Fachbereich Mathematik

Prof. Dr. S. Roch Martin Fuchssteiner Katrin Krohne

WS 2005 21. November 2006

Analysis III

6. Tutorium

(T 1) Zum Aufwärmen: Die Legendre-Transformation

Wir betrachten eine C^2 -Abbildung $L: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, (\mathbf{x}, \mathbf{v}, t) \mapsto L(\mathbf{x}, \mathbf{v}, t)$ und die Abbildung $\mathbf{T}: \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}, (\mathbf{x}, \mathbf{v}, t) \mapsto (\mathbf{x}, \frac{\partial L}{\partial v_1}, \dots, \frac{\partial L}{\partial v_n}, t).$

- (a) Zeigen Sie, daß \mathbf{T} im Falle det $\left(\frac{\partial^2 L}{\partial v_i \partial v_j}\right) \neq 0$ lokal umkehrbar ist, d.h. daß es lokal eine Funktion $\mathbf{G}: \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}$, mit $\mathbf{G} \circ \mathbf{T} = \mathrm{Id}$ gibt.
- (b) Folgern Sie, daß man in diesem Fall neue Koordinaten $y_i = \frac{\partial L}{\partial v_i}$ mit $v_i = G_i(\mathbf{x}, \mathbf{y}, t)$ einführen kann. (Diesen Koordinatenwechsel nennt man Legendre-Transformation.)
- (c) Geben Sie im Fall n=3 und $L(\mathbf{x},\mathbf{v},t)=\frac{1}{2}m\langle\mathbf{v},\mathbf{v}\rangle-\frac{\mu g}{\|x\|},\ 0\neq m,\mu,g\in\mathbb{R}$ die Abbildungsvorschriften für \mathbf{G} und \mathbf{T} explizit an.

(T 2) Die Hamiltonfunktion

Es sei L eine C^2 -Abbildung $L: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ und es gelte det $\left(\frac{\partial^2 L}{\partial v_i \partial v_j}\right) \neq 0$. Wir führen die Legendre-Transformation wie in T1 durch und definieren die Hamiltonfunktion H:

$$H(\mathbf{x}, \mathbf{y}, t) := \langle \mathbf{y}, \mathbf{v} \rangle - L = \langle \mathbf{y}, \tilde{\mathbf{G}}(\mathbf{x}, \mathbf{y}, t) \rangle - L(\mathbf{x}, \tilde{\mathbf{G}}(\mathbf{x}, \mathbf{y}, t), t)$$

 $\min \tilde{\mathbf{G}}_i := \mathbf{G}_{n+i} \text{ für } i = 1, \dots, n.$

- (a) Zeigen Sie $\frac{\partial H}{\partial x_i} = -\frac{\partial L}{\partial x_i}$ und $\frac{\partial H}{\partial y_i} = \tilde{G}_i$.
- (b) Geben Sie die Hamiltonfunktion im Fall n=3 und $L(\mathbf{x},\mathbf{v},t)=\frac{1}{2}m\langle\mathbf{v},\mathbf{v}\rangle-\frac{\mu g}{\|x\|}$, an.

(T 3) Die Euler-Lagrange- und die Hamilton-Gleichungen

Es sei L eine C^2 -Abbildung $L: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ und es gelte $\det \left(\frac{\partial^2 L}{\partial v_i \partial v_j}\right) \neq 0$. Wir ordnen jedem differenzierbaren Weg $\mathbf{x} \in C^2([0,1], \mathbb{R}^n)$ den Weg $t \mapsto (\mathbf{x}(t), \mathbf{v}(t) = \dot{\mathbf{x}}(t), t)$ im \mathbb{R}^{2n+1} zu und betrachten die Euler-Lagrange-Gleichungen

$$\frac{d}{dt}\frac{\partial L}{\partial v_i} - \frac{\partial L}{\partial x_i} = 0.$$

- (a) Es sei $\mathbf{x}(t)$ eine Lösung der Euler-Lagrange-Gleichungen und $y_i(t) = \frac{\partial L}{\partial v_i}(\mathbf{x}(t), \mathbf{v}(t), t)$. Zeigen Sie $\dot{x}_i = \frac{\partial H}{\partial y_i}, \, \dot{y}_i = -\frac{\partial H}{\partial x_i}$. (Benutzen Sie Ihre Kenntnisse aus T1 und T2.)
- (b) Zeigen Sie, daß die Legendre-Transformation die Euler-Lagrange-Gleichungen ein DGLn-System 1. Ordnung, die *Hamilton-Gleichungen*

$$\dot{x}_i = \frac{\partial H}{\partial y_i}, \quad \dot{y}_i = -\frac{\partial H}{\partial x_i}$$

überführt.

(c) Führt eine weitere Legendre-Transformation (mit H an Stelle von L) wieder auf die ursprünglichen Koordinaten und die Euler-Lagrange-Gleichungen?

(T 4) Die Euler-Lagrange-Gleichungen II

Es sei $L: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ wieder eine C^2 -Abbildung und die Koordinatenbezeichnungen $(\mathbf{x}, \mathbf{v}, t)$ wie oben. Wir betrachten das Wirkungsintegral $I: C^1([0,1], \mathbb{R}^n) \to \mathbb{R}$, $\gamma \mapsto \int_0^1 L(\gamma(t), \dot{\gamma}(t), t) dt$.

- (a) Geben Sie die Ableitung des Wirkungsintegrals am Punkt γ in Richtung eines Weges η durch η und die Ableitungen von L und η an.
- (b) Zeigen Sie, daß sich für $\eta(0) = \eta(1) = 0$ die Gleichung

$$dI(\gamma)(\eta) = \int_0^1 \sum_{i=1}^n \left(\frac{\partial L}{\partial x_i} - \frac{d}{dt} \frac{\partial L}{\partial v_i} \right) \eta_i dt$$

ergibt. Folgern Sie, daß am Punkt γ die Ableitung $dI(\gamma)(\eta)$ von I in alle Richtungen η mit $\eta(0) = \eta(1) = 0$ genau dann verschwindet, wenn γ die Euler-Lagrange-Gleichungen erfüllt.

(c) Es seien $\mathbf{x}_0, \mathbf{x}_1 \in \mathbb{R}^n$ gegeben und $A = \{ \gamma \in C^2([0,1], \mathbb{R}^n \mid \gamma(0) = \mathbf{x}_0 \text{ und } \gamma(1) = \mathbf{x}_1 \}$ der affine Teilraum aller C^2 -Wege von \mathbf{x}_0 nach \mathbf{x}_1 . Zeigen Sie, daß $\gamma \in A$ die Euler-Lagrange-Gleichungen erfüllen muß damit $I_{|A}$ bei γ einen Extremalpunkt haben kann.

Orientierungskolloquium

Die Forschungsgebiete des Fachbereichs Mathematik stellen sich vor.

Montag, 27.11.2006 - 16:15-17:15 Uhr - \$103/123

Prof. Dr. Martin Otto FG Logik

"Welche Logik wofür? Logik zwischen Grundlagen und Anwendungen."

Nach dem Vortrag gibt es ein gemütliches Treffen in S215/219, um über den Vortrag zu reden und die Vortragenden näher kennenzulernen.