. Those interested in an overview of the current state-of-the-art in (commercial) modeling languages might have a look at Kalo4b]. Having the source code of a program has its advantages. The possibility to run it regardless of architecture and operating system, the ability to modify it to suite the needs, and not having to hassle with license managers may make a much less powerful program the better choice. And so Zimpl came into being.

By now Zimpl has grown up and matured. It has been used in several industry projects and university lectures, showing that it is able to cope with large scale models and also with students. This would have not been possible without my early adopters Armin Fügenschuh, Marc Pfetsch, Sascha Lukac, Daniel Junglas, Jörg Rambau and Tobias Achterberg. Thanks for there comments and bug reports.

Zimpl is licensed under the GNU general public license version 2. For more information on free software see http://www.gnu.org The latest version of Zimpl can be found at http://www.zib.de/koch/zimpl. If you find any bugs, please send an email to mailto:koch@zib. de But do not forget to include an example that shows the problem. If somebody extends Zimpl, I am interested in getting patches to include them in the main distribution.

The best way to refer to Zimpl in a publication is to cite my PhD thesis Koco4]

```
@PHDTHESIS {Koch2004,
    author = "Thorsten Koch",
    title = "Rapid Mathematical Programming",
    school = "Technische {Universit\"at} Berlin",
    year = "2004",
}
```


2 Introduction

Consider the following linear program:

$$
\begin{array}{rll}
\min & 2 x+3 y & \\
\text { subject to } & x+y & \leqslant 6 \\
& x, y & \geqslant 0
\end{array}
$$

The standard format used to feed such a problem into a solver is called mps. івм invented it for the Mathematical Programming System/360 [Kalo4a, Spio4] in the sixties. Nearly all available LP and MIP solvers can read this format. While MPs is a nice format to punch into a punch card and at least a reasonable format to read for a computer, it is quite unreadable for humans. For instance, the MPs file of the above linear program looks as follows:

NAME	ex1.mps	
ROWS		
N OBJECTIV		
L c1		
COLUMNS		2
x	OBJECTIV	1
x	c1	3
y	OBJECTIV	1
y	$c 1$	6
RHS		
RHS	$c 1$	0
BOUNDS		0
LO BND	x	
LO BND	y	

Another possibility is the LP format [ILOO2], which is more readabld but is only supported by a few solvers.

```
Minimize
    cost: +2 x +3 y
Subject to
    c1: +1 x +1 y <= 6
End
```

But since each coefficient of the matrix A must be stated explicitly it is also not a desirable choice to develop a mathematical model.
Now, with Zimpl it is possible to write this:

```
var x;
var y;
minimize cost: 2 * x + 3 * y;
subto c1: x + y <= 6;
```

[^0]and have it automatically translated into MPS or Lp format. While this looks not much different from what is in the lp format, the difference can be seen, if we use indexed variables. Here is an example. This is the lp:
\[

$$
\begin{aligned}
\min & 2 x_{1}+3 x_{2}+1.5 x_{3} \\
\text { subject to } & \sum_{i=1}^{3} x_{i} \leqslant 6 \\
& x_{i} \geqslant 0
\end{aligned}
$$
\]

And this is how to tell it to Zimpl:

```
set l := { 1 to 3 };
param c[I] := <1> 2, <2> 3, <3> 1.5;
var x[l] >= 0;
minimize cost: sum <i> in l : c[i] * x[i];
subto cons: sum <i> in | : x[i] <= 6;
```


3 Invocation

In order to run Zimpl on a model given in the file ex1. zpl type the command:

```
zimpl exl.zpl
```

In general terms the command is:

```
zimpl [options] <input-files>
```

It is possible to give more than one input file. They are read one after the other as if they were all one big file. If any error occurs while processing, Zimpl prints out an error message and aborts. In case everything goes well, the results are written into two or more files, depending on the specified options.

The first output file is the problem generated from the model in either cplex lp, mps, or a "human readable" format, with extensions.$l p$, .mps, or .hum, respectively. The next one is the table file, which has the extension .tbl. The table file lists all variable and constraint names used in the model and their corresponding names in the problem file. The reason for this name translation is the limitation of the length of names in the mps format to eight characters. Also the lp format restricts the length of names. The precise limit is depending on the version. CPLex 7.0 has a limit of 16 characters, and ignores silently the rest of the name, while CPLex 9.0 has a limit of 255 characters, but will for some commands only show the first 20 characters in the output.

A complete list of all options understood by Zimpl can be found in Table $\mathbb{1}$ A typical invocation of Zimpl is for example:

```
zimpl -o solveme -t mps data.zpl model.zpl
```

This reads the files data.zpl and model.zpl as input and produces as output the files solveme.mps and solveme.tbl. Note that in case MPs-output is specified for a maximization problem, the objective function will be inverted, because the MPs format has no provision for stating the sense of the objective function. The default is to assume maximization.

-t format	Selects the output format. Can be either lp, which is default, or mps, or hum, which is only human readable.
-o name	Sets the base-name for the output files.
	Defaults to the name of the first input file with its path and extension stripped off.
-F filter	The output is piped through a filter. A \%s in the string is replaced by the output filename. For example -F "gzip -c >\%s.gz" would compress all the output files.
-n cform	Select the format for the generation of constraint names. Can be cm, which will number them $1 \ldots n$ with a ' c ' in front. on will use the name supplied in the subto statement and number them $1 \ldots n$ within the statement. cf will use the name given with the subto, then a $1 \ldots$ n number like in cm and then append all the local variables from the forall statements.
-v $0 . .5$	Set the verbosity level. 0 is quiet, 1 is default, 2 is verbose, 3 and 4 are chatter, and 5 is debug.
-D name=val	Sets the parameter name to the specified value. This is equivalent with having this line in the Zimpl program: param name: =val.
-b	Enables bison debug output.
-f	Enables flex debug output.
-h	Prints a help message.
-m	Writes a CPLEX mst (Mip STart) file.
-O	Try to reduce the generated LP by doing some presolve analysis.
-r	Writes a CPLEX ord branching order file.
-V	Prints the version number.

Table 1: Zimpl options

4 Format

Each zpl-file consists of six types of statements:

- Sets
- Parameters
- Variables
- Objective
- Constraints
- Function definitions

Each statement ends with a semicolon. Everything from a hash-sign \#, provided it is not part of a string, to the end of the line is treated as a comment and is ignored. If a line starts with the word include followed by a filename in double quotation marks, then this file is read and processed instead of the line.

4.1 Expressions

Zimpl works on its lowest level with two types of data: Strings and numbers. Wherever a number or string is required it is also possible to use a parameter of the corresponding value type. In most cases expressions are allowed instead of just a number or a string.

The precedence of operators is the usual one, but parentheses can always be used to specify the evaluation order explicitly.

Numeric expressions

A number in Zimpl can be given in the usual format, e. g. as 2, -6.5 or $5.234 \mathrm{e}-12$. Numeric expressions consist of numbers, numeric valued parameters, and any of the operators and functions listed in Table[2 Additionally the functions shown in Table 3 can be used. Note that those functions are only computed with normal double precision floating-point arithmetic and therefore have limited accuracy.

