Dr. Benno van den Berg

27. Mai, 2009

1. Übungsblatt Formale Grundlagen der Informatik II SS 2008/2009

(E1.1)

Wir betrachten ein Netzwerk mit vier Ports (Ports 1, 2, 3 und 4), die jeweils entweder aktiv (A) oder inaktiv und entweder offen (O) oder geschlossen sind. Wir führen aussagenlogische Variablen p_{iA} ein für "Port i ist aktiv" und p_{iO} für "Port i ist offen". Formalisieren Sie folgende Aussagen in der Aussagenlogik:

- (a) Wenn Port 1 offen ist, dann ist Port 2 offen oder Port 3 inaktiv.
- (b) Ports 1 und 2 sind nicht beide aktiv.
- (c) Höchstens zwei Ports sind offen.
- (d) Von je drei Ports ist mindestens einer inaktiv.

(E1.2)

(a) Erstellen Sie die Wahrheitstafel zu folgender Formel:

$$\varphi := (\neg p \land \neg q) \to (p \lor (\neg q \land r))$$

Ist die Formel erfüllbar? Ist sie allgemeingültig?

(b) Geben Sie eine Formel zu folgender Wahrheitstafel an:

p	q	r	
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

(c) Geben Sie eine Formel $\varphi(p,q,r)$ an, welche genau dann wahr ist, wenn höchtens ein der Variablen p,q,r wahr ist.

(d) Geben Sie eine Formel $\varphi(p,q,r,s)$ an, welche genau dann wahr ist, wenn genau drei der Variablen denselben Wert haben.

(E1.3)

- (a) Beweisen oder widerlegen Sie die folgende Aussagen.
 - (i) $\varphi \models \psi$ genau dann, wenn $\models \varphi \rightarrow \psi$.
 - (ii) Wenn $\varphi \models \psi$ und φ allgemeingültig (bzw. erfüllbar) ist, dann ist auch ψ allgemeingültig (bzw. erfüllbar).
 - (iii) Wenn $\varphi \models \psi$ und ψ allgemeingültig (bzw. erfüllbar) ist, dann ist auch φ allgemeingültig (bzw. erfüllbar).
 - (iv) $\{\varphi, \psi\} \models \theta$ genau dann, wenn $\varphi \models \theta$ oder $\psi \models \theta$.
- (b) Beweisen oder widerlegen Sie die folgenden Äquivalenzen und Folgerungsbeziehungen.
 - (i) $\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$
 - (ii) $\neg(\varphi \lor \psi) \equiv \neg\varphi \lor \neg\psi$
 - (iii) $\{\neg \psi, \psi \rightarrow \varphi\} \models \neg \varphi$
 - (iv) $\{\neg \varphi, \psi \rightarrow \varphi\} \models \neg \psi$

(E1.4)

Für $n \geqslant 1$ sei

$$\varphi_n(p_1,\ldots,p_{2n}) := \bigwedge_{i=1}^n \neg (p_{2i-1} \leftrightarrow p_{2i})$$

(siehe Beispiel 3.9 im Skript). Zeigen Sie, daß

- (a) φ_n genau 2^n verschiedene Modelle hat;
- (b) φ_n äquivalent zu einer Formel in KNF ist, welche 2n Konjunktionsglieder besitzt;
- (c) jede zu φ_n äquivalente Formel in DNF mindestens 2^n Disjunktionsglieder hat.