

WS 2006/2007 19.1.2007

10. Übungsblatt

Wiederholungsaufgaben

- (W11) Diskutieren Sie für nachstehende Funktionen
 - → Definitionsbereich
 - → Wertebereich
 - → Periodizität

$$f_1(x) = \frac{1}{\sin x}$$
, $f_2(x) = 2^{\sin x}$, $f_3(x) = \sin 2^x$

(W12) Funktionen skizzieren

Es ist unter Benutzung nachstehender Anleitung folgende Funktion zu skizzieren

$$y = f(x) = \frac{1}{1 - x^2}.$$

Anleitung:

- 1. Zeichnen Sie (alles wirklich dünn!!!) in ein [x, y]-Koordinatensystem die Funktion $y_1 = x^2$.
- 2. Konstruieren Sie daraus die Funktion $y_2 = -x^2$ durch Spiegelung von y_1 an der x-Achse.
- 3. Nun ist $y_3 = 1 x^2$ zu zeichnen. Dazu verschieben wir die x-Achse um 1 nach unten fertig!
- 4. Kommen wir schließlich zu $y = \frac{1}{1-x^2}$: Nehmen Sie einen beliebigen x-Wert und den dazugehörigen y_3 -Wert und zeichnen Sie den Punkt $(x, \frac{1}{y_3})$ ein. Das nennt man "reziprokes Spiegeln "am Geradenpaar $y = \pm 1$. Zeichnen Sie zur Veranschaulichung die Geraden y = 1 und y = -1 dünn in das Koordinatensystem ein. Erkennen Sie die Spiegelung?
- 5. Zeichnen Sie zum Abschluß das letzte Funktionsbild sowie das zweite Koordinatensystem dick nach fertig ist die Skizze!

Präsenzaufgaben

(P37) Grenzwerte

Berechnen Sie, falls möglich, folgende Grenzwerte. Fertigen Sie eine Skizze an.

(i)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$
, $\lim_{x \to -3} \frac{x^3 - 7x + 6}{x + 3}$

(ii)
$$\lim_{x \to 0} \sin \frac{1}{x}$$
, $\lim_{x \to 0} x \cos \frac{1}{x}$

(iii)
$$\lim_{x \uparrow 1} f(x)$$
, $\lim_{x \downarrow 1} f(x)$ mit $f(x) = \begin{cases} x & \text{für } x \leq 1 \\ \frac{1}{x+1} - \frac{1}{2} & \text{für } x > 1 \end{cases}$

(P38) Stetige Ergänzung

Können Sie jeweils f(0) derart definieren, daß die Funktionen f auf ganz \mathbb{R} stetig sind?

(i)
$$f(x) = \begin{cases} 1 & \text{für } x \neq 0 \\ ? & \text{für } x = 0 \end{cases}$$
 (ii) $f(x) = \begin{cases} 1 & \text{für } x > 0 \\ ? & \text{für } x = 0 \\ -1 & \text{für } x < 0 \end{cases}$

(iii)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{für } x \neq 0 \\ ? & \text{für } x = 0 \end{cases}$$

(P39) Hyperbolische Funktionen

Wir definieren die hyperbolischen Funktionen über die Exponentialfunktion:

$$sinh x = \frac{1}{2}(e^x - e^{-x}), \quad \cosh x = \frac{1}{2}(e^x + e^{-x}),$$

ferner

$$tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}.$$

Zeigen Sie unter Benutzung der Definition wenigstens eine der drei Identitäten

$$\cosh^2 x - \sinh^2 x = 1$$
, $\cosh 2x = \cosh^2 x + \sinh^2 x$, $\sinh 2x = 2 \sinh x \cosh x$.

Hausaufgaben

(H31) Berechnung von Grenzwerten

Berechnen Sie folgende Grenzwerte:

(i)
$$\lim_{x \to 2} \frac{x+1}{\sqrt{(2x+1)(x-2)}}$$
, $\lim_{x \to \infty} \frac{(2x+3)(x+3)x}{5x^3+x^2-1}$

(ii)
$$\lim_{x \to 1} \frac{x+1}{(\sqrt{x}-1)x}$$
, $\lim_{x \to 1} \frac{x-1}{(\sqrt{x}-1)x}$

(iii)
$$\lim_{x \uparrow 0} f(x)$$
, $\lim_{x \downarrow 0} f(x)$ mit $f(x) = \begin{cases} \frac{|x|}{x} & \text{für } x \in \mathbb{R} \setminus \{0\} \\ 1 & \text{für } x = 0 \end{cases}$

(H32) Berechnung von Grenzwerten

(i) Berechnen Sie die Grenzwerte

$$\lim_{x \to 1} \frac{x-1}{x-1} \,, \quad \lim_{x \to 1} \frac{x^2-1}{x-1} \,, \quad \lim_{x \to 1} \frac{x^3-1}{x-1} \,, \quad \lim_{x \to 1} \frac{x^3-1}{x^2-1} \,.$$

(ii) Berechnen Sie nun den Grenzwert

$$\lim_{x \to 1} \frac{x^n - 1}{x^m - 1}, \quad \text{für beliebige } m, n \in \mathbb{N}.$$

(H33) Grenzwerte von Funktionenfolgen

Betrachten Sie die stetigen (warum eigentlich stetig?) Funktionen

$$f_n(x) = \frac{nx}{1 + n|x|}, \quad x \in \mathbb{R}, \ n \in \mathbb{N}.$$

Berechnen Sie den Grenzwert

$$f(x) = \lim_{n \to \infty} f_n(x).$$

In welchen Punkten ist f stetig?

(H34) Umkehrfunktionen

Die Umkehrfunktionen arsinh, arcosh, usw. der hyperbolischen Funktionen lassen sich über den natürlichen Logarithmus erklären, z.B.:

$$\begin{aligned} & \mathrm{arsinh} x = \ln(x + \sqrt{x^2 + 1}) & \text{für } x \in \mathbb{R}, \\ & \mathrm{arcosh} x = \ln(x + \sqrt{x^2 - 1}) & \text{für } x \geq 1. \end{aligned}$$

2

Zeigen Sie wenigstens eine dieser Identitäten.