$\mathrm{a}^{\wedge} \mathrm{b}, \mathrm{a} * * \mathrm{~b}$	a to the power of b	$\mathrm{a}^{\text {b }}$	
$a+b$	addition	$a+b$	
a-b	subtraction	$a-b$	
$\mathrm{a} * \mathrm{~b}$	multiplication	$\mathrm{a} \cdot \mathrm{b}$	
a / b	division	a / b	
$\mathrm{a} \bmod \mathrm{b}$	modulo	$a \bmod b$	
abs (a)	absolute value	\|a	
sgn (a)	sign	$x>0 \Rightarrow 1, x<0 \Rightarrow-1$, else 0	
floor (a)	round down	\a」	
ceil(a)	round up	$\lceil\mathrm{a}\rceil$	
a!	factorial	a !	
min (S)	minimum of a set	$\min _{s \in S}$	
$\max (\mathrm{S})$	maximum of a set	$\max _{s \in S}$	
$\min (\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{n})$	minimum of a list	$\min (\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{n})$	
$\max (\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{n})$	maximum of a list	$\max (\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{n})$	
card (S)	cardinality of a set		
$\operatorname{ord}(\mathrm{A}, \mathrm{n}, \mathrm{c})$	ordinal	c-th component of the n-th element of set A.	
if a then b else c end	conditional	$\begin{cases}b, & \text { if } a=\text { true } \\ c, & \text { if } a=\text { false }\end{cases}$	

Table 2: Rational arithmetic functions

sqrt (a)	square root	\sqrt{a}
$\log (a)$	logarithm to base 10	$\log _{10} a$
$\ln (a)$	natural logarithm	$\ln a$
$\exp (a)$	exponential function	e^{a}

Table 3: Double precision functions

String expressions

A string is delimited by double quotation marks ", e.g. "Hallo Keiken".

Variant expressions

The following is either a numeric or a string expression, depending on whether expression is a string or a numeric expression:

if boolean-expression then expression el se expression end

The same is true for the ord (set, tuple-number, component-number) function, which evaluates to a specific element of a set (details about sets are covered below).

Boolean expressions

These evaluate either to true or to false. For numbers and strings the relational operators $<,<=,==,!=,>=$, and $>$ are defined. Combinations of Boolean expressions with and, or, and xor ${ }^{2}$ and negation with not are possible. The expression tuple in set-expression (explained in the next section) can be used to test set membership of a tuple.

4.2 Sets

Sets consist of tuples. Each tuple can only be once in a set. The sets in Zimpl are all ordered, but there is no particular order of the tuples. Sets are delimited by braces, \{ and \}, respectively. Tuples consist of components. The components are either numbers or strings. The components are ordered. All tuples of a specific set have the same number of components. The type of the n-th component for all tuples of a set must be the same, i. e. they have to be either all numbers or all strings. The definition of a tuple is enclosed in angle brackets $<$ and $>$, e.g. $<1,2$, "x" $>$. The components are separated by commas. If tuples are one-dimensional, it is possible to omit the tuple delimiters in a list of elements, but in this case they must be omitted from all tuples in the definition, e.g. $\{1,2,3\}$ is valid while $\{1,2,<3>\}$ is not.

Sets can be defined with the set statement. It consists of the keyword set, the name of the set, an assignment operator $:=$ and a valid set expression.

Sets are referenced by the use of a template tuple, consisting of placeholders, which are replaced by the values of the components of the respective tuple. For example, a set S consisting of two-dimensional tuples could be referenced by <a,b> in S. If any of the placeholders are actual values, only those tuples matching these values will be extracted. For example, $\langle 1, \mathrm{~b}\rangle$ in S will only get those tuples whose first component is 1 . Please note that if one of the placeholders is the name of an already defined parameter, set or variable, it will be substituted. This will result either in an error or an actual value.

Examples

```
set A := { 1, 2, 3 };
set B := { "hi", "ha", "ho" };
set C := { <1,2,"x">, <6,5,"y">, <787,12.6,"oh"> };
```

For set expressions the functions and operators given in Table 4 are defined.
An example for the use of the if boolean-expression then set-expression else set-expression end can be found on page 9 together with the examples for indexed sets.

[^1]
Examples

```
set D := A cross B;
set E := { 6 to 9 } union A without { 2, 3 };
set F := { 1 to 9 } * { 10 to 19 } * { "A", "B" };
set G := proj(F, <3,1>);
# will give: { <"A",1>, <"A",2"> ... <"B",9> }
```

$A * B \text {, }$ A cross B	cross product	$\{(x, y) \mid x \in A \wedge y \in B\}$
$A+B,$	union	$\{x \mid x \in A \vee x \in B\}$
A inter B	intersection	$\{x \mid x \in A \wedge x \in B\}$
$A \backslash B, \quad A-B,$ A without B	difference	$\{x \mid x \in A \wedge x \notin B\}$
A symdiff B \{n..m\}, \{n to m by $s\}$	symmetric difference generate, (default $s=1$)	$\begin{aligned} & \{x \mid(x \in A \wedge x \notin B) \vee(x \in B \wedge x \notin A)\} \\ & \left\{x \mid x=n+i s \leqslant m, i \in \mathbb{N}_{0}, x, n, m, s \in \mathbb{Z}\right\} \end{aligned}$
proj(A, t)	projection $\mathrm{t}=\left(e_{1}, \ldots, e_{n}\right)$	The new set will consist of n-tuples, with the i-th component being the e_{i}-th component of A.
if a then b else c end	conditional	$\begin{cases}b, & \text { if } a=\text { true } \\ c, & \text { if } a=\text { false }\end{cases}$

Table 4: Set related functions

Conditional sets

It is possible to restrict a set to tuples that satisfy a Boolean expression. The expression given by the with clause is evaluated for each tuple in the set and only tuples for which the expression evaluates to true are included in the new set.

Examples

```
set F := { <i,j> in Q with i > j and i < 5 };
set A := { "a", "b", "c" };
set B := { 1, 2, 3 };
set V := { <a,2> in A*B with a == "a" or a == "b" };
# will give: { <"a",2>, <"b",2> }
```


Indexed sets

It is possible to index one set with another set resulting in a set of sets. Indexed sets are accessed by adding the index of the set in brackets [and], like S [7]. Table5lists the available functions. There are three possibilities how to assign to an indexed set:

- The assignment expression is a list of comma-separated pairs, consisting of a tuple from the index set and a set expression to assign.
- If an index tuple is given as part of the index, e.g. <i> in I, the assignment is evaluated for each value of index tuple.
- By use of a function that returns an indexed set.

Examples

```
set I := { 1..3 };
set A[I] := <1> {"a","b"}, <2> {"c","e"}, <3> {"f"};
set B[<i> in I] := { 3 * i };
set P[] := powerset (I);
set J := indexset (P);
set S[] := subsets(I, 2);
set K[<i> in I] := if i mod 2 == 0 then { i } else { -i } end;
```

```
powerset(A) generates all subsets of A {X|X\subseteqA}
subsets (A, n) generates all subsets of A
    with n elements }{X|X\subseteqA\wedge|X|=n
indexset (A) the index set of A {1\ldots|A|}
```

Table 5: Indexed set functions

4.3 Parameters

Parameters can be declared with or without an index set. Without indexing a parameter is just a single value, which is either a number or a string. For indexed parameters there is one value for each member of the set. It is possible to declare a default value.

Parameters are declared in the following way: The keyword param is followed by the name of the parameter optionally followed by the index set. Then after the assignment sign comes a list of pairs. The first element of each pair is a tuple from the index set, while the second element is the value of the parameter for this index.

