(G 1) Lineare Abbildungen

Welche der folgenden Abbildungen sind linear?

a)
$$\varphi : \mathbb{R}^3 \to \mathbb{R}^3$$
, $\varphi(x, y, x) = (x + y, x + z, y - z)$

b)
$$\varphi: \mathbb{R}^2 \to \mathbb{R}^3$$
, $\varphi(x,y) = (x^2, y^2, x - y)$

c)
$$\varphi : \mathbb{R}^3 \to \mathbb{R}^4, \ \varphi(x, y, z) = (x - y, x - z, 2x + y, z)$$

d)
$$\varphi : \mathbb{R} \to \mathbb{R}^3$$
, $\varphi(x) = (0, x, 2x)$

Geben Sie bei den linearen Abbildungen jeweils Kern, Bild und deren Dimensionen an.

(G 2) Matrizen

Gegeben seien die Matrizen

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} \quad , \quad B = \begin{pmatrix} 2 & 1 & 1 & 2 \\ 1 & 3 & 2 & 1 \\ 4 & 1 & 2 & 3 \end{pmatrix} \quad , \quad C = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} .$$

- a) Berechnen Sie, falls möglich, folgende Summen A + B, A + C und B + C.
- b) Berechnen Sie, falls möglich, folgende Matrizenprodukte A^2 , AB, BA, B^TA und B^2 .
- c) Vergleichen Sie die Matrizen AB und $B^{T}A$. Was fällt Ihnen auf?

(G 3) Lineare Gleichungssysteme

Ermitteln Sie alle Lösungen $x = (x_1, x_2, x_3, x_4)$ des Gleichungssystemes

$$x_1 + x_2 + x_3 + x_4 = 10$$

$$x_1 - x_2 + x_3 - x_4 = 2$$

$$x_1 + 2x_4 = 6$$

$$2x_2 + x_3 = 8$$

(G 4) Rang einer Matrix bei unterschiedlichen Körpern Über einem Körper K sei die Matrix $A \in K^{3\times 3}$

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 3 & 1 & 2 \end{array}\right)$$

gegeben.

- a) Berechnen Sie den Rang von A für den Körper $K=\mathbb{Q}$.
- b) Berechnen Sie den Rang von A für den Körper $K=\mathbb{Z}_5$.
- c) Wie erklären Sie sich die unterschiedlichen Ergebnisse aus a) und b)?

Prof. Dr. Bokowski/Altmann/Bergner

(H 1) Lineare Abbildungen

Es seien $v_1 = (1, 0, 0), v_2 = (1, 1, 0), v_3 = (1, 1, 1)$ und $v_4 = (3, 2, 1)$. Weiter sei $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ eine lineare Abbildung mit $\varphi(v_1) = (2, 1, 2), \varphi(v_2) = (1, 2, 1)$ und $\varphi(v_3) = (3, 2, 1)$.

- a) Ermitteln Sie die Dimensionen von Kern und Bild von φ .
- b) Berechnen Sie $\varphi(v_4)$.
- c) Ermitteln Sie einen Vektor v mit $\varphi(v) = (0, 1, 2)$.

(H 2) Matrix mit Parameter

Für $a \in \mathbb{R}$ sei die 3×3 -Matrix

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ a & 1 & 2 \\ 2 & 4 & a \end{array}\right)$$

erklärt. Geben Sie in Abhängigkeit von a Kern und Bild von A und deren Dimensionen an.

(H 3) Lineare Abbildungen

Es seien V und W zwei Vektorräume, $\varphi:V\to W$ eine lineare Abbildung und $v_1,\ldots,v_k\in V$ Vektoren.

- a) Zeigen Sie: Wenn $\varphi(v_1), \ldots, \varphi(v_k)$ linear unabhängig sind, so sind es auch v_1, \ldots, v_k .
- b) Sei nun V = W und $\varphi : V \to V$ bijektiv. Zeigen Sie: Wenn v_1, \ldots, v_k linear unabhängig sind, so sind es auch $\varphi(v_1), \ldots, \varphi(v_k)$.

(H 4) Potenzen einer Matrix

Gegeben sei die Matrix

$$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{array}\right) .$$

- a) Berechnen Sie A^2 , A^3 und A^4 .
- b) Bestimmen Sie nun die Potenz A^n für eine beliebige, natürliche Zahl $n \in \mathbb{N}$.

Prof. Dr. Bokowski/Altmann/Bergner