(G 1) Affine Ebenen im \mathbb{R}^3 , Schnittgerade

Es sei E die affine Ebene durch die Punkte (2,0,0), (0,1,0) sowie (0,0,-1) und F die durch die Gleichung 2x + 2y - z = 1 erklärte affine Ebene.

- a) Ermitteln Sie die normierten Normalenvektoren der beiden affinen Ebenen E und F, sodass der Koordinatenursprung auf der Seite der Normale liegt.
- b) Geben Sie eine Parameterdarstellung der Schnittgeraden von E und F an.
- c) Ermitteln Sie den Schnittwinkel der beiden Ebenen.

 Hinweis: Der Schnittwinkel ist gleich dem Winkel zwischen den beiden obigen Normalenvektoren.

(G 2) Skalar- und Kreuzprodukt im \mathbb{R}^3

Für Vektoren $x=(x_1,x_2,x_3),y=(y_1,y_2,y_3)\in\mathbb{R}^3$ sind Skalar- und Kreuzprodukt erklärt durch

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$
 und $x \times y := (x_2 y_3 - x_3 y_2, x_3 y_1 - x_1 y_3, x_1 y_2 - x_2 y_1)$.

Zeigen Sie folgende Eigenschaften

- a) $e_1 \times e_2 = e_3$, $e_2 \times e_3 = e_1$ und $e_3 \times e_1 = e_2$ für die Basisvektoren $e_1 = (1,0,0)$, $e_2 = (0,1,0)$ und $e_3 = (0,0,1)$,
- b) Bilinearität: Für festes $y \in \mathbb{R}^3$ sind die Abbildungen $\psi(x) := \langle x, y \rangle$ sowie $\varphi(x) := x \times y$ linear,
- c) Symmetrie des Skalarproduktes $\langle x, y \rangle = \langle y, x \rangle$ sowie Antisymmetrie des Kreuzproduktes $x \times y = -y \times x$,
- d) Entwicklungssatz: Für $x,y,z\in\mathbb{R}^3$ gilt $(x\times y)\times z=\langle x,z\rangle y-\langle y,z\rangle x$ $\mathit{Hinweis:}$ Wegen b) und c) reicht es aus, die Gleichung für $x,y,z\in\{e_1,e_2,e_3\}$ zu beweisen.

(G 3) Die projektive Ebene \mathbb{P}^2

Ein Punkt $P \in \mathbb{P}^2$ in der projektiven Ebene \mathbb{P}^2 ist eine durch den Koordinatenursprung gehende Gerade im \mathbb{R}^3 , welche wir mit einem ihrer Richtungsvektoren identifizieren. Eine Gerade g in der projektiven Ebene ist eine den Koordinatenursprung enthaltende Ebene im \mathbb{R}^3 , welche wir mit einem ihrer Normalenvektoren identifizieren.

Überlegen Sie sich nun folgendes: Sind $P,Q\in\mathbb{P}^2$ zwei verschiedene Punkte in der projektiven Ebene, so erhält man mit $P\times Q$ die Gerade durch P und Q. Sind andererseits g,h zwei verschiedene Geraden in der projektiven Ebene, so erhält man mit $g\times h$ ihren Schnittpunkt. Schließlich liegt ein Punkt $P\in\mathbb{P}^2$ auf einer Geraden g genau dann, wenn $\langle P,g\rangle=0$ gilt.

(G 4) Der Satz von Pappus in der projektiven Ebene

In der projektiven Ebene seien a, b zwei Geraden und P_1, P_2, P_3 drei Punkte auf a, P_4, P_5, P_6 drei Punkte auf b. Weiter sei P_7 der Schnittpunkt der Geraden durch P_1, P_5 und P_2, P_4 , es sei P_8 der Schnittpunkt der Geraden durch P_3, P_5 und P_2, P_6 und schließlich sei P_9 der Schnittpunkt der Geraden durch P_1, P_6 und P_3, P_4 . (Bild siehe Rückseite).

Zeigen Sie den Satz Pappus: Der Punkt P_8 liegt auf der Geraden durch P_7 und P_9 . Nehmen Sie der Einfachheit halber $P_1 = (1,0,0), P_2 = (0,1,0), P_4 = (0,0,1)$ und $P_5 = (1,1,1)$ an.

(H 1) Affine Ebenen im Raum

Es sei E die affine Ebene durch (1,3,3), (2,2,0) und (1,1,1) und F die affine Ebene durch (2,1,0), (1,2,1) und (0,1,1).

Ermitteln Sie eine Parameterdarstellung der Schnittgeraden sowie den Schnittwinkel beider Ebenen.

(H 2) Der Senkrechtraum

Es sei W ein Vektorraum mit Skalarprodukt und $U \subset W$ eine Teilmenge. Zeigen Sie, dass dann die Menge $U^{\perp} := \{v \in W \mid \langle v, u \rangle = 0 \text{ für alle } u \in U\}$ ein Untervektorraum ist.

(H 3) Äquivalenzrelation und der projektive Raum

Zwischen zwei Vektoren $x, y \in M := \mathbb{R}^3 \setminus \{0\}$ erklären wir eine Relation \sim : Es gilt $x \sim y$ genau dann, wenn $y = \lambda x$ für ein $\lambda \in \mathbb{R} \setminus \{0\}$.

- a) Zeigen Sie, dass \sim eine Äquivalenzrelation ist, d.h. zeigen Sie folgende drei Eigenschaften:
 - 1.) Reflexivität: $x \sim x$ für alle $x \in M$,
 - 2.) Symmetrie: Wenn $x \sim y$ gilt, so auch $y \sim x$,
 - 3.) Transitivität: Wenn $x \sim y$ und $y \sim z$ gilt, so auch $x \sim z$.
- b) Zeigen Sie, dass \sim bezüglich des Kreuzproduktes eine Kongruenzrelation ist, d.h. zeigen Sie folgende Eigenschaft: Wenn $x \sim x'$ und $y \sim y'$ gilt, so gilt $x \times y \sim x' \times y'$.

Bemerkung: Die von x erzeugte Äquivalenzklasse ist definiert durch $[x] := \{y \in M \mid y \sim x\}$. Der projektive Raum lässt sich nun erklären als $\mathbb{P}^2 := \{[x] \mid x \in M\}$. Ein Punkt im projektiven Raum ist somit eine Äquivalenzklasse [x].

(H 4) Die Bianchi-Identität für das Kreuzprodukt

Beweisen Sie die Gleichung

$$(x \times y) \times z + (y \times z) \times x + (z \times x) \times y = 0$$

für alle Vektoren $x, y, z \in \mathbb{R}^3$.

Bilder zu (G 4), erstellt mit Cinderella