Examples

```
set A := { 12 .. 30 };
set C := { <1,2,"x">, <6,5,"Y">, <3,7,"z" };
param q := 5;
param u[A] := <13> 17, <17> 29, <23> 12 default 99;
param w[C] := <1,2,"x"> 1/2, <6,5,"y"> 2/3;
param x[<i> in { 1 .. 8 } with i mod 2 == 0] := 3 * i;
```

Assignments need not to be complete. In the example, no value is given for index $<3,7$, " z " $>$ of parameter w . This is correct as long as it is never referenced.

Parameter tables

It is possible to initialize multi-dimensional indexed parameters from tables. This is especially useful for two-dimensional parameters. The data is put in a table structure with \mid signs on each margin. Then a headline with column indices has to be added, and one index for each row of the table is needed. The column index has to be onedimensional, but the row index can be multi-dimensional. The complete index for the entry is built by appending the column index to the row index. The entries are separated by commas. Any valid expression is allowed here. As can be seen in the third example below, it is possible to add a list of entries after the table.

Examples

```
set I := { 1 .. 10 };
set J := { "a", "b", "c", "x", "y", "z" };
param h[I*J] := | | "a", "c", "x", "z" 
```



```
        5| 2/3, -.4, 3, abs (-4)
        |9| 1, 2, 0, 3| default -99;
param g[I*I*I] := 
param k[I*I] := _}|\begin{array}{rrrr}{7,}&{8,}&{9}\\{|4}&{89,}&{67,}&{55}\end{array}||\mp@code{|
```

The last example is equivalent to:

```
param k[I*I] := <4,7> 89, <4,8> 67, <4,9> 44, <5,7> 12,
    <5,8> 13, <5,9> 14, <1,2> 17, <3,4> 99;
```


4.4 Variables

Like parameters, variables can be indexed. A variable has to be one out of three possible types: Continuous (called real), binary or integer. The default type is real. Variables may have lower and upper bounds. Defaults are zero as lower and infinity as upper bound. Binary variables are always bounded between zero and one. It is possible to compute the value of the lower or upper bounds depending on the index of the variable (see the last declaration in the example). Bounds can also be set to infinity and -infinity.

Examples

```
var x1;
var x2 binary;
var y[A] real >= 2 <= 18;
var z[<a,b> in C] integer
    >= a * 10<= if b <= 3 then p[b] else 10 end;
```


4.5 Objective

There must be at most one objective statement in a model. The objective can be either minimize or maximize. Following the keyword is a name, a colon : and then a linear term expressing the objective function.

Example

```
minimize cost: 12 * x1 -4.4 * x2
    + sum <a> in A : u[a] * y[a]
    + sum <a,b,c> in C with a in E and b > 3 : -a/2 * z[a,b,c];
maximize profit: sum <i> in I : c[i] * x[i];
```


4.6 Constraints

The general format for a constraint is:

```
subto name: term sense term
```

Alternatively it is also possible to define ranged constraints, which have the form:

```
name: expr sense term sense expr
```

name can be any name starting with a letter. term is defined as in the objective. sense is one of $<=,>=$ and $==$. In case of ranged constraints both senses have to be equal and may not be $==$. expr is any valid expression that evaluates to a number. Many constraints can be generated with one statement by the use of the forall instruction, as shown below.

Examples

```
subto time: 3 * x1 + 4 * x2 <= 7;
subto space: 50 >= sum <a> in A: 2 * u[a] * y[a] >= 5;
subto weird: forall <a> in A: sum <a,b,c> in C: z[a,b,c]==55;
subto c21: 6*(sum <i> in A: x[i] + sum <j> in B : y[j]) >= 2;
subto c40: x[1] == a[1] + 2 * sum <i> in A do 2*a[i]*x[i]*3+4;
```


4.7 Details on sum and forall

The general forms are:
forall index do term and sum index do term
It is possible to nest several forall instructions. The general form of index is:
tuple in set with boolean-expression
It is allowed to write a colon : instead of do and a vertical bar $\|$ instead of with. The number of components in the tuple and in the members of the set must match. The with part of an index is optional. The set can be any expression giving a set.

Examples

```
forall <i,j> in X cross { 1 to 5 } without { <2,3> }
    with i > 5 and j < 2 do
        sum <i,j,k> in X cross { 1 to 3 } cross Z do
            p[i] * q[j] * w[j,k] >= if i == 2 then 17 else 53;
```

Note that in the example i and j are set by the forall instruction. So they are fixed in all invocations of sum.

4.8 Details on if in constraints

It is possible to put two variants of a constraint into an if-statement. The same applies for terms. A forall statement inside the result part of an if is also possible.

Examples

```
subto cl: forall <i> in I do
    if (i mod 2 == 0) then 3 * x[i] >= 4
                                else -2 * y[i] <= 3 end;
subto c2: sum <i> in I :
    if (i mod 2 == 0) then 3 * x[i] else -2 * y[i] end <= 3;
```


4.9 Initializing sets and parameters from a file

It is possible to load the values for a set or a parameter from a file. The syntax is:

```
read filename as template [skip n] [use n] [fs s] [comment s]
```

filename is the name of the file to read. template is a string with a template for the tuples to generate. Each input line from the file is split into fields. The splitting is done according to the following rules: Whenever a space, tab, comma, semicolon or double colon is encountered a new field is started. Text that is enclosed in double quotes is not split and the quotes are always removed. When a field is split all space and tab characters around the splitting point are removed. If the split is due to a comma, semicolon or double colon, each occurrence of these characters starts a new field.

Examples

All these lines have three fields:

```
Hallo;12;3
Moin 7 2
"Hallo, Peter"; "Nice to meet you" 77
,,2
```

For each component of the tuple, the number of the field to use for the value is given, followed by either n if the field should be interpreted as a number or s for a string. After the template some optional modifiers can be given. The order does not matter. skip n instructs to skip the first n lines of the file. use n limits the number of lines to use to n. comment s sets a list of characters that start comments in the file. Each line is ended when any of the comment characters is found. When a file is read, empty lines are skipped and not counted for the use clause. They are counted for the skip clause.

Examples

```
set P := { read "nodes.txt" as "<1s>" };
nodes.txt:
    Hamburg }\quad-><\mathrm{ "Hamburg">
    München }\quad-><<"München">
    Berlin }\quad-><\mathrm{ "Berlin">
set Q := { read "blabla.txt" as "<1s,5n,2n>" skip 1 use 2 };
blabla.txt:
    Name;Nr;X;Y;No }\quad->\mathrm{ skip
    Hamburg;12;x;y;7 }-><<"Hamburg",7,12>
    Bremen;4;x;y;5 }\quad-><\mathrm{ "Bremen,5,4>
    Berlin;2;x;y;8 
param cost[P] := read "cost.txt" as "<1s> 2n" comment "#";
cost.txt:
    # Name Price }\quad->\mathrm{ skip
    Hamburg 1000 }-><\mathrm{ "Hamburg">1000
    München 1200 }-><<"München">120
    Berlin 1400 
param cost[Q] := read "haha.txt" as "<3s,1n,2n> 4s";
haha.txt:
    1:2:ab:con1 }-><"ab",1,2> "con1"
    2:3:bc:con2 }-><"bc",2,3> "con2"
    4:5:de:con3 }-><<"de",4,5> "con3"
```

As with table format input, it is possible to add a list of tuples or parameter entries after a read statement.

