## Variationsrechnung

## 3. Übung, Lösungsvorschlag

## Gruppenübung

G 1 1. We have $F(0, \xi)=(|\xi|-1)^{2}$ and this is obviously not convex: $F(0,-1)=F(0,1)=0$, but $F(0,0)=1$ and so it's not true that

$$
F\left(\frac{1}{2}(0,-1)+\frac{1}{2}(0,1)\right) \leq \frac{1}{2} F(0,-1)+\frac{1}{2} F(0,1)
$$

2. Take

$$
u_{1}(x)= \begin{cases}x & \text { for } 0 \leq x<\frac{1}{2} \\ 1-x & \text { for } \frac{1}{2} \leq x \leq 1\end{cases}
$$

Then $u_{1}$ is piecewise continuously differentiable on $[0,1]$ and

$$
\mathcal{I}\left[u_{1}\right]=\int_{0}^{1} u_{1}^{2}(x) d x=2 \int_{0}^{\frac{1}{2}} x d x=\frac{1}{4}
$$

Now take

$$
u_{2}(x)= \begin{cases}x & \text { for } 0 \leq x<\frac{1}{4} \\ \frac{1}{2}-x & \text { for } \frac{1}{4} \leq x<\frac{1}{2} \\ x-\frac{1}{2} & \text { for } \frac{1}{2} \leq x<\frac{3}{4} \\ 1-x & \text { for } \frac{3}{4} \leq x \leq 1\end{cases}
$$

Observe that $u_{2}(x)=\frac{1}{2} u_{1}(2 x)$ if we extend $u_{1}$ periodically onto the set $[0,2]$. Then

$$
\mathcal{I}\left[u_{2}\right]=\int_{0}^{1} u_{2}^{2}(x) d x=\frac{1}{2} \int_{0}^{1} u_{1}^{2}(2 x) d x=\frac{1}{4} \int_{0}^{2} u_{1}^{2}(x) d x=\frac{1}{2} \int_{0}^{1} u_{1}^{2}(x) d x=\frac{1}{2} \mathcal{I}\left[u_{1}\right]
$$

Similarly, if we extend $u_{1}$ onto the whole half-line $\mathbb{R}_{+}$periodically, then taking $u_{n+1}(x)=$ $2^{-n} u_{1}\left(2^{n} x\right)$ we see that

$$
\mathcal{I}\left[u_{n+1}\right]=2^{-n} \mathcal{I}\left[u_{1}\right] \rightarrow 0
$$

as $n \rightarrow \infty$. Obviously each $u_{n}$ is piecewise continuously differentiable and also $u_{n} \rightarrow$ $0=u$ pointwise on $[0,1]$ (even uniformly, because $\sup _{x \in[0,1]}\left|u_{n}(x)\right|=2^{-n} \rightarrow 0$ ). But

$$
\mathcal{I}[0]=\int_{0}^{1}(0-1)^{2} d x=1
$$

and so we have $\mathcal{I}[u] \neq \lim _{n \rightarrow \infty} \mathcal{I}\left[u_{n}\right]$.
3. Fix $x<y \in[a, b]$. We need to prove that for all $\lambda \in(0,1)$ there holds

$$
f((1-\lambda) x+\lambda y) \leq(1-\lambda) f(x)+\lambda) f(y)
$$

This is true for $\lambda=\frac{1}{2}$, from the assumption. Take $\lambda=\frac{1}{4}$. Then the point $(1-\lambda) x+\lambda y=$ $\frac{3 x+y}{4}$ is the midpoint between $x$ and $\frac{x+y}{2}$ and so:

$$
\begin{aligned}
f\left(\frac{3}{4} x+\frac{1}{4} y\right) & =f\left(\frac{1}{2} x+\frac{1}{2} \frac{x+y}{2}\right) \leq \frac{1}{2} f(x)+\frac{1}{2} f\left(\frac{x+y}{2}\right) \\
& \leq \frac{1}{2} f(x)+\frac{1}{4} f(x)+\frac{1}{4} f(y)=\frac{3}{4} f(x)+\frac{1}{4} f(y)
\end{aligned}
$$

Similarly we prove for $\lambda=\frac{3}{4}$. By dividing these intervals into two pieces we prove the inequality for $\lambda=\frac{k}{2^{n}}$ for any $n=1,2, \ldots$ and $k=0, \ldots, n$. But the set

$$
L=\left\{(1-\lambda) x+\lambda y: \exists n \in \mathbb{N} \exists k \in\{0, \ldots, n\} \lambda=\frac{k}{2^{n}}\right\}
$$

is dense in the interval $[x, y]$. From this density and continuity of $f$ we obtain the desired inequality for any $\lambda \in(0,1)$.