Examples

```
set A := { read "test.txt" as "<2n>", <5>, <6> };
param winniepoh[X] :=
    read "values.txt" as "<1n,2n> 3n", <1,2> 17, <3,4> 29;
```


4.10 Function definitions

It is possible to define functions within Zimpl. The value a function returns has to be either a number, a string or a set. The arguments of a function can only be numbers or strings, but within the function definition it is possible to access all otherwise declared sets, parameters and variables.

The definition of a function has to start with defnumb, defstrg or defset, depending on the return value. Then follows the name of the function and a list of argument names put in parentheses. Next is an assignment operator $:=$ and a valid expression or set expression.

Examples

```
defnumb dist(a,b) := sqrt(a*a + b*b);
defstrg huehott(a) := if a < O then "hue" else "hott" end;
defset bigger(i) := { <j> in K with j > i };
```


4.11 Extended constraints

Zimpl has the possibility to generate systems of constraints that mimic conditional constraints. The general syntax is as follows (note that the el se part is optional):
vif boolean-constraint then constraint [el se constraint] end
where boolean-constraint consists of a linear expression involving variables. All these variables have to be bounded integer or binary variables. It is not possible to use any continuous variables or integer variables with infinite bounds in a boolean-constraint. All comparison operators $(<, \leqslant,==,!=, \geqslant,>)$ are allowed. Also combination of several terms with and, or, and xor and negation with not is possible. The conditional constraints (those which follow after then or else) may include bounded continuous variables. Be aware that using this construct will lead to the generation of several additional constraints and variables.

Examples

```
var x[I] integer >= 0 <= 20;
subto c1: vif 3 * x[1] + x[2] != 7
    then sum <i> in I : y[i] <= 17
    else sum <k> in K : z[k] >= 5 end;
subto c2: vif x[1] == 1 and x[2] > 5 then x[3] == 7 end;
subto c3: forall <i> in I with i < max(I) :
    vif x[i] >= 2 then x[i + 1] <= 4 end;
```


4.12 Extended functions

It is possible to use special functions on terms with variables that will automatically be converted into a system of inequalities. The arguments of these functions have to be linear terms consisting of bounded integer or binary variables. At the moment only the function vabs (t) that computes the absolute value of the term t is implemented, but functions like the minimum or the maximum of two terms, or the sign of a term can be implemented in a similar manner. Again, using this construct will lead to the generation of several additional constraints and variables.

Examples

```
var x[I] integer >= -5 <= 5;
subto c1: vabs(sum <i> in I : x[i]) <= 15;
subto c2: vif vabs(x[1] + x[2]) > 2 then x[3] == 2 end;
```


4.13 The do print and do check commands

The do command is special. It has two possible incarnations: print and check. print will print to the standard output stream whatever numerical, string, Boolean
or set expression, or tuple follows it. This can be used for example to check if a set has the expected members, or if some computation has the anticipated result. check always precedes a Boolean expression. If this expression does not evaluate to true, the program is aborted with an appropriate error message. This can be used to assert that specific conditions are met. It is possible to use a forall clause before a print or check statement.

Examples

```
set I := { 1..10 };
do print I;
do forall <i> in I with i > 5 do print sqrt(i);
do forall <p> in P do check sum <p,i> in PI : 1 >= 1;
```


5 Modeling examples

In this section we show some examples of well-known problems translated into Zimpl format.

5.1 The diet problem

This is the first example in [Chv83, Chapter 1, page 3]. It is a classic so-called diet problem, see for example Dan90 about its implications in practice.

Given a set of foods F and a set of nutrients N, we have a table $\pi_{f n}$ of the amount of nutrient n in food f. Now Π_{n} defines how much intake of each nutrient is needed. Δ_{f} denotes for each food the maximum number of servings acceptable. Given prices c_{f} for each food, we have to find a selection of foods that obeys the restrictions and has minimal cost. An integer variable x_{f} is introduced for each $f \in F$ indicating the number of servings of food f. Integer variables are used, because only complete servings can be obtained, i. e. half an egg is not an option. The problem may be stated as:

$$
\begin{aligned}
\min \sum_{f \in F} c_{f} x_{f} & \text { subject to } \\
\sum_{f \in F} \pi_{f n} x_{f} \geqslant \Pi_{n} & \text { for all } n \in N \\
0 \leqslant x_{f} \leqslant \Delta_{f} & \text { for all } f \in F \\
x_{f} \in \mathbb{N}_{0} & \text { for all } f \in F
\end{aligned}
$$

This translates into Zimpl as follows:

```
set Food := { "Oatmeal", "Chicken", "Eggs",
    "Milk", "Pie", "Pork" };
set Nutrients := { "Energy", "Protein", "Calcium" };
set Attr := Nutrients + { "Servings", "Price" };
param needed[Nutrients] :=
    <"Energy"> 2000, <"Protein"> 55, <"Calcium"> 800;
param data[Food * Attr] :=
\begin{tabular}{|c|c|c|c|c|c|}
\hline & "Servings" & , "Energy " & , "Protein " & , "Calcium " & , "Price" \\
\hline "Oatmeal " & 4 & 110 & 4 & 2 & 3 \\
\hline "Chicken " & 3 & 205 & 32 & 12 & 24 \\
\hline "Eggs" & 2 & 160 & 13 & 54 & 13 \\
\hline "Milk" & 8 & 160 & 8 & 284 & 9 \\
\hline "Pie" & 2 & 420 & 4 & 22 & 20 \\
\hline "Pork" & 2 & 260 & 14 & 80 & 19 \\
\hline & & (kcal) & ( g ) & (mg) & (cents) \\
\hline
\end{tabular}
var x[<f> in Food] integer >= 0 <= data[f, "Servings"];
minimize cost: sum <f> in Food : data[f, "Price"] * x[f];
subto need: forall <n> in Nutrients do
    sum <f> in Food : data[f, n] * x[f] >= needed[n];
```

The cheapest meal satisfying all requirements costs 97 cents and consists of four servings of oatmeal, five servings of milk and two servings of pie.

5.2 The traveling salesman problem

In this example we show how to generate an exponential description of the symmetric traveling salesman problem (TSP) as given for example in [Scho3, Section 58.5].

Let $G=(V, E)$ be a complete graph, with V being the set of cities and E being the set of links between the cities. Introducing binary variables $x_{i j}$ for each $(i, j) \in E$ indicating if edge (i, j) is part of the tour, the tsp can be written as:

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} d_{i j} x_{i j} & \text { subject to } \\
\sum_{(i, j) \in \delta_{v}} x_{i j}=2 & \text { for all } v \in V \\
\sum_{(i, j) \in E(U)} x_{i j} \leqslant|U|-1 & \text { for all } U \subseteq V, \emptyset \neq U \neq V \\
x_{i j} \in\{0,1\} & \text { for all }(i, j) \in E
\end{array}
$$

The data is read in from a file that gives the number of the city and the x and y coordinates. Distances between cities are assumed Euclidean. For example:

\# City	X	Y
Berlin	5251	1340
Frankfurt	5011	864
Leipzig	5133	1237
Heidelberg	4941	867
Karlsruhe	4901	840
Hamburg	5356	998
Bayreuth	4993	1159
Trier	4974	668
Hannover	5237	972

Stuttgart	4874	909
Passau	4856	1344
Augsburg	4833	1089
Koblenz	5033	759
Dortmund	5148	741
Bochum	5145	728
Duisburg	5142	679
Wuppertal	5124	715
Essen	5145	701
Jena	5093	1158

The formulation in Zimpl follows below. Please note that P [] holds all subsets of the cities. As a result 19 cities is about as far as one can get with this approach. Information on how to solve much larger instances can be found on the concorde websitt ${ }^{3}$.

```
set V := { read "tsp.dat" as "<1s>" comment "#" };
set E := {<i,j> in V * V with i < j };
set P[] := powerset (V);
set K := indexset (P);
param px[V] := read "tsp.dat" as "<1s> 2n" comment "#";
param py[V] := read "tsp.dat" as "<1s> 3n" comment "#";
defnumb dist(a,b) := sqrt((px[a]-px[b])^2 + (py[a]-py[b])^2);
var x[E] binary;
minimize cost: sum <i,j> in E : dist(i,j) * x[i, j];
subto two_connected: forall <v> in V do
    (sum <v,j> in E : x[v,j]) + (sum <i,v> in E : x[i,v]) == 2;
```

[^2]```
subto no_subtour:
 forall <k> in K with
 card(P[k]) > 2 and card(P[k]) < card(V) - 2 do
 sum <i,j> in E with <i> in P[k] and <j> in P[k] : x[i,j]
 <= card(P[k]) - 1;
```

The resulting lp has 171 variables, 239,925 constraints, and 22,387,149 non-zero entries in the constraint matrix, giving an MPs-file size of 936 Mb. CPLEX solves this to optimality without branching in less than a minute 4

An optimal tour for the data above is Berlin, Hamburg, Hannover, Dortmund, Bochum, Wuppertal, Essen, Duisburg, Trier, Koblenz, Frankfurt, Heidelberg, Karlsruhe, Stuttgart, Augsburg, Passau, Bayreuth, Jena, Leipzig, Berlin.

### 5.3 The capacitated facility location problem

Here we give a formulation of the capacitated facility location problem. It may also be considered as a kind of bin packing problem with packing costs and variable sized bins, or as a cutting stock problem with cutting costs.

Given a set of possible plants P to build, and a set of stores S with a certain demand $\delta_{s}$ that has to be satisfied, we have to decide which plant should serve which store. We have costs $c_{p}$ for building plant $p$ and $c_{p s}$ for transporting the goods from plant $p$ to store $s$. Each plant has only a limited capacity $\kappa_{p}$. We insist that each store is served by exactly one plant. Of course we are looking for the cheapest solution:

$$
\begin{align*}
\min \sum_{p \in P} c_{p} z_{p}+\sum_{p \in P, s \in S} c_{p s} z_{p s} & \text { subject to } \\
\sum_{p \in P} x_{p s}=1 & \text { for all } s \in S  \tag{1}\\
x_{p s} \leqslant z_{p} & \text { for all } s \in S, p \in P  \tag{2}\\
\sum_{s \in S} \delta_{s} x_{p s} \leqslant \kappa_{p} & \text { for all } p \in P  \tag{3}\\
x_{p s}, z_{p} \in\{0,1\} & \text { for all } p \in P, s \in S
\end{align*}
$$

We use binary variables $z_{p}$, which are set to one, if and only if plant $p$ is to be built. Additionally we have binary variables $x_{p s}$, which are set to one if and only if plant $p$ serves shop $s$. Equation (11) demands that each store is assigned to exactly one plant. Inequality (2) makes sure that a plant that serves a shop is built. Inequality (3) assures that the shops are served by a plant which does not exceed its capacity. Putting this into Zimpl yields the program shown on the next page. The optimal solution for the instance described by the program is to build plants A and C. Stores 2, 3, and 4 are served by plant A and the others by plant C. The total cost is 1457 .
${ }^{4}$ Only 40 simplex iterations are needed to reach the optimal solution.

```
set PLANTS := { "A", "B", "C", "D" };
set STORES := { 1 .. 9 };
set PS := PLANTS * STORES;
How much does it cost to build a plant and what capacity
will it then have?
param building[PLANTS]:= <"A"> 500, <"B"> 600, <"C"> 700, <"D"> 800;
param capacity[PLANTS]:= <"A"> 40, <"B"> 55, <"C"> 73, <"D"> 90;
The demand of each store
param demand [STORES]:= <1> 10, <2> 14,
 <3> 17, <4> 8,
 <5> 9, <6> 12,
 <7> 11, <8> 15,
 <9> 16;
Transportation cost from each plant to each store
param transport[PS] :=
```



```
 "A"| 55, 4, 17, 33, 47, 98, 19, 10, 6
 |"B"| 42, 12, 4, 23, 16, 78, 47, 9, 82 |
 |"C"| 17, 34, 65, 25, 7, 67, 45, 13, 54 |
 |"D"| 60, 8, 79, 24, 28, 19, 62, 18, 45 |;
var x[PS] binary; # Is plant p supplying store s ?
var z[PLANTS] binary; # Is plant p built ?
We want it cheap
minimize cost: sum <p> in PLANTS : building[p] * z[p]
 + sum <p,s> in PS : transport[p,s] * x[p,s];
Each store is supplied by exactly one plant
subto assign:
 forall <s> in STORES do
 sum <p> in PLANTS : x[p,s] == 1;
To be able to supply a store, a plant must be built
subto build:
 forall <p,s> in PS do
 x[p,s] <= z[p];
The plant must be able to meet the demands from all stores
that are assigned to it
subto limit:
 forall <p> in PLANTS do
 sum <s> in S : demand[s] * x[p,s] <= capacity[p];
```


### 5.4 The $n$-queens problem

The problem is to place $n$ queens on a $\mathfrak{n} \times n$ chessboard so that no two queens are on the same row, column or diagonal. The $n$-queens problem is a classic combinatorial search problem often used to test the performance of algorithms that solve satisfiability problems. Note though, that there are algorithms available which need linear time in practise, like, for example, those of [SG91]. We will show four different models for the problem and compare their performance.

## The integer model

The first formulation uses one general integer variable for each row of the board. Each variable can assume the value of a column, i. e. we have $n$ variables with bounds $1 \ldots n$. Next we use the vabs extended function to model an all different constraint on the variables (see constraint c1). This makes sure that no queen is located on the same column than any other queen. The second constraint (c2) is used to block all the diagonals of a queen by demanding that the absolute value of the row distance and the column distance of each pair of queens are different. We model $a \neq b$ by $a b s(a-b) \geqslant 1$.

Note that this formulation only works if a queen can be placed in each row, i. e. if the size of the board is at least $4 \times 4$.

```
param queens := 8;
set C := { 1 .. queens };
set P := {<i,j> in C * C with i < j };
var x[C] integer >= 1 <= queens;
subto c1: forall <i,j> in P do vabs(x[i] - x[j]) >= 1;
subto c2: forall <i,j> in P do
 vabs(vabs(x[i] - x[j]) - abs(i - j)) >= 1;
```

The following table shows the performance of the model. Since the problem is modeled as a pure satisfiability problem, the solution time depends only on how long it takes to find a feasible solution 5 The columns titled Vars, Cons, and $N Z$ denote the number of variables, constraints and non-zero entries in the constraint matrix of the generated integer program. Nodes lists the number of branch-and-bound nodes evaluated by the solver, and time gives the solution time in CPU seconds.

| Queens | Vars | Cons | NZ | Nodes | Time [s] |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 8 | 344 | 392 | 951 | 1,324 | $<1$ |
| 12 | 804 | 924 | 2,243 | 122,394 | 120 |
| 16 | 1,456 | 1,680 | 4,079 | $>1$ mill. | $>1,700$ |

As we can see, between 12 and 16 queens is the maximum instance size we can expect to solve with this model. Neither changing the cplex parameters to aggressive cut generation nor setting emphasis on integer feasibility improves the performance significantly.

[^3]
## The binary models

Another approach to model the problem is to have one binary variable for each square of the board. The variable is one if and only if a queen is on this square and we maximize the number of queens on the board.

For each square we compute in advance which other squares are blocked if a queen is placed on this particular square. Then the extended vif constraint is used to set the variables of the blocked squares to zero if a queen is placed.

```
param columns := 8;
set C := { 1 .. columns };
set CxC := C * C;
set TABU[<i,j> in CxC] := { <m,n> in CxC with (m != i or n != j)
 and (m == i or n == j or abs (m - i) == abs(n - j)) };
var x[CxC] binary;
maximize queens: sum <i,j> in CxC : x[i,j];
subto c1: forall <i,j> in CxC do vif x[i,j] == 1 then
 sum <m,n> in TABU[i,j] : x[m,n] <= 0 end;
```

Using extended formulations can make the models more comprehensible. For example, replacing constraint c 1 in line 13 with an equivalent one that does not use vif as shown below, leads to a formulation that is much harder to understand.

```
subto c2: forall <i,j> in CxC do
 card(TABU[i,j]) * x[i,j]
 + sum <m,n> in TABU[i,j] : x[m,n] <= card(TABU[i,j]);
```

After the application of the cplex presolve procedure both formulations result in identical integer programs. The performance of the model is shown in the following table. $S$ indicates the cplex settings used: Either (D)efault, (C)ut: or (F)easibility. Root Node indicates the objective function value of the LP relaxation of the root node.

| Queens | S | Vars | Cons | NZ | Root Node | Nodes | Time [s] |
| :---: | :---: | ---: | :---: | ---: | ---: | ---: | ---: |
| 8 | D | 384 | 448 | 2,352 | 13.4301 | 241 | $<1$ |
|  | C |  |  |  | 8.0000 | 0 | $<1$ |
| 12 | D | 864 | 1,008 | 7,208 | 23.4463 | 20,911 | 4 |
|  | C |  |  |  | 12.0000 | 0 | $<1$ |
| 16 | D | 1,536 | 1,792 | 16,224 | 35.1807 | 281,030 | 1,662 |
|  | C |  |  |  | 16.0000 | 54 | 8 |
| 24 | C | 3,456 | 4,032 | 51,856 | 24.0000 | 38 | 42 |
| 32 | C | 6,144 | 7,168 | 119,488 | 56.4756 | $>5,500$ | $>2,000$ |

This approach solves instances with more than 24 queens. The use of aggressive cut generation improves the upper bound on the objective function significantly, though it can be observed that for values of $n$ larger than 24 CPLEx is not able to deduce the

[^4]trivial upper bound of $n 8$ If we use the following formulation instead of constraint c2, this changes:

```
subto c3: forall <i,j> in CxC do
 forall <m,n> in TABU[i,j] do x[i,j] + x[m,n] <= 1;
```

As shown in the table below, the optimal upper bound on the objective function is always found in the root node. This leads to a similar situation as in the integer formulation, i. e. the solution time depends mainly on the time it needs to find the optimal solution. While reducing the number of branch-and-bound nodes evaluated, aggressive cut generation increases the total solution time.

With this approach instances up to 96 queens can be solved. At this point the integer program gets too large to be generated. Even though the CPLEX presolve routine is able to aggregate the constraints again, Zimpl needs too much memory to generate the ip. The column labeled Pres. NZ lists the number of non-zero entries after the presolve procedure.

| Queens | S | Vars | Cons | NZ | Pres. NZ | Root <br> Node | Nodes | Time [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | D | 256 | 12,640 | 25,280 | 1,594 | 16.0 | 0 | $<1$ |
| 32 | D | 1,024 | 105,152 | 210,304 | 6,060 | 32.0 | 58 | 5 |
| 64 | D | 4,096 | 857,472 | 1,714,944 | 23,970 | 64.0 | 110 | 60 |
| 64 | C |  |  |  |  | 64.0 | 30 | 89 |
| 96 | D | 9,216 | 2,912,320 | 5,824,640 | 53,829 | 96.0 | 70 | 193 |
| 96 | C |  |  |  |  | 96.0 | 30 | 410 |
| 96 | F |  |  |  |  | 96.0 | 69 | 66 |

Finally, we will try the following set packing formulation:

```
subto row: forall <i> in C do
 sum <i,j> in CxC : x[i,j] <= 1;
subto col: forall <j> in C do
 sum <i,j> in CxC : x[i,j] <= 1;
subto diag_row_do: forall <i> in C do
 sum <m,n> in CxC with m - i == n - 1: x[m,n] <= 1;
subto diag_row_up: forall <i> in C do
 sum <m,n> in CxC with m - i == 1 - n: x[m,n] <= 1;
subto diag_col_do: forall <j> in C do
 sum <m,n> in CxC with m-1 == n - j: x[m,n] <= 1;
subto diag_col_up: forall <j> in C do
 sum <m,n> in CxC with card(C) - m == n - j: x[m,n] <= 1;
```

Here again, the upper bound on the objective function is always optimal. The size of the generated ip is even smaller than that of the former model after presolve. The results for different instances size are shown in the following table:

[^5]| Queens | S | Vars | Cons | NZ | Root Node | Nodes | Time [s] |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 64 | D | 4,096 | 384 | 16,512 | 64.0 | 0 | $<1$ |
| 96 | D | 9,216 | 576 | 37,056 | 96.0 | 1680 | 331 |
| 96 | C |  |  |  | 96.0 | 1200 | 338 |
| 96 | F |  |  |  | 96.0 | 121 | 15 |
| 128 | D | 16,384 | 768 | 65,792 | 128.0 | $>7000$ | $>3600$ |
| 128 | F |  |  |  | 128.0 | 309 | 90 |

In case of the 128 queens instance with default settings, a solution with 127 queens is found after 90 branch-and-bound nodes, but cPlex was not able to find the optimal solution within an hour. From the performance of the Feasible setting it can be presumed that generating cuts is not beneficial for this model.

## 6 Error messages

Here is a (hopefully) complete list of the incomprehensible error messages Zimpl can produce:

## 101 Bad filename

The name given with the -o option is either missing, a directory name, or starts with a dot.

## 102 File write error

Some error occurred when writing to an output file. A description of the error follows on the next line. For the meaning consult your OS documentation.

## 103 Output format not supported, using LP format

You tried to select another format then lp, mps, or hum.

## 104 File open failed

Some error occurred when trying to open a file for writing. A description of the error follows on the next line. For the meaning consult your OS documentation.

105 Duplicate constraint name "xxx"
Two subto statements have the same name.

## 106 Empty LHS, constraint trivially violated

One side of your constraint is empty and the other not equal to zero. Most frequently this happens, when a set to be summed up is empty.

107 Range must be $l \leqslant x \leqslant u$, or $u \geqslant x \geqslant l$
If you specify a range you must have the same comparison operators on both sides.

## 108 Empty Term with nonempty LHS/RHS, constraint trivially violated

The middle of your constraint is empty and either the left- or right-hand side of the range is not zero. This most frequently happens, when a set to be summed up is empty.

## 109 LHS/RHS contradiction, constraint trivially violated

The lower side of your range is bigger than the upper side, e.g. $15 \leqslant x \leqslant 2$.

## 110 Division by zero

You tried to divide by zero. This is not a good idea.

## 111 Modulo by zero

You tried to compute a number modulo zero. This does not work well.

## 112 Exponent value $\mathrm{x} x \mathrm{x}$ is too big or not an integer

It is only allowed to raise a number to the power of integers. Also trying to raise a number to the power of more than two billion is prohibited 9

[^6]
## 113 Factorial value $\mathrm{x} x \mathrm{x}$ is too big or not an integer

You can only compute the factorial of integers. Also computing the factorial of a number bigger then two billion is generally a bad idea. See also Error 115.

## 114 Negative factorial value

To compute the factorial of a number it has to be positive. In case you need it for a negative number, remember that for all even numbers the outcome will be positive and for all odd number negative.

## 115 Timeout!

You tried to compute a number bigger than 1000!. See also the footnote to Error 112.

116 Illegal value type in min: xxx only numbers are possible You tried to build the minimum of some strings.

## 117 Illegal value type in max: xxx only numbers are possible

You tried to build the maximum of some strings.

## 118 Comparison of different types

You tried to compare apples with oranges, i.e, numbers with strings. Note that the use of an undefined parameter could also lead to this message.
$119 \times \times \times$ of sets with different dimension
To apply Operation xxx (union, minus, intersection, symmetric difference) on two sets, both must have the same dimension tuples,i. e. the tuples must have the same number of components.

## 120 Minus of incompatible sets

To apply Operation xxx (union, minus, intersection, symmetric difference) on two sets, both must have tuples of the same type,i.e. the components of the tuples must have the same type (number, string).

123 "from" value xxx in range too big or not an integer
To generate a set, the "from" number must be an integer with an absolute value of less than two billion.

124 "upto" value xxx in range too big or not an integer
To generate a set, the "upto" number must be an integer with an absolute value of less than two billion.

125 "step" value $\mathrm{x} x \mathrm{x}$ in range too big or not an integer
To generate a set, the "step" number must be an integer with an absolute value of less than two billion.

126 Zero "step" value in range
The given "step" value for the generation of a set is zero. So the "upto" value can never be reached.

127 Illegal value type in tuple: xxx only numbers are possible
The selection tuple in a call to the proj function can only contain numbers.

## 128 Index value xxx in proj too big or not an integer

The value given in a selection tuple of a proj function is not an integer or bigger than two billion.

129 Illegal index $x x x$, set has only dimension yyy
The index value given in a selection tuple is bigger than the dimension of the tuples in the set.

## 131 Illegal element xxx for symbol

The index tuple used in the initialization list of a index set, is not member of the index set of the set. E.g, set $A[\{1$ to 5 \}] :=<1> \{1\}, $<6>$ \{ 2 \};

## 132 Values in parameter list missing, probably wrong read template

Probably the template of a read statement looks like " $<1 \mathrm{n}>$ " only having a tuple, instead of " $<1 n>2 n "$.

133 Unknown symbol xxx
A name was used, that is not defined anywhere in scope.
134 Illegal element $x \times x$ for symbol
The index tuple given in the initialization is not member of the index set of the parameter.

135 Index set for parameter $x \times x$ is empty
The attempt was made to declare an indexed parameter with the empty set as index set. Most likely the index set has a with clause which has rejected all elements.

136 Lower bound for var xxx set to infinity - ignored (warning)
In the Zimpl code something like $\geqslant$ infinity must have appeared. This makes no sense and is therefore ignored.

137 Upper bound for var $\mathrm{x} x \mathrm{x}$ set to -infinity - ignored (warning)
In the Zimpl code something like $\leqslant$-infinity must have appeared. This makes no sense and is therefore ignored.

138 Priority/Startval for continuous var xxx ignored (warning)
There has been set a priority or a starting value for a continuous (real) variable. This is not possible and therefore ignored.

139 Lower bound for integral var xxx truncated to Yyy (warning)
An integral variable can only have an integral bound. So the given non integral bound was adjusted.

140 Upper bound for integral var xxx truncated to Yyy (warning)
An integral variable can only have an integral bound. So the given non integral bound was adjusted.

141 Infeasible due to conflicting bounds for var xxx
The upper bound given for a variable was smaller than the lower bound.

142 Unknown index $x x x$ for symbol yyy
The index tuple given is not member of the index set of the symbol.
143 Size for subsets xxx is too big or not an integer
The cardinality for the subsets to generate must be given as an integer smaller than two billion.

## 144 Tried to build subsets of empty set

The set given to build the subsets of, was the empty set.
145 Illegal size for subsets $x x x$, should be between 1 and $y y y$
The cardinality for the subsets to generate must be between 1 and the cardinality of the base set.

## 146 Tried to build powerset of empty set

The set given to build the powerset of, was the empty set.

## 147 use value $x \times x$ is too big or not an integer

The use value must be given as an integer smaller than two billion.
148 use value xxx is not positive
Negative or zero values for the use parameter are not allowed.

## 149 skip value xxx is too big or not an integer

The skip value must be given as an integer smaller than two billion.

## 150 skip value xxx is not positive

Negative or zero values for the skip parameter are not allowed.

## 151 Not a valid read template

A read template must look something like " $<1 \mathrm{n}, 2 \mathrm{n}>$ ". There have to be $\mathrm{a}<$ and $\mathrm{a}>$ in this order.

## 152 Invalid read template syntax

Apart from any delimiters like $<$, $>$, and commas a template must consists of number character pairs like $1 \mathrm{n}, 3 \mathrm{~s}$.

## 153 Invalid field number xxx

The field numbers in a template have to be between 1 and 255 .

## 154 Invalid field type xxx

The only possible field types are n and s .

## 155 Invalid read template, not enough fields

There has to be at least one field inside the delimiters.

## 156 Not enough fields in data

The template specified a field number that is higher than the actual number of field found in the data.

## 157 Not enough fields in data (value)

The template specified a field number that is higher than the actual number of field found in the data. The error occurred after the index tuple in the value field.

## 158 Read from file found no data

Not a single record could be read out of the data file. Either the file is empty, or all lines are comments.

159 Type error, expected $x \times x$ got $y y y$
The type found was not the expected one, e.g. subtracting a string from a number would result in this message.

160 Comparison of elements with different types xxx / yyy
Two elements from different tuples were compared and found to be of different types.

## 161 Line xxx : Unterminated string

This line has an odd number of " characters. A String was started, but not ended.
162 Line $x x x$ : Trailing "yyy" ignored (warning)
Something was found after the last semicolon in the file.

## 163 Line xxx: Syntax Error

A new statement was not started with one of the keywords: set, param, var, minimize, maximize, subto, or do.

164 Duplicate element xxx for set rejected (warning)
An element was added to a set that was already in it.
165 Comparison of different dimension sets (warning)
Two sets were compared, but have different dimension tuples. (This means they never had a chance to be equal, other then being empty sets.)

166 Duplicate element $x \times x$ for symbol yyy rejected (warning)
An element that was already there was added to a symbol.
167 Comparison of different dimension tuples (warning)
Two tuples with different dimensions were compared.

## 168 No program statements to execute

No Zimpl statements were found in the files loaded.

## 169 Execute must return void element

This should not happen. If you encounter this error please email the. zpl file tomailto:koch@zib.de

170 Uninitialized local parameter $x x x$ in call of define yyy
A define was called and one of the arguments was a "name" (of a variable) for which no value was defined.

171 Wrong number of arguments (xxx instead of yyy) for call of define zzz
A define was called with a different number of arguments than in its definition.
172 Wrong number of entries ( $\mathrm{x} x \mathrm{x}$ ) in table line, expected yyy entries
Each line of a parameter initialization table must have exactly the same number of entries as the index (first) line of the table.

## 173 Illegal type in element xxx for symbol

A parameter can only have a single value type. Either numbers or strings. In the initialization both types were present.

174 Numeric field xxx read as "Yyy". This is not a number
It was tried to read a field with an 'n' designation in the template, but what was read is not a valid number.

175 Illegal syntax for command line define " xxx " - ignored (warning)
A parameter definition using the command line -D flag, must have the form name=value. The name must be a legal identifier, i. e. it has to start with a letter and may consist only out of letters and numbers including the underscore.

## 176 Empty LHS, in Boolean constraint (warning)

The left hand side, i. e. the term with the variables, is empty.

## 177 Boolean constraint not all integer

No continuous (real) variables are allowed in a Boolean constraint.
178 Conditional always true or false due to bounds (warning)
All or part of a Boolean constraint are always either true or false, due to the bounds of variables.

## 179 Conditional only possible on bounded constraints

A Boolean constraint has at least one variable without finite bounds.

## 180 Conditional constraint always true due to bounds (warning)

The result part of a conditional constraint is always true anyway. This is due to the bounds of the variables involved.

## 181 Empty LHS, not allowed in conditional constraint

The result part of a conditional constraint may not be empty.

## 182 Empty LHS, in variable vabs

There are no variables in the argument to a vabs function. Either everything is zero, or just use abs.

183 vabs term not all integer
There are non integer variables in the argument to a vabs function. Due to numerical reasons continuous variables are not allowed as arguments to vabs.

## 184 vabs term not bounded

The term inside a vabs has at least one unbounded variable.

## 185 Term in Boolean constraint not bounded

The term inside a vif has at least one unbounded variable.
186 Minimizing over empty set - zero assumed (warning)
The index expression for the minimization was empty. The result used for this expression was zero.

## 187 Maximizing over empty set - zero assumed (warning)

The index expression for the maximization was empty. The result used for this expression was zero.

## 188 Index tuple has wrong dimension

The number of elements in an index tuple is different from the dimension of the tuples in the set that is indexed.

## 189 Tuple number xxx is too big or not an integer

The tuple number must be given as an integer smaller than two billion.

## 190 Component number xxx is too big or not an integer

The component number must be given as an integer smaller than two billion.
191 Tuple number xxx is not a valid value between 1.. YYY
The tuple number must be between one and the cardinality of the set.
192 Component number xxx is not a valid value between 1. .УyY
The component number must be between one and the dimension of the set.

## 193 Different dimension tuples in set initialization

The tuples that should be part of the list have different dimension.
194 Indexing tuple $x \times x$ has wrong dimension $y y y$, expected $z z z$
The index tuple of an entry in a parameter initialization list must have the same dimension as the indexing set of the parameter. This is just another kind of error 134.

## 195 Empty index set for parameter

The index set for a parameter is empty.
196 Indexing tuple $x \times x$ has wrong dimension $y y y$, expected $z z z$
The index tuple of an entry in a set initialization list must have the same dimension as the indexing set of the set. If you use a powerset or subset instruction, the index set has to be one dimension.

## 197 Empty index set for set

The index set for a set is empty.

## 198 Incompatible index tuple

The index tuple given had fixed components. The type of such a component was not the same as the type of the same component of tuples from the set.

700 $\log ()$ : OS specific domain or range error message
Function log was called with a zero or negative argument, or the argument was too small to be represented as a double.

701 sqrt(): OS specific domain error message
Function sqrt was called with a negative argument.
$702 \ln ()$ : OS specific domain or range error message
Function $\ln$ was called with a zero or negative argument, or the argument was too small to be represented as a double.

## 800 parse error: expecting xxx (or yyy)

Parsing error. What was found was not what was expected. The statement you entered is not valid.

## 801 Parser failed

The parsing routine failed. This should not happen. If you encounter this error please email the .zpl file to mailto:koch@zib.de

## 900 Check failed!

A check instruction did not evaluate to true.

## References

[Chv83] Vašek Chvátal. Linear Programming. H.W. Freeman and Company, New York, 1983.
[Dan90] Georg B. Dantzig. The diet problem. Interfaces, 20:43-47, 1990.
[FGKo3] R. Fourier, D. M. Gay, and B. W. Kernighan. AMPL: A Modelling Language for Mathematical Programming. Brooks/Cole-Thomson Learning, 2nd edition, 2003.
[GNUo3] GNU multiple precision arithmetic library (GMP), version 4.1.2., 2003. Code and documentation available at http://www.swox.com/gmp
[IBM97] IBM optimization library guide and reference, 1997. For an online reference see http://www6.software.ibm.com/sos/features/featur11.htm
[ILOo2] ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA. ILOG CPLEX 8.0 Reference Manual, 2002. Information available at http://www.ilog.com/products/cplex
[Kalo4a] Josef Kallrath. Mathematical optimization and the role of modeling languages. In Josef Kallrath, editor, Modeling Languages in Mathematical Optimization, pages 324. Kluwer, 2004.
[Kalo4b] Josef Kallrath, editor. Modeling Languages in Mathematical Optimization. Kluwer, 2004.
[Koco4] Thorsten Koch. Rapid Mathematical Programming. PhD thesis, Technische Universität Berlin, 2004.
[Scho3] Alexander Schrijver. Combinatorial Optimization. Springer, 2003.
[Scho4] Hermann Schichl. Models and the history of modeling. In Josef Kallrath, editor, Modeling Languages in Mathematical Optimization, pages 25-36. Kluwer, 2004.
[SG91] Rok Sosič and Jun Gu. 3,000,000 million queens in less than a minute. SIGART Bulletin, 2(2):22-24, 1991.
[Spio4] Kurt Spielberg. The optimization systems MPSX and OSL. In Josef Kallrath, editor, Modeling Languages in Mathematical Optimization, pages 267-278. Kluwer, 2004.
[vH99] Pascal van Hentenryck. The OPL Optimization Programming Language. MIT Press, Cambridge, Massachusetts, 1999.
[XPR99] XPRESS-MP Release 11 Reference Manual. Dash Associates, 1999. Information available at http://www.dashoptimization.com


[^0]:    ${ }^{1}$ The lp format has also some idiosyncratic restrictions. For example variables should not be named e12 or the like. And it is not possible to specify ranged constraints.

[^1]:    ${ }^{2} a$ xor $b:=a \wedge \neg b \vee \neg a \wedge b$

[^2]:    ${ }^{3}$ http://www.tsp.gatech.edu

[^3]:    ${ }^{5}$ Which is, in fact, rather random.

[^4]:    ${ }^{6}$ Cuts: mip cuts all 2 and mip strategy probing 3.
    ${ }^{7}$ Feasibility: mip cuts all -1 and mip emph 1

[^5]:    ${ }^{8}$ For the 32 queens instance the optimal solution is found after 800 nodes, but the upper bound is still 56.1678 .

[^6]:    ${ }^{9}$ The behavior of this operation could easily be implemented as for (; ; ) or more elaborate as void f() $\{\mathrm{f}() ;$.